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Introduction

Three-body forces have become an accepted feature of the nuclear shell model [1]. They can be either real, arising because of the composite nature of the nucleon, or effective, induced by a renormalization to a given truncated model space. There is now considerable evidence for the existence of real three-body interactions in light nuclei [2] (see also the review [3]). Effective three-body interactions, on the other hand, are expected to occur in heavier nuclei since for such systems the effect of orbitals that are excluded because of model-space limitations can be important. If effective three-body interactions are included in the Hamiltonian, a consistent treatment requires effective higher-order corrections to other operators as well [4]. For electromagnetic transitions the usual approach is to introduce effective g factors or effective charges in the one-body operator (see, e.g. [5,6]). However, one may question the use of a single effective g factor or effective charge, which can be state dependent. State-dependent renormalization can, in principle, be described by an effective two-body electromagnetic-transition operator but this is rarely done in shell-model calculations. (An exception is the two-body M1 operator of Ref. [7].)

The single-j Hamiltonian

We use a rotationally invariant Hamiltonian with up to three-body interactions, acting between identical nucleons in a single-j orbital. Following the notation of Volya [13] we write the Hamiltonian as

Ĥ = Ĥ1 + V2 + V3 , (1) 
with

Ĥ1 = j nj = j +j m=-j a † jm a jm , V2 = J even V J +J M =-J T (2) † JM T (2) JM , V3 = J αα W J αα +J M =-J T (3) † αJM T (3) α JM , (2) 
where nj is the nucleon-number operator. The operator a † jm (a jm ) creates (annihilates) a nucleon in the orbital j with projection m; T (n) † αJM and T (n) αJM are the generalization to operators that create and annihilate a normalized n-nucleon state with total angular momentum J and projection M . The notation α represents any additional label necessary to characterize fully the n-body state |j n αJM . The single-particle energy j and the interactions

V J ≡ j 2 JM | V2 |j 2 JM , W J αα ≡ j 3 αJM | V3 |j 3 α JM , (3) 
completely determine the Hamiltonian (1) in a single-j orbital. In the two-body matrix elements no additional label α is needed and J must be even. In the three-body matrix elements additional labels are needed for certain values of J if j ≥ 9/2 [START_REF] De-Shalit | Nuclear Shell Theory[END_REF][START_REF] Talmi | Simple Models of Complex Nuclei. The Shell Model and Interacting Boson Model[END_REF]. Following Refs. [11,12,13] one can treat j , V J and W J αα as parameters to be fitted to the available binding energies of ground and excited states of semi-magic nuclei. Alternatively, one considers them as the matrix elements of an effective interaction, which arises due to truncation effects from a larger shell-model space to a single-j orbital. Expressions relevant to the latter approach are given in the next section.

Effective two-and three-body interactions

We consider a system of identical nucleons (neutrons or protons) in a valence shell containing several orbitals j, j 1 , j 2 ,. . . with single-nucleon energies j , j 1 , j 2 ,. . . The nucleons interact through a two-body force V2 and transitions of multipolarity λ between states are induced by one-body operators T (λ) 1 . We assume that the orbital j is well below the others, j j 1 ≤ j 2 ≤ • • •. An equivalent problem arises for a system of orbitals j, j 1 , j 2 ,. . . with single-nucleon energies j j 1 ≥ j 2 ≥ • • •, which can be reformulated in terms of holes. All formulas given below apply to this case as well after the substitution → -.

The aim is to replace operators Ô, defined for the entire shell-model space {j, j 1 , j 2 , . . .}, by effective operators Ôeff that act in the single orbital j. This can be achieved most simply by considering, in the total Hamiltonian Ĥ = Ĥ1 + V2 , the two-body interaction V2 as a perturbation on the single-nucleon Hamiltonian Ĥ1 , and by applying the perturbation method of Bloch and Horowitz [8]. For the definition of an effective interaction that contains up to and including three-body components, it is necessary to consider the perturbation due to V2 of one-, two-and three-nucleon states.

In the approximation outlined above, a state |j , with one nucleon in the orbital j and all others empty, cannot be perturbed by V2 since j| V2 |j k = 0. The energy of this single-nucleon state is therefore

E (0) (j) = j , (4) 
to all orders of perturbation theory and its perturbed wave function |j) is the unperturbed wave function |j . Two-nucleon states have zeroth-order energies

E (0) (j 2 J) = 2 j , (5) 
and a first-order contribution of V2 , which is its expectation value in the state |j 2 J ,

E (1) (j 2 J) = j 2 J| V2 |j 2 J ≡ V J . (6) 
Similarly, three-nucleon states have zeroth-order energies

E (0) (j 3 αJ) = 3 j , (7) 
and a first-order contribution of V2 , which is its expectation value in the state |j 3 αJ ,

E (1) (j 3 αJ) = j 3 αJ| V2 |j 3 αJ = 3 R (c R 3αJ ) 2 V R , (8) 
where c [START_REF] De-Shalit | Nuclear Shell Theory[END_REF][START_REF] Talmi | Simple Models of Complex Nuclei. The Shell Model and Interacting Boson Model[END_REF]. The expressions for E (n) (j 2 J) and E (n) (j 3 αJ) in second (n = 2) and third (n = 3) order are given in Appendix A and Appendix B, respectively.

