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A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d -1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl-Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level) states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space) is describable by a N -qubit vector (in a Ndimensional space). In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini-Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d = 3 (⇔ N = 2), this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.

Introduction

Geometrical representations are of particular interest in various problems of quantum mechanics. For instance, the Bloch representation is widely used in the context of characterizing quantum correlations in multiqubit systems [START_REF] Kimura | The Bloch vector for N-level systems[END_REF][START_REF] Kimura | The Bloch-vector space for N -level systems -the sphericalcoordinate point of view[END_REF][START_REF] Bertlmann | Bloch vectors for qudits[END_REF]. This representation is based on the idea of Majorana to visualize a j-spin as a set of 2j points in a sphere [START_REF] Majorana | Atomi orientati in campo magnetico variabile[END_REF]. The Bloch sphere was used in the study of entanglement quantification and classification in multiqubit systems [START_REF] Dür | Three qubits can be entangled in two inequivalent ways[END_REF][START_REF] Verstraete | Four qubits can be entangled in nine different ways[END_REF][START_REF] Bastin | Operational families of entanglement classes for symmetric N -qubit states[END_REF]. The investigation and the understanding of quantum correlations in multipartite quantum systems are essential in several branches of quantum information such as quantum cryptography [START_REF] Ekert | Quantum cryptography based on Bell's theorem[END_REF], quantum teleportation [START_REF] Bennett | Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[END_REF] and quantum communication [START_REF] Keyl | How to correct small quantum errors[END_REF][START_REF] Weedbrook | Gaussian quantum information[END_REF].

The separability for two-qubit states can be addressed with the concept of the Wootters concurrence [START_REF] Hill | Entanglement of a pair of quantum bits[END_REF][START_REF] Wootters | Entanglement of formation of an arbitrary state of two qubits[END_REF]. However, for multiqubit quantum systems, the measure of quantum correlations is very challenging. Several ways to understand the main features of entangled multiqubit states were employed in the literature [START_REF] Coffman | Distributed entanglement[END_REF][START_REF] Ganczarek | Barycentric measure of quantum entanglement[END_REF]. Algebraic and geometrical methods were intensively used in quantum mechanics [START_REF] Anandan | A geometric approach to quantum mechanics[END_REF][START_REF] Schilling | Geometry of Quantum Mechanics[END_REF][START_REF] Ashtekar | Geometrical formulation of quantum mechanics[END_REF][START_REF] Brody | Geometric quantum mechanics[END_REF] and continue nowadays to contribute to our understanding of entanglement properties in multipartite quantum systems (for instance, see [START_REF] Kuś | Geometry of entangled states[END_REF]21,[START_REF] Brody | Entanglement of three-qubit geometry[END_REF][START_REF] Sakajii | New Trends in Quantum Information[END_REF]). In this spirit, several works were devoted to geometrical analysis of entangled multipartite states to find the best measure to quantify the amount of entanglement in a multiqubit system [START_REF] Dür | Three qubits can be entangled in two inequivalent ways[END_REF][START_REF] Kuś | Geometry of entangled states[END_REF][START_REF] Mosseri | Geometry of entangled states, Bloch spheres and Hopf fibrations[END_REF][START_REF] Wei | Geometric measure of entanglement and applications to bipartite and multipartite quantum states[END_REF][START_REF] Hubener | Geometric measure of entanglement for symmetric states[END_REF][START_REF] Aulbach | The maximally entangled symmetric state in terms of the geometric measure[END_REF][START_REF] Martin | Multiqubit symmetric states with high geometric entanglement[END_REF][START_REF] Chen | Comparison of different definitions of the geometric measure of entanglement[END_REF][START_REF] Baguette | Multiqubit symmetric states with maximally mixed onequbit reductions[END_REF]. The classification of multipartite entangled states was investigated from several perspectives using different geometrical tools [START_REF] Miyake | Classification of multipartite entangled states by multidimensional determinants[END_REF][START_REF] Heydari | Geometrical structure of entangled states and the secant variety[END_REF][START_REF] Holweck | Geometric descriptions of entangled states by auxiliary varieties[END_REF] to provide the appropriate way to approach the quantum correlations in multiqubit states. Among these quantum states, j-spin coherent states are of special interest [START_REF] Radcliffe | Some properties of coherent spin states[END_REF]. Indeed, they are the most classical (in contrast to quantum) states and can be viewed as 2j-qubit states which are completely separable. In this sense, spin coherent states can be used to characterize the entanglement in totally symmetric multiqubit systems [START_REF] Mandilara | Entanglement classification of pure symmetric states via spin coherent states[END_REF].

The multipartite quantum states, invariant under permutation symmetry, have attracted a considerable attention during the last decade. This is essentially motivated by their occurrence in the context of multipartite entanglement [START_REF] Bastin | Operational families of entanglement classes for symmetric N -qubit states[END_REF][START_REF] Aulbach | The maximally entangled symmetric state in terms of the geometric measure[END_REF][START_REF] Stockton | Characterizing the entanglement of symmetric many-particle spin-1 2 systems[END_REF][START_REF] Mathonet | Entanglement equivalence of N -qubit symmetric states[END_REF][START_REF] Markham | Entanglement and symmetry in permutation-symmetric states[END_REF][START_REF] Augusiak | Entangled symmetric states of N qubits with all positive partial transpositions[END_REF][START_REF] Aulbach | Classification of entanglement in symmetric states[END_REF][START_REF] Novo | Genuine multiparticle entanglement of permutationally invariant states[END_REF] and quantum tomography [START_REF] Tóth | Permutationally invariant quantum tomography[END_REF][START_REF] Moroder | Permutationally invariant state reconstruction[END_REF][START_REF] Klimov | Optimal quantum tomography of permutationally invariant qubits[END_REF]. In fact, the dimension 2 N of the Hilbert space for an ensemble of N qubits system reduces to N + 1 when the whole system possesses the exchange symmetry. The appropriate representations to deal with the totally symmetric states are the Dicke basis [START_REF] Dicke | Coherence in spontaneous radiation processes[END_REF][START_REF] Tóth | Detection of multipartite entanglement in the vicinity of symmetric Dicke states[END_REF][START_REF] Bergmann | Entanglement criteria for Dicke states[END_REF] and Majorana representation [START_REF] Majorana | Atomi orientati in campo magnetico variabile[END_REF].

In the present paper, we consider a realization of the generalized Weyl-Heisenberg algebra, introduced in [START_REF] Daoud | Fractional supersymmetry and hierarchy of shape invariant potentials[END_REF][START_REF] Daoud | Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems[END_REF][START_REF] Daoud | Phase operators, phase states and vector phase states for SU 3 and SU 2,1[END_REF], by means of an ensemble of two-qubit operators. We investigate the correspondence between the vectors of the representation space of the Weyl-Heisenberg algebra and the Dicke states. Using the decomposition properties of Dicke states, we show that the separable states are necessarily the Perelomov coherent states associated with the generalized Weyl-Heisenberg algebra. The coherent states are written as tensor products of single qubit coherent states. We also discuss the separability in terms of the permanent of the matrix of the overlap between spin coherent states.

2 Qubits and generalized Weyl-Heisenberg algebra

Bosonic and fermionic algebras

The study of bosonic and fermionic many particle states is simplified by considering the algebraic structures of the corresponding raising and lowering operators. On the one hand, for bosons the creation operators b + i and the annihilation operators b - i satisfy the commutation relations

[b - i , b + j ] = δ ij I, [b - i , b - j ] = [b + i , b + j ] = 0, (1) 
where I stands for the identity operator. On the other hand, fermions are specified by the following anti-commutation relations

{f - i , f + j } = δ ij I, {f + i , f + j } = {f - i , f - j } = 0 (2)
of the creation operators f + i and the annihilation operators f - i . The properties of Fock states follow from the commutation and anti-commutation relations which impose only one particle in each state for fermions (in a two-dimensional space) and an arbitrary number of particles for bosons (in an infinitedimensional space). Following Wu and Lidar [START_REF] Wu | Qubits as parafermions[END_REF], there is a crucial difference between fermions and qubits (two level systems). In fact, a qubit is a vector in a two-dimensional Hilbert space as for fermions and the Hilbert space of a multiqubit system has a tensor product structure like for bosons. In this respect, the raising and lowering operators commutation rules for qubits are neither specified by relations of bosonic type (1) nor of fermionic type (2).