α n-1 R nαnJ ≡ [j n-1 (α n-1 R)jJ|}j n α n J] is an n → n -1 coefficient of fractional parentage
Up to order n of perturbation theory, an effective Hamiltonian with up to threebody interactions,

Ĥ(n) eff = Ĥ(n) 1eff + V (n) 2eff + V (n) 3eff , (9) 
can be constructed from

j| Ĥ(n) 1eff |j = E (0) (j) = j , j 2 J| Ĥ(n) eff |j 2 J = n i=0 E (i) (j 2 J), j 3 αJ| Ĥ(n) eff |j 3 αJ = n i=0 E (i) (j 3 αJ), (10) 
where the first, second, and third equation defines the 1-body, (1 + 2)-body, and (1 + 2 + 3)-body part of the effective Hamiltonian, respectively. The one-body part of

� � � ������-����� ���-���� (�) (�) � �� � �� � �� �� � �� � � � �����-����� ���-���� (�) (�) (�) (�) (�)
Figure 1. Second-and third-order contributions to the effective two-body interaction V2eff . The black unlabeled lines correspond to particles in the orbital j. Particle excitations into the orbitals j k , j l ,. . . are indicated in red and labeled with the corresponding indices k, l,. . . the effective Hamiltonian is Ĥ1eff = nj to all orders. The effective two-body interaction to order n is specified by the matrix elements

j 2 J| V (n) 2eff |j 2 J = n i=1 E (i) (j 2 J). (11) 
The effective three-body interaction to order n can be calculated from the third equation in Eq. ( 9). The contribution from the effective two-body interaction must be subtracted, leading to the following expression for the matrix elements of the effective three-body interaction:

j 3 αJ| V (n) 3eff |j 3 αJ = n i=1 E (i) (j 3 αJ) -3 n i=1 R (c R 3αJ ) 2 E (i) (j 2 R). (12) 
Care must be taken to compute both sums in this equation to the same order in perturbation theory. Because of Eqs. ( 6) and ( 8), this immediately shows that no three-body interaction occurs in first-order perturbation, n = 1. This is no longer the case for n > 1, as shown in Appendix A and Appendix B.

The different contributions to the effective Hamiltonian can be visualized with diagrams [8]. In view of the assumption j j 1 ≤ j 2 ≤ • • •, only particle excitations can occur and this considerably simplifies the enumeration of the diagrams. Still, a significant number of them survives, as shown in Figs. 1 and2. In second order, two processes contribute to the effective two-body interaction V2eff while only a single one is important for the effective three-body interaction V3eff since the contribution of diagram (b) will be cancelled by that of the effective two-body interaction. This is a diagrammatic proof that, up to second order, V3eff does not contain any contribution from the |j k j l (L)jJ configurations [14]. In third order, the diagrams proliferate and, with the exception of diagram (c) of the effective three-body interaction V3eff , they all contribute.
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Figure 2. Same caption as Fig. 1 for the effective three-body interaction V3eff .

Effective one-and two-body transition operators

The same procedure can be followed to determine effective transition operators up twobody terms, starting from a one-body transition operator T1 . The one-body part of the effective operator follows from the identity

j T (n) 1eff j = (j T1 j) = j T1 j , (13) 
which holds since the two-body interaction V2 does not perturb the single-nucleon state |j . We conclude that the one-body part of the effective operator coincides with the bare operator. This is not a general result from perturbation theory but specific to the zeroth-order approximation of one nucleon in the orbital j and completely empty orbitals j 1 , j 2 ,. . . Up to order n of perturbation theory, an effective operator with up to two-body terms,

T (n) eff = T (n) 1eff + T (n) 2eff , (14) 
is obtained from the identity

j 2 J f T (n) eff j 2 J i = (n) (j 2 J f T1 j 2 J i ) (n) , (15) 
where on the right-hand side wave functions to nth order in perturbation theory are used. The two-body part of the effective operator is therefore

j 2 J f T (n) 2eff j 2 J i = j 2 J f T (n) eff j 2 J i -j 2 J f T (n) 1eff j 2 J i = (n) (j 2 J f T1 j 2 J i ) (n) -j 2 J f T1 j 2 J i . (16) 
Explicit expressions up to second order are given in Appendix C.

Recurrence relations

The matrix elements of a scalar k-body interaction Vk between two states belonging to the j n configuration of n nucleons in the j orbital can be calculated from the recurrence relation [START_REF] De-Shalit | Nuclear Shell Theory[END_REF][START_REF] Talmi | Simple Models of Complex Nuclei. The Shell Model and Interacting Boson Model[END_REF][START_REF] Racah | [END_REF]18]

j n αJ| Vk |j n α J = n n -k α 1 α 1 J 1 c α 1 J 1 nαJ c α 1 J 1 nα J j n-1 α 1 J 1 | Vk |j n-1 α 1 J 1 . ( 17 
)
This process is continued until matrix elements of Vk between states of the j k configuration are reached. At that point the matrix elements (3) are inserted on the right-hand side of the recurrence relation, or their expressions in terms of the matrix elements of a larger shell-model space. Likewise, the matrix elements of a non-scalar k-body operator Tk (λ), where λ is its tensor character, can be obtained from

j n αJ Tk (λ) j n α J = n n -k α 1 J 1 α 1 J 1 (-) J 1 +j+J +λ [J][J ]c α 1 J 1 nαJ c α 1 J 1 nα J × J 1 J 1 λ J J j j n-1 α 1 J 1 Tk (λ) j n-1 α 1 J 1 , (18) 
with [x] ≡ √ 2x + 1, and this process can be applied up to the matrix elements j k α 1 J 1 Tk (λ) j k α 1 J 1 .

Applications

Empirical fits

We first ask the question whether there exists any evidence for the presence of threebody forces in the context of a single-orbital calculation. This question can be answered by considering either the Hamiltonian Ĥ1 + V2 or the Hamiltonian Ĥ1 + V2 + V3 , adjusting the interaction matrix elements (3) to the available data, and comparing the relative merits of both calculations. Theoretical spectra are obtained after minimizing, with respect to V J and W J αα , the quantity

χ = 1 N -N p k [BE exp (k) -BE th (k)] 2 σ 2 exp (k) + σ 2 , ( 19 
)
where 'BE' stands for binding energy, either experimental or calculated, and where the sum runs over all data points, which are N in number, and N p is the number of parameters. Furthermore, σ exp (k) is the experimental uncertainty on the k th energy. This uncertainty, predominantly due to that on the binding energies, is in most cases of the order of a few keV and therefore well below the root-mean-square deviation defined as

σ = 1 N k [BE exp (k) -BE th (k)] 2 . ( 20 
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Figure 3. The difference between calculated and experimental ground-state binding energies of N = 50 isotones. The theoretical values are calculated with two-body interactions (Th 2 ) or with two-and three-body interactions (Th 2+3 ), with the χminimum parameters of Table 1.