Qubit algebra

The algebraic structure relations for qubits are different from those defining Fermi and Bose operators. Indeed, denoting by |0 and |1 the states of a two-level system (qubit), the lowering (q -), raising (q + ), and number (K) operators defined by

q -= |0 1| ⇒ q -|1 = |0 , q -|0 = 0 (3) q + = |1 0| ⇒ q + |0 = |1 , q + |1 = 0 (4) K = |1 1| ⇒ K|1 = |1 , K|0 = 0 (5)
satisfy the relations

(q -) † = q + , K † = K, [q -, q + ] = I -2K, [K, q + ] = +q + , [K, q -] = -q - (6) 
(we use A † to denote the adjoint of A). Furthermore, the creation and the annihilation operators satisfy the nilpotency conditions (q + ) 2 = (q -) 2 = 0, [START_REF] Bastin | Operational families of entanglement classes for symmetric N -qubit states[END_REF] as in the case of fermions.

We note that the commutation relations in (6) coincide with those defining the algebra introduced in [START_REF] Frydryszak | Nilpotent quantum mechanics, qubits, and flavors of entanglement[END_REF] to provide an alternative algebraic description of qubits instead of the parafermionic formulation considered in [START_REF] Wu | Qubits as parafermions[END_REF]. In addition, the generalized oscillator algebra A κ introduced in [START_REF] Daoud | Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems[END_REF] as a particular case of the generalized Weyl-Heisenberg algebra of bosonic type [START_REF] Daoud | Fractional supersymmetry and hierarchy of shape invariant potentials[END_REF] provides an alternative description of qubits (in [START_REF] Daoud | Phase operators, phase states and vector phase states for SU 3 and SU 2,1[END_REF], the algebra A κ is also denoted as A κ (1) in view of its extension to A κ (2)). In fact, Eqs. ( 6) correspond to κ = -1.

Qudit algebra

To give an algebraic description of d-dimensional quantum systems (d ≥ 2), we consider a set of N = d-1 qubits. We denote as q + i , q - i , and K i the raising, lowering, and number operators associated with the i-th qubit. They satisfy relations similar to [START_REF] Verstraete | Four qubits can be entangled in nine different ways[END_REF], namely,

(q - i ) † = q + i , (K i ) † = K i , [q - i , q + j ] = (I -2K i )δ ij , [K i , q + j ] = +δ ij q + i , [K i , q - j ] = -δ ij q - i (8) 
and

[q - i , q - j ] = [q + i , q + j ] = 0 (9) for i, j = 1, 2, • • • , N .
Let us denote as H 2 the two-dimensional Hilbert space for a single qubit. An orthonormal basis of H 2 is given by the set {|n : n = 0, 1}.

The multiqubit 2 N -dimensional Hilbert space H 2 N for the N qubits has the following tensor product structure

H 2 N = H 2 ⊗ H 2 ⊗ • • • ⊗ H 2
(with N ≥ 1 factors), like for bosons. In other words, the set

{|n 1 n 2 • • • n N : n i = 0, 1 (i = 1, 2, • • • , N )},
where

|n 1 n 2 • • • n N = |n 1 ⊗ |n 2 ⊗ • • • ⊗ |n N ,
constitutes an orthonormal basis of H 2 N . The Dicke states shall be defined in Section 3 as linear combinations of the states

|n 1 n 2 • • • n N .
We define the collective lowering, raising and number operators in the Hilbert space H 2 N as follows

q -= N i=1 q - i , q + = N i=1 q + i , K = N i=1 K i ( 10 
)
in terms of the annihilation, creation, and number operators q - i , q + i , and K i . In Eq. ( 10), q ± i should be understood as the operator