We include therefore in Eq. ( 19) the deviation σ, which can be viewed as an additional 'theoretical uncertainty' on the energy.

6.1.1. The N = 50 isotones A good test case is provided by the N = 50 isotones with Z ranging from 40 (zirconium) to 50 (tin) when the protons are dominantly in the 0g 9/2 orbital. A total of 45 energies are known experimentally. The ground-state binding energies are taken from Ref. [19] and the excitation energies from NNDC [20], with some additional information from Refs. [21,22]. Two fits are carried out, one with two-body interactions (Th 2 ) and another one with two-plus-three-body interactions (Th 2+3 ). In the former case there are five matrix elements V J with J = 0, 2, 4, 6 and 8. In the Th 2+3 calculation this set is augmented with the three-body matrix elements W J αα with J = 3/2, 5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2 and 21/2. States are unique for J = 9/2 and no additional label α is needed. For J = 9/2 there are two independent states in the |j 3 αJ configuration, and therefore two diagonal matrix elements and an off-diagonal one. In following we only consider the diagonal matrix elements, W Jαα , which we denote as W Jα , and neglect the off-diagonal matrix element W J αα . As absolute energies are calculated, the single-particle energy 9/2 must be considered as an additional parameter in both fits.

The results concerning the binding energies are shown in Fig. 3 and energy spectra are plotted in Fig. 4, which contains most of the levels included in the fits. In each case we display the results of the two fits, Th 2 and Th 2+3 . One observes from Fig. 3 that the addition of a three-body interaction does not notably improve the quality of the fit. Comments about the energy spectra will be made at the end of Subsect. 6.1.2.

The interaction matrix elements resulting from the two fits are shown in the two columns labeled 'χ minimum' of Table 1. Although the number of parameters increases from six to sixteen between the two fits Th 2 and Th 2+3 , the value of χ at the minimum is smaller by about 30 % in the latter calculation. This indicates that the three-body interaction meaningfully improves the results. The value of σ is about the same in the Experimental energies (Exp) are compared to those calculated with two-body interactions (Th 2 ) or with two-and three-body interactions (Th 2+3 ), with the χminimum parameters of Table 1.
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two calculations because of a single large deviation in Th 2+3 for 100 Sn (see Fig. 3). As the uncertainty on the binding energy of this nucleus is large (300 keV) [19] this has not much impact on the value of χ but it does increase σ significantly.

Table 1 also lists the uncertainties on the different matrix elements. They are obtained from the diagonalization of the covariance matrix, leading to uncorrelated parameters and their associated uncertainties, from which those on the initial parameters can be computed. The uncertainties thus obtained must be considered as an extreme lower limit on the actual uncertainties on the fitted matrix elements because they do not include effects from the variation of the input data. The latter effects are illustrated in the fits labeled 'σ minimum' and 'χ minimum' in Table 1. In the former fit experimental uncertainties are ignored and the minimized quantity is the root-mean-square deviation σ in Eq. ( 20). As the uncertainties on the binding energies of 97 Ag, 98 Cd and 100 Sn are rather large [19], the 'χ-minimum' fit gives therefore less weight to the data concerning the proton-rich isotopes. It is seen that, while the Th 2 results are stable against this change, the Th 2+3 results are not, and in particular the three-body matrix elements fluctuate wildly. Likewise, in the fit labeled 'χ minimum' in Table 1 a single level is added to the input data, namely a second 6 + level 94 Ru, for which there exists some Table 1. Two-and three-body matrix elements (in keV) and the χ and σ deviations of Eqs. ( 19) and (20) for the various fits to the N = 50 isotones described in the text. evidence [21]. Again one observes stability of the Th 2 and fluctuations of the Th 2+3 matrix elements.

The lead isotopes

A similar application is possible for the Pb isotopes, where the protons form a closed shell and the neutrons are predominantly in the 1g 9/2 orbital. Less data are available as compared to the case of the N = 50 isotones, and in particular measured quantities are lacking for the most neutron-rich Pb isotopes. The ground-state binding energies are taken from Ref. [19] and the excitation energies from Refs. [20,23]. To extend the fit over the entire range of isotopes from 208 Pb to 218 Pb, we use extrapolated atomic masses for 216,217,218 Pb together with their associated (rather large) estimated uncertainties [19]. The angular momentum of the single-particle orbital is j = 9/2 as in the case of the N = 50 isotones and therefore the same set of two-and three-body matrix elements is adjusted to the data.

The results concerning the binding energies are shown in Fig. 5 and energy spectra are plotted in Fig. 6, which contains most of the levels included in the fits. In each case we display the results of the two fits, Th 2 and Th 2+3 . Again one observes from Fig. 5 that the addition of a three-body interaction does not notably improve the quality of

��(���)-��(��) �� �� � �� �+� ��� ��� ��� ��� ��� -��� ��� ��� ���� ������ � ������ (��� )
Figure 5. The difference between calculated and experimental ground-state binding energies of Pb isotopes. The theoretical values are calculated with two-body interactions (Th 2 ) or with two-and three-body interactions (Th 2+3 ), with the χminimum parameters of Table 2.
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. Excitation spectra of the the even-mass and odd-mass Pb isotones. Experimental energies (Exp) are compared to those calculated with two-body interactions (Th 2 ) or with two-and three-body interactions (Th 2+3 ), with the χminimum parameters of Table 2. In addition, Table 2 lists the interaction matrix elements obtained in three different fits. Two of them, labeled 'χ minimum' and 'σ minimum', adjust the parameters by minimizing χ and σ of Eqs. ( 19) and (20), respectively. In the isotope 211 Pb two 11/2 + levels occur at 643 and 894 keV, respectively, and it is not a priori clear which level belongs to the (1g 9/2 ) 3 configuration and which is the 0i 11/2 single-particle state. In the χ-minimum fit we assume 11/2 + 2 is the single-particle state while in the χ -minimum fit we identify it with 11/2 + 1 . The conclusions to be drawn from these results are consistent with those obtained from the analysis of the N = 50 isotones: stability of the Th 2 matrix elements and large fluctuations of those in the Th 2+3 fit.