I ⊗ • • • ⊗ I ⊗ q ± i ⊗ I ⊗ • • • ⊗ I
, where q ± i stands, among the N operators, at the i-th position from the left. It is trivial to check that

q -|00 • • • 0 = 0, q + |11 • • • 1 = 0.
The action of q -and q + on vectors |n 1 n 2 • • • n N involving qubits |0 and |1 , as for Dicke states, shall be considered in Section 3. By using Eqs. [START_REF] Bastin | Operational families of entanglement classes for symmetric N -qubit states[END_REF], [START_REF] Bennett | Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[END_REF], and [START_REF] Keyl | How to correct small quantum errors[END_REF], we obtain

(q -) k = k! i 1 <i 2 <•••<i k q - i 1 q - i 2 • • • q - i k , (q + ) k = k! i 1 <i 2 <•••<i k q + i 1 q + i 2 • • • q + i k (11) 
for k = 1, 2, • • • , N . In particular, for k = N , the relations [START_REF] Weedbrook | Gaussian quantum information[END_REF] give

(q -) N = N !q - 1 q - 2 • • • q - N , (q + ) N = N !q + 1 q + 2 • • • q + N ,
which lead to the nilpotency relations

(q -) N +1 = (q + ) N +1 = 0. ( 12 
)
Equation ( 12) for N = 1 (⇔ d = 2) gives back Eq. ( 7) which is reminiscent of the Pauli exclusion principle for fermions.

In view of ( 8) and [START_REF] Keyl | How to correct small quantum errors[END_REF], the qudit operators q + , q -, and K satisfy the commutation rules

[q -, q + ] = N I -2K, [K, q + ] = +q + , [K, q -] = -q -, (13) 
which are similar to the relations defining the generalized Weyl-Heisenberg algebra A κ introduced in [START_REF] Daoud | Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems[END_REF]. More precisely, let us put

a ± = 1 √ N q ± . (14) 
Then, we have the relations

[a -, a + ] = I + 2κK, [K, a ± ] = ±a ± , (a -) † = a + , K † = K, (15) 
where the parameter κ is

κ = - 1 N . (16) 
Therefore, the operators a -, a + , and K generate the algebra A κ with κ = -1 N . This shows that the algebra A κ can be described by a set of N qubits. According to the analysis in [START_REF] Daoud | Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems[END_REF], since -1 N < 0, the algebra A κ admits finite-dimensional representations. Indeed, we shall show that the representation constructed on the basis {|N ; k : k = 0, 1, • • • , N } of the Dicke states (see Section 3) is of dimension

d = N + 1.
Note that the lowering and raising operators q + and q -close the following trilinear commutation relations [q -, [q + , q -]] = +2q -, [q + , [q + , q -]] = -2q + like in a para-fermionic algebra [START_REF] Palev | Lie algebraical aspects of quantum statistics. Unitary quantization (A-quantization)[END_REF]. Note also that the definition ( 10) is identical to the decomposition used by Green for defining para-fermions from ordinary fermions [START_REF] Green | A generalized method of field quantization[END_REF].

3 Dicke states

Definitions

The Hilbert space H 2 N can be partitioned as

H 2 N = N k=0 F N,k , (17) 
where the sub-space F N,k is spanned by the orthonormal set

{|n 1 n 2 • • • n N : n 1 + n 2 + • • • + n N = k}. Each vector |n 1 n 2 • • • n N of F N,k contains N -k qubits |0 and k qubits |1 . The dimension of the space F N,k is given by dim F N,k = C k N = N ! k!(N -k)! , in terms of the binomial coefficient C k N , and satisfies dim H 2 N = N k=0 dim F N,k = 2 N .
Clearly, F N,k is invariant under any of the N ! permutations of the N qubits. The orthogonal decomposition (17) of H 2 N turns out to be useful in the definition of Dicke states.