It should be stressed that, in spite of the difficulties in determining the strengths of the components of the three-body interaction, there is unmistakable evidence for its presence. The spectra of even-even nuclei shown in Figs. 4 and6 most clearly illustrate this evidence. Both in the N = 50 isotones and in the Pb isotopes one observes a clear variation of the experimental spectra with mass number A: In the former case the spectrum compresses with A while in the latter case it expands. This trend cannot be reproduced with a two-body interaction alone since, as a result of the particle-hole symmetry of the two-body interaction, the particle-hole conjugated spectra in the Th 2 calculation are the same. Therefore, the spectra of the pairs 92 Mo-98 Cd, 94 Ru-96 Pd and the pairs 210 Pb-216 Pb, 212 Pb-214 Pb are identical in Th 2 . It is obvious that experimentally they are not and that the observed trend can be reproduced with a three-body interaction. However, for the N = 50 isotones and for the Pb isotopes at least, the available spectroscopic data are insufficient to determine reliably the separate components of the three-body interaction.

Effective operators in a single-j orbital

From the previous subsection we conclude that the three-body component of the nuclear interaction is difficult to obtain reliably from an empirical fit. Also, if a threebody interaction is considered in the Hamiltonian, a consistent approach requires the consideration of two-body terms in transition operators-even less obtainable from data. Therefore some microscopic input is needed.

We take as starting point a realistic two-body interaction in a large shell-model space together with appropriate single-particle energies. For the N = 50 isotones we consider protons in the orbitals 0f 5/2 , 1p 3/2 , 1p 1/2 and 0g 9/2 , interacting via the T = 1 force from Lisetskiy et al. [24]. For the Pb isotopes we consider neutrons in the orbitals 0i 11/2 , 1g 9/2 , 1g 7/2 , 2d 5/2 , 2d 3/2 , 3s 1/2 and 0j 15/2 , together with the Kuo-Herling interaction [25,26].

Before anything else, it is necessary to check whether the single-j orbital, 0g 9/2 for the protons in the N = 50 isotones and 1g 9/2 for the neutrons in the Pb isotopes, is sufficiently isolated from the other orbitals in the respective shell-model spaces for the perturbation approximation to be valid. This can be achieved by comparing the results of a full shell-model calculation with those obtained with an effective interaction in a single-j orbital. This comparison is made in Table 3 for nuclei with two and three valence proton holes in 0g 9/2 , and two and three valence neutron particles in 1g 9/2 . The second and third columns list the binding energies obtained in a single-j orbital with an effective two-body interaction calculated up to first and second order, respectively. The fourth column adds to this the contribution of the effective three-body interaction, calculated up to second order. The fifth and sixth columns give the result of the calculation up to third order without and with an effective three-body interaction, respectively. The seventh column, labeled 'SM', lists the binding energies obtained in the full shell-model space. In all cases binding energies are given relative to the appropriate core, either 100 Sn or 208 Pb.

A few comments about Table 3 are in order. Convergence towards the shell-model results is obtained to within a few tens of keV and perturbation theory up to second order usually suffices. The third-order correction to the effective two-body interaction is significant only for the pairing matrix element, which shows up in the 0 + binding energy in 98 Cd and 210 Pb and that of the 9/2 + 1 state in 97 Ag and 211 Pb. The contribution of the three-body interaction is seen to be small. It is obviously the case that the -6.120 -6.120 -6.120 -6.120 -6.120 -6.120 8 + -6.307 -6.307 -6.307 -6.307 - effective three-body interaction cannot contribute to the binding energy of 98 Cd and 210 Pb. In second order it also does not contribute to that of the three-hole nucleus 97 Ag. This can be understood from Eq. (B.4) [or, alternatively, the second-order diagram (a) in Fig. 2] which contains the matrix elements V R k = j 2 R| V2 |jj k R , with j = 0g 9/2 and j k = 0f 5/2 , 1p 3/2 , 1p 1/2 , and which therefore vanish because of parity conservation. However, in third order the effective three-body interaction in 97 Ag does not vanish because the diagrams (d) and (h) in Fig. 2 are parity conserving.

Energy (MeV)

Nucleus J π V (1) 2eff V (2) 2eff V (2) 23eff V (3) 2eff V (3) 
If we compare the results of the calculation with a two-plus-three-body effective interaction up to third order (penultimate column ' V (3) 23eff ' in Table 3) with those of the shell model, we can conclude that the numbers agree closely, except for the 0 + state in the two-nucleon and the 9/2 + 1 state in the three-nucleon nuclei. For example, the 0 + level in 210 Pb is underbound by 24 keV and the 9/2 + 1 level in 211 Pb by 44 keV. These discrepancies correspond to a two-body pairing matrix element

V 0 = j 2 , υ = 0, J = 0| V2 |j 2 , υ = 0, J = 0 , (21) 
that is 24 keV less attractive than it should be and a 'three-body pairing matrix element'

W 9/2 1 = j 3 , υ = 1, J = j| V3 |j 3 , υ = 1, J = j , (22) 
that is 24.2 keV less attractive than it should be. These discrepancies might seem insignificant for low valence nucleon number n but they lead to important deviations for higher n. An estimate of the resulting corrections can be obtained by noting that a Hamiltonian with a two-body and a three-body pairing interaction in the j = 9/2 orbital has the ground-state eigenvalues [29] (n -υ)(12 -n -υ)

1 20 V 0 + 1 16 (n -2)W 9/2 1 , (23) 
where the seniority υ is 0 (1) for even (odd) n. If the strengths of the pairing interactions are off by tens of keV, we conclude from Eq. ( 23) that it leads to deviations of several hundreds of keV for n = 10.

Corresponding results for E2 transitions are shown in Table 4 for the nuclei 98 Cd and 210 Pb. The structure of the initial and final two-particle states is fixed and therefore the B(E2) values do not depend on the effective interaction. The third column lists B(E2) values obtained with the standard one-body E2 operator i r 2 i Y 2µ (θ i , φ i ) in a single-j orbital. The fourth and fifth columns add to this the contribution from the effective two-body operator, calculated up to first and second order, respectively. Perturbation theory converges reasonably close to the full shell-model results, except for the 2 + → 0 + transitions. This might be due to the difficulty in capturing the structure of a correlated pairing state in a perturbation approach. Furthermore, in 98 Cd the two-body part of the E2 operator vanishes in first-order perturbation theory, which can be understood from Eq. (C.6) and the zero matrix elements V J k = j 2 J| V2 |jj k J . Corrections to the one-body operator then only arise because of some second-order terms in the expression (C.8) and they are seen to be small or unreliable in the case of the 2 + → 0 + transition.

We conclude that the model space employed here for the N = 50 isotones, consisting of the 0f 5/2 , 1p 3/2 , 1p 1/2 and 0g 9/2 orbitals, leads to an effective three-body interaction and an effective two-body E2 operator that vanish in leading order. A recent study [27] of 94 Ru and 96 Pd arrives at a related conclusion, namely that the spectroscopy of the N = 50 isotones is best reproduced in a large-scale shell-model calculation with a singleparticle space that includes the orbitals 0g, 1d and 2s of the N = 4 major oscillator shell. On the other hand, the model space employed for the Pb isotopes leads to effective operators that do not vanish in leading order and, therefore, we concentrate from now on on the latter. We also conclude from Table 3 that it is necessary to include diagrams up to at least third order, which is what is done in the following.

B(E2; J

π i → J π f ) Nucleus J π i → J π f T1 T (1) 12eff T (2 
The results concerning the binding energies of the Pb isotopes are displayed in Fig. 7 and those concerning their excitation spectra in Fig. 8. Calculations with four different effective interactions are shown: (a) an effective two-body interaction V (3) 2eff calculated up to third order; (b) an 'exact' effective two-body interaction V (∞) 2eff ; (c) an effective two-plus-three-body interaction V (3) 23eff calculated up to third order; (d) an 'exact' effective two-plus-three-body interaction V (∞) 23eff . The approximations (a) and (c) are obtained with use of the perturbation expressions given in Sect. 3 and in Appendix A and Appendix B. The exact effective two-body interaction is obtained by reproducing the shell-model results for two nucleons and the exact effective two-plus-three-body interaction by reproducing the shell-model results for two and three nucleons.

A word of clarification is needed concerning the use of these so-called exact effective interactions. We in fact can show that, for two nucleons, the use of such an exact effective interaction is entirely equivalent to the method of Okubo, Lee and Suzuki (OLS) [30,31], which determines effective operators in a restricted space. To see this point, we introduce the notions of a restricted Hilbert space P H (i.e., here the model space constructed from the single-j orbital) and of an excluded Hilbert space QH, such that ( P + Q)H = H is the total Hilbert space (i.e., here the full shell-model space). Any eigenstate |φ of the Hamiltonian Ĥ in the full shell-model space has a component P |φ in the restricted space and a component Q|φ outside the restricted space. In the OLS ��(���)-��(��) method an operator η is constructed that maps states in QH onto states in P H such that η P |φ i = Q|φ i for a particular subset of eigenstates |φ i . It can be shown that the eigenvalues of the transformed (non-Hermitian) Hamiltonian ( Î -η) Ĥ( Î + η) (where Î is the identity operator) in the restricted space P H coincide exactly with a subset of the eigenvalues of Ĥ in H. The effective Hamiltonian in the OLS approach is finally obtained after a further transformation to make ( Î -η) Ĥ( Î + η) Hermitian.

� ���� (�) � ���� ( ∞ ) � ����� (�) � ����� ( ∞ ) ��� ��� ��� -��� ��� ���� ������ � ������ (��� )
For two nucleons in a single-j orbital there exists only one state of a given angular momentum and the OLS method therefore ensures that the expectation value of the effective Hamiltonian in this state coincides with the eigenvalue corresponding to the eigenstate of the full Hamiltonian that has the dominant single-j component. This shows that the effective two-body interaction V (∞) 2eff used here is the same as that obtained with the OLS method.

The same argument can be made for three nucleons in a single-j orbital provided only one state exists with angular momentum J. For the orbitals considered here with j = 9/2 this is always the case except when the three nucleons couple to J = 9/2, which has two independent states. For J = 9/2 the OLS method yields a 2 × 2 matrix whose eigenvalues coincide exactly with two of the eigenvalues of the Hamiltonian in the full space. In general, this 2 × 2 matrix will have a non-zero off-diagonal element while we have assumed in the construction of the V (∞) 3eff interaction that this matrix element is zero. We therefore conclude that the exact effective interaction used here is equivalent to the one obtained with the OLS method, provided that the off-diagonal matrix element for J = 9/2 can be neglected, as is done throughout this paper. Under this assumption one can dispense with the OLS formalism, and simply fix the effective matrix elements such that they reproduce the shell-model results of the two-and three-nucleon systems.
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Figure 8. Experimental energies (Exp) of levels in the Pb isotopes compared with energies calculated with various effective interactions in a single-j orbital and with those calculated in the full shell model (SM). In the upper panel the effective interaction is calculated up to third order in perturbation theory, and is either of two-body (blue) or two-plus-three-body (red) character. In the lower panel the exact effective interaction is taken (see text), either of two-body (blue) or two-plus-three-body (red) character.