To each F N,k it is possible to associate a Dicke state |N ; k which is the sum (up to a normalization factor) of the various states of F N,k . To be more precise, let us define the Dicke state |N ; k as follows [START_REF] Tóth | Detection of multipartite entanglement in the vicinity of symmetric Dicke states[END_REF][START_REF] Bergmann | Entanglement criteria for Dicke states[END_REF] 

|N ; k = k!(N -k)! N ! {σ} σ| 00 • • • 0 N -k 11 • • • 1 k , 0 ≤ k ≤ N, (18) 
where the number of 0 and 1 in the vector |00 • • • 011 • • • 1 are Nk and k, respectively. Furthermore, the summation over {σ} runs on the permutations σ of the symmetric group S N restricted to the identity permutation and the permutations between the 0's and 1's (the permutations between the various 0's as well as those between the various 1's are excluded, only the permutations between the 0's and 1's leading to distinct vectors are permitted). Each vector in ( 18) involves (Nk) + k = N qubits. A Dicke state |N ; k is thus a normalized symmetrical superposition of the states of F N,k . More precisely, Eq. ( 18) means As a trivial example, for N = 1 the Dicke states |1; 0 and |1; 1 are nothing but the one-qubit states |0 and |1 , respectively (these qubit states are generally associated with the angular momentum states

|N ; k = k!(N -k)! N ! |x ∈F N,k |x .
| 1 2 , 1 2 ) and | 1 2 , - 1 
2 ), respectively). As a more instructive example, for N = 4 we have the d = N + 1 = 5 Dicke states

|4; 0 = |0000 , |4; 1 = 1 2 (|0001 + |0010 + |0100 + |1000 ), |4; 2 = 1 √ 6 (|0011 + |0101 + |0110 + |1001 + |1010 + |1100 ), |4; 3 = 1 2 (|0111 + |1011 + |1101 + |1110 ), |4; 4 = |1111 .
Each vector |4; k is a symmetric (with respect to S 4 ) linear combination of the vectors of F 4,k .

For fixed N , we have

N ; k|N ; ℓ = δ k,ℓ , k, ℓ = 0, 1, • • • , N, so that the set {|N ; k : k = 0, 1, • • • , N } constitutes an orthonormal system in the space H 2 N . Let us denote as G d the space of dimension d = N + 1 spanned by the N + 1 symmetric vectors |N ; k with k = 0, 1, • • • , N . Then, the set {|N ; k : k = 0, 1, • • • , N } is an orthonormal basis of G d .

Dicke states and representations of A κ

The nilpotency relations [START_REF] Hill | Entanglement of a pair of quantum bits[END_REF] imply that the representation space of the generalized Weyl-Heisenberg algebra A κ with κ = -1 N , see Eqs. ( 13)-( 16), is of dimension d = N + 1. The representation vectors can be determined using repeated actions of the raising operator q + combined with the actions of the operators q - i and q + i defined by relations similar to (3)-( 5). It can be shown that these representation vectors are Dicke states. The proof is as follows.

First, the action of the operator q + on the ground state

|00 • • • 0 of G d yields q + |00 • • • 0 = |10 • • • 0 + |01 • • • 0 + • • • + |00 • • • 1 or equivalently q + |N ; 0 = √ N |N ; 1 . (19) 
Second, the action of (q

+ ) 2 on |00 • • • 0 gives (q + ) 2 |00 • • • 0 = 2 (|110 • • • 0 + |101 • • • 0 + • • • + |00 • • • 011 ) or (q + ) 2 |N ; 0 = 2N (N -1)|N ; 2 .
From repeated application of the raising operator q + on the state |00

• • • 0 of G d , we obtain (q + ) k |N ; 0 = k!N ! (N -k)! |N ; k . (20) 
By using Eq. ( 20), we finally get the ladder relation

q + |N ; k = (k + 1)(N -k)|N ; k + 1 . (21) 
Similarly, for the lowering operator q -, we have

q -|N ; k = k(N -k + 1)|N ; k -1 . (22) 
Equations ( 21) and ( 22) can be rewritten as

q + |N ; k = F (N, k + s + 1 2 )|N ; k + 1 , (23) 
q -|N ; k = F (N, k + s - 1 2 )|N ; k -1 , (24) 
where s = 1 2 and

F (N, ℓ) = ℓ(N -ℓ + 1), 0 ≤ ℓ ≤ N + 1.
Note that q + |N ; N = q -|N ; 0 = 0 gives the action of the raising and lowering qubit operators on the extremal Dicke states |N ; N and |N ; 0 of G d .