We first discuss the binding energies of the ground states since these are often used to unveil the presence of three-body forces [32]. To visualize the results, we plot in Fig. 7 the difference between binding energies, calculated with the various effective interactions, and those obtained in the full shell-model space. The conclusion is clear: Adding a three-body component to the effective interaction does not improve the description of the binding energies. A possible (but unlikely) explanation is that the off-diagonal matrix element j 3 , υ = 1, 9/2| V3 |j 3 , υ = 3, 9/2 , here neglected, is crucial to the description of binding energies. A more likely explanation is that the pairing correlations are such that an effective interaction requires a four-body component. Another conclusion that can be drawn from Fig. 7 is that a perturbation calculation that stops at third order is not sufficient, certainly not for the effective three-body interaction.

While it is hard to tell whether there exists any empirical evidence for higher-body interactions based on binding energies, their presence is evident from excitation energies, as shown in Fig. 8. With increasing mass number A the observed spectra (labeled 'Exp' in the figure) of the even-even Pb isotopes expand. For example, the 2 + energy increases 

B(E2; J
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12eff Pb. This trend is correctly reproduced by the shell model in the full space (labeled 'SM' in the figure). All two-body interactions satisfy particle-hole symmetry and, as can be seen in Fig. 8, the spectra of the pairs 210,216 Pb and 212,214 Pb are predicted to be identical to all orders of perturbation theory, if only two-body interactions are considered. Within a single-j approach with two-and three-body interactions, only the latter break particle-hole symmetry. In Subsect. 6.1 it was shown that a three-body interaction, fit to data, is indeed capable of reproducing the evolution of spectra with mass number A. Here we find that the effective twoplus-three-body interaction, which we derived from the Kuo-Herling interaction in the shell-model space consisting of the 82-126 neutron orbitals and calculated up to third order, does not have the correct behavior. As seen from the upper panel in Fig. 8, its effect on the energies goes in the wrong direction since the Th 2+3 spectrum compresses with increasing mass number A. Only when the exact effective two-plus-three-body interaction is taken does one reproduce the experimental trend, as seen from the lower panel in Fig. 8. Results concerning E2 transitions in the even Pb isotopes are shown in Table 5. The second column of the table lists the B(E2) values for the various transitions as obtained with an effective two-body interaction calculated up to third order and with a standard one-body E2 operator. In the third and fourth columns are given the B(E2) values obtained with an additional two-body piece of the E2 operator, calculated up first and second order, respectively. The fifth column lists the most complete results when the effect of the three-body interaction calculated up to third order is taken into account. The sixth column, labeled 'SM", gives the results of the shell model in the full space. The seventh column, labeled 'Exp', lists the measured B(E2) values-those in 210 Pb taken from Ref. [20] and the B(E2; 8 + → 6 + ) values in the other isotopes estimated from Ref. [23]. All calculated B(E2) values are obtained with a constant length of the harmonic oscillator, b = 2.456 fm, and an effective neutron charge e ν = 0.77, which is fixed from the B(E2; 2 + → 0 + ) value in 210 Pb.

T (2) 12eff + V (3) 
At present the sequence of decays 8 + → 6 + → 4 + → 2 + → 0 + is measured only in 210 Pb and the B(E2) values have rather large error bars. If the E2 data in 210 Pb turn out to be confirmed with smaller error bars, this would be not so much a problem of the effective operators but rather one of the Kuo-Herling interaction in the full space, akin to what is found in 210 Po [28]. The results of Table 5 demonstrate that the two-body piece of the effective E2 operator, calculated to first order, provides an important correction to the B(E2) values while the contribution of the second-order term is only minor. The three-body interaction has an important effect on the B(E2) values in 212 Pb and an equally important but opposite effect in 214 Pb. Note that three-body interaction has no influence on the B(E2) values in the two-particle or two-hole isotopes 210,216 Pb, as the structure of the states is independent of the interaction, at least in a single-orbital approach.

The overall conclusion that can be drawn from Table 5 is that the final calculated B(E2) values result from a delicate balance of possibly conflicting effects of an effective three-body interaction and an effective two-body E2 operator. Given also the difficulty in reproducing the observed B(E2) values in the two-particle nucleus 210 Pb, it seems therefore that conclusions regarding higher-order operators are difficult to draw at this point.

Summary and conclusions

We presented the results of a shell-model study of Hamiltonians with two-and threebody interactions and of transition operators with up to two-body terms. We limited ourselves to nuclei where valence nucleons of one kind (i.e., either neutrons or protons) occupy dominantly a single-j orbital such as 0g 9/2 or 1g 9/2 , in particular, the N = 50 isotones and the lead (Z = 82) isotopes.

In the first part of this study we found that the three-body interaction is important to obtain an improved description of excitation spectra of semi-magic nuclei. We argued that the clearest evidence for the presence of effective higher-body forces in nuclei can be obtained from the properties of spectra rather than from binding energies. Such evidence, in particular the breaking of particle-hole symmetry, exists in the N = 50 isotones and the lead isotopes, and we found that a three-body interaction can adequately reproduce the experimental trends. The separate components of the three-body interaction, however, could not be determined reliably from an empirical fit: A small variation in the input data was seen to lead to large fluctuations in the three-body matrix elements.

In the second part of this study we constructed, based on the perturbation theory, an effective single-j Hamiltonian with up to three-body interactions and an effective electric quadrupole operator with up to two-body terms. The validity of the perturbation approach was verified by comparing results obtained with effective operators in a single-j orbital with those obtained in the full shell-model space. Convergence to the shell-model energy spectra in the full space was checked by increasing the order of the interaction (up to three-body) and by increasing the order of perturbation theory (up to third order). Likewise, E2 transition probabilities were obtained with a single-j operator with up to two-body terms, calculated up to third order in perturbation theory, and compared to results obtained in the full shell model.

Concerning the effective Hamiltonian, formulas indicate that it is obtained from an expansion in V /∆ , the average interaction matrix element over a single-particle energy splitting. We noted that convergence is slowest for the matrix elements that matter most, i.e., the two-and three-body pairing matrix elements. Consequently, calculating all matrix elements consistently up to a given order (as one is bound to do), we found that the resulting spectroscopy was poor and that the binding energies were not well reproduced. In particular, the breaking of particle-hole symmetry-the clearest signature of a higher-body force-was not properly described with an effective two-plus-three-body Hamiltonian calculated up to third order in perturbation theory.

We also showed results obtained with an 'exact' two-plus-three-body effective interaction. We argued that this exact interaction is equivalent with the one obtained with the Okubo-Lee-Suzuki (OLS) approach under the assumption that a single offdiagonal three-body matrix element can be neglected. Although with the exact twoplus-three-body effective interaction the breaking of particle-hole symmetry was better accounted for and the calculation at least reproduced the trend of the shell-model results in the full space, the description of binding energies was not convincing and no advantage over an exact two-body effective interaction was found. The simplest possible explanation of these failures is that the effective Hamiltonian contains a nonnegligible four-body component. As mentioned in the introduction, it is possible to extend the present study to four-body interactions but, given also the uncertainties of a perturbation expansion, it should be done in a OLS approach since off-diagonal matrix elements may play an important part in the analysis.

Finally, as to effective transition operators, we found ourselves confronted with a complex problem of several higher-order contributions of different origin, which may or may not act constructively. It seems to us that it will be difficult to reach any firm conclusion with regard to three-body interactions in a nucleus solely on the basis of its electromagnetic transition properties.

V J k,k l ≡ jj k J| V2 |j k j l J , V J kl,k l ≡ j k j l J| V2 |j k j l J , (A.1)
and similarly for the energy differences,

∆ k ≡ j -j k , ∆ kl ≡ 2 j -j k -j l . (A.2)
By straightforward application of stationary perturbation theory, the second-order contribution of V2 to the energy of the state |j 2 J is

E (2) (j 2 J) = k |V J k | 2 ∆ k + k≤l |V J kl | 2 ∆ kl , (A.3)
and the third-order contribution equals

E (3) (j 2 J) = k k V J k V J k,k V J k ∆ k ∆ k + k≤l k ≤l V J kl V J kl,k l V J k l ∆ kl ∆ k l (A.4) + 2 k k ≤l V J k V J k,k l V J k l ∆ k ∆ k l -V J k |V J k | 2 (∆ k ) 2 + k≤l |V J kl | 2 (∆ kl ) 2 .

Appendix B. Energies of the three-nucleon state

In this appendix we give the expressions for the energy of the three-nucleon state |j 3 αJ in second-and third-order perturbation theory. The former is given by

E (2) (j 3 αJ) = k,L |V J kL | 2 ∆ k + k≤l,L |V J klL | 2 ∆ kl , (B.1)
which contains the following three-particle matrix elements:

V J kL ≡ j 3 αJ| V2 |j 2 (L)j k J = √ 6(-) j-j k [L] R [R]c R 3αJ j R J j k L j V R k , (B.2) V J klL ≡ j 3 αJ| V2 |j k j l (L)jJ = √ 3c L 3αJ V L kl . (B.3)
With use of the expressions (A.3) and (B.1) in the general expansion (12) it can be shown that the effective three-body interaction to second order reduces to [14]

j 3 αJ| V (2) 3eff |j 3 αJ = 3 k RR [R][R ]c R 3αJ c R 3αJ j J R j j k R V R k V R k ∆ k , (B.4)
which does not contain any contribution from the |j k j l (L)jJ configurations. The energy of the three-nucleon state |j 3 αJ in third-order perturbation theory is given by

E (3) (j 3 αJ) = k,L k ,L V J kL V J kL,k L V J k L ∆ k ∆ k + k≤l,L k ≤l ,L V J klL V J klL,k l L V J k l L ∆ kl ∆ k l + 2 k,L k ≤l ,L V J kL V J kL,k l L V J k l L ∆ k ∆ k l -V j 3 αJ k,L |V J kL | 2 (∆ k ) 2 + k≤l,L |V J klL | 2 (∆ kl ) 2 , (B.5)
which contains, besides (B.2) and (B.3), the three-particle matrix elements

V j 3 αJ ≡ j 3 αJ| V2 |j 3 αJ = 3 R (c R 3αJ ) 2 V R , (B.6) V J kL,k L ≡ j 2 (L)j k J| V2 |j 2 (L )j k J = V L δ LL δ kk + 2(-) j k -j k [L][L ] × R [R] 2 j j L J j k R j j L J j k R V R k,k , (B.7) 
V J klL,k l L ≡ j k j l (L)jJ| V2 |j k j l (L )jJ = V L kl,k l δ LL + [L][L ] P (j k j l L) P (j k j l L ) × R

[R] 2 j l j k L J j R j l j k L J j R V R l,l δ kk , (B.8)

V J kL,k l L ≡ j 2 (L)j k J| V2 |j k j l (L )jJ = [L][L ] P (j k j l L ) j l j k L J j L V L l δ kk - √ 2(-) j+j k +L [L][L ] j j L J j k L V L k,k l , (B. 9 
)
where P is the exchange operator defined by P (jj J)f (j, j , J) = f (j, j , J) -(-) j+j -J f (j , j, J) 1 + δ jj , (B.10)

for any function f (j, j , J) of the angular momenta j, j , and J.

Appendix C. Effective two-body transition operator

In this appendix we give the expressions for the effective two-body transition operator in first-and second-order perturbation theory. These can be obtained from the general expression ( 16) together with the eigenstates of Ĥ1 + V2 up to second order

|j 2 J) (1+2) ≈ (1 + s J )|j 2 J + k (f J k + s J k )|jj k J + k≤l (f J kl + s J kl )|j k j l J ,(C.1)
with coefficients f of the first order in V /∆

f J k = V J k ∆ k , f J kl = V J kl ∆ kl , (C.2)
and coefficients s of the second order in V /∆

s J = - 1 2 k |V J k | 2 (∆ k ) 2 + k≤l |V J kl | 2 (∆ kl ) 2 , s J k = k V J k,k V J k ∆ k ∆ k + k ≤l V J k,k l V J k l ∆ k ∆ k l - V J V J k (∆ k ) 2 , s J kl = k V J kl,k V J k ∆ kl ∆ k + k ≤l V J kl,k l V J k l ∆ kl ∆ k l - V J V J kl (∆ kl ) 2 . (C.3)
For example, the effective two-body transitions operator to first order equals

j 2 J f T (1) 2eff j 2 J i = k V J i k ∆ k j 2 J f T1 jj k J i + k V J f k ∆ k jj k J f T1 j 2 J i ,(C.4)
in terms of the matrix elements V J k and energy differences ∆ k defined in Appendix A. Let us specify to the case of most interest here, namely an electric one-body operator of the form T1,µ (λ) = e i r λ i Y λµ (θ i , φ i ), (C.5)

with e the effective charge of the nucleon. The expression (C.4) then reduces to

j 2 J f T (1) 2eff (λ) j 2 J i = e(-) j+1/2+λ √ 2[j][J i ][λ][J f ] k [j k ] j λ j k -1 2 0 1 2 × V J i k ∆ k j j k λ J i J f j + V J f k ∆ k j j k λ J f J i j I λ n n k k , (C.6)
with the radial integral

I λ n n = 1 √ 4π +∞ 0 r λ R n (r)R n (r)r 2 dr, (C.7)
where it is assumed that (-) λ+ + = +1. With use of the expansion (C.1) the second-order two-body components of an effective transition operator are j 2 J f T (2) 2eff (λ) j 2 J i = (s J i + s J f ) j 2 J f T1 (λ)

j 2 J i + k s J i k j 2 J f T1 (λ) jj k J i + k s J f k jj k J f T1 (λ) j 2 J i + k k f J i k f J f k jj k J f T1 (λ) jj k J i + k k ≤l f J i k f J f k l j k j l J f T1 (λ) jj k J i + k≤l k f J i kl f J f k jj k J f T1 (λ) j k j l J i + k≤l k ≤l f J i kl f J f k l j k j l J f T1 (λ) j k j l J i , (C.8)
where, for an electric transition operator, the one-body matrix elements are j a j b J f r λ Y λ j c j d J i = P (j a j b J f ) P (j c j d J i )(-) 

jc+ 1 2 +λ+J f [J i ][J f ][λ][j b ][j d ] × j b j d λ J i J f j a j b λ j d - 1 
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 4 Figure 4. Excitation spectra of the even-mass and odd-mass N = 50 isotones. Experimental energies (Exp) are compared to those calculated with two-body interactions (Th 2 ) or with two-and three-body interactions (Th 2+3 ), with the χminimum parameters of Table1.

Figure 7 .

 7 Figure 7. The difference between ground-state binding energies of the Pb isotopes, calculated with various effective interactions, and those obtained in the full shellmodel space. The different effective interactions are: (a) effective two-body interaction calculated up to third order (blue triangles, dashed line); (b) exact effective twobody interaction (blue triangles, full line); (c) effective two-plus-three-body interaction calculated up to third order (red squares, dashed line); (d) exact effective two-plusthree-body interaction (red squares, full line).
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 2 λ n b b n d d δ ac . (C.9)

Table 2 .

 2 Two-and three-body matrix elements (in keV) and the χ and σ deviations of Eqs. (19) and (20) for the various fits to the Pb isotopes described in the text.

		χ minimum	σ minimum	χ minimum
		Th 2	Th 2+3	Th 2 Th 2+3	Th 2 Th 2+3
	9/2	-3944 -3954 (1)	-3944 -3961	-3952 -3964
	V 0 (2)	-1266 -1203 (2)	-1296 -1176	-1249 -1177
	V 2 (2)	-450 -398 (1)	-463 -381	-445 -407
	V 4 (2)	-117 -109 (1)	-123	-81	-150 -119
	V 6 (2)	-41	-19 (1)	-29	-5	-19	-3
	V 8 (2)	56	55 (1)	62	44	61	66
	W 3/2	-	0 (14)	-	-46	-	219
	W 5/2	-	-75 (2)	--104	-	-42
	W 7/2	-	-47 (1)	-	-46	-	5
	W 9/2 1	-	-29 (1)	-	-42	-	-34
	W 9/2 2	-	-83 (4)	--117	-	-50
	W 11/2	-	88 (2)	-	60	-	-99
	W 13/2	-	-31 (1)	-	-31	-	5
	W 15/2	-	73 (1)	-	64	-	42
	W 17/2	-	-17 (2)	-	-5	-	5
	W 21/2	-	-2 (1)	-	36	-	-4
	χ a	0.629	0.371	0.769	0.897	0.656	0.578
	σ	60	29	53	21	59	35
	a Dimensionless.					
	the fit.						

Table 3 .

 3 Binding energies of levels in 98 Cd and 97 Ag, relative to 100 Sn, and of levels in 210 Pb and 211 Pb, relative to 208 Pb, calculated with various effective interactions in a single-j orbital and compared with the full shell-model results (SM).

Table 4 .

 4 B(E2; J π i → J π f ) values (in units e 2 b 4 , with b the oscillator length) for transitions in 98 Cd and 210 Pb, calculated with various effective E2 operators in a single-j orbital and compared with the full shell-model results (SM).

Table 5 .

 5 B(E2; J π i → J π f ) values for transitions in the even Pb isotopes, calculated with various E2 operators in a single-j orbital and compared with the measured values where available.
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Appendix A. Energies of the two-nucleon state

In this appendix we give the expressions for the energy of the two-nucleon state |j 2 J in second-and third-order perturbation theory. We introduce a short-hand notation for the different matrix elements that enter the subsequent expressions,