The Dicke states are eigenstates of the operator K defined in [START_REF] Keyl | How to correct small quantum errors[END_REF], see also [START_REF] Dür | Three qubits can be entangled in two inequivalent ways[END_REF] in the case N = 1. Indeed, we have

K|N ; k = k|N ; k , k = 0, 1, • • • , N, (25) 
in agreement with the fact that K is a number operator: it counts the number of qubits of type |1 in the Dicke state |N ; k . From Eqs. ( 23), [START_REF] Mosseri | Geometry of entangled states, Bloch spheres and Hopf fibrations[END_REF], and ( 25), we recover the commutation relations [START_REF] Wootters | Entanglement of formation of an arbitrary state of two qubits[END_REF]. Therefore, the generalized Weyl-Heisenberg algebra A κ , with κ = -1 N , generated by the operators

1 √ N q + , 1 √ N q -,
K, and I provides an algebraic description of a qudit (d-level) system viewed as a collection of N = d -1 qubits. As a matter of fact, the vectors of the representation space G d of the algebra A κ are the Dicke states |N ; k which are symmetric superpositions of states of a multiqubit system.

Decomposition of Dicke states

Let us consider again the action of q + on the ground state |00 • • • 0 involving N qubits |0 . We have seen that

q + |00 • • • 0 = q + |N ; 0 = √ N |N ; 1 , (26) 
see Eq. ( 19). On another side, we have

q + |00 • • • 0 = (q + 1 + q + 2 + • • • + q + N )|00 • • • 0 .
This gives

q + |00 • • • 0 = |10 • • • 0 + |01 • • • 0 + • • • + |00 • • • 1 ,
which can be rewritten as

q + |00 • • • 0 = (|10 • • • 0 + |01 • • • 0 + • • • + |00 • • • 1 ) ⊗ |0 + |00 • • • 0 ⊗ |1 ,
where the states | × × • • • × on the right-hand side member contains N -1 qubits. Thus, we get

q + |00 • • • 0 = √ N -1|N -1; 1 ⊗ |0 + |N -1; 0 ⊗ |1 . (27) 
A comparison of ( 26) and ( 27) yields

√ N |N ; 1 = √ N -1|N -1; 1 ⊗ |0 + |N -1; 0 ⊗ |1 . ( 28 
)
By applying the creation operator q + on both sides of (28) and by using (21), we obtain

2N (N -1)|N ; 2 = 2(N -1)(N -2)|N -1; 2 ⊗ |0 + 2 √ N -1|N -1; 1 ⊗ |1 .
Repeating this process k times, we end up with

N ! k!(N -k)! |N ; k = (N -1)! k!(N -k -1)! |N -1; k ⊗ |0 + (N -1)! (k -1)!(N -k)! |N -1; k -1 ⊗ |1 . (29) 
Equation ( 29) can be simplified to give

|N ; k = N -k N |N -1; k ⊗ |0 + k N |N -1; k -1 ⊗ |1 , (30) 
where 0 ≤ k ≤ N .

For k = 0 and k = N , there are two terms in the decomposition of |N ; k : one is a tensor product involving the qubit |0 and the other a tensor product involving the qubit |1 . The decomposition [START_REF] Baguette | Multiqubit symmetric states with maximally mixed onequbit reductions[END_REF] of the Dicke states |N ; k is trivial in the cases k = 0 and k = N . For k = 0 and k = N , the significance of (30) is clear. These two particular cases correspond to a factorization of the Dicke state |N ; k for N qubits into the tensor product of a Dicke state for N -1 qubits with a state for one qubit.

Dicke states and angular momentum states

To close this section, a link between Dicke states and angular momentum states is in order. The Lie algebra su(2) of the group SU(2) can be realized by means of the angular momentum operators J + , J -, and J z . The irreducible representation (j) of su(2) can be constructed from the set {|j, m) : m = -j, -j + 1, • • • , j} of angular momentum states. We know that

J + |j, m) = (j -m)(j + m + 1)|j, m + 1), (31) 
J -|j, m) = (j + m)(j -m + 1)|j, m -1), (32) 
J z |j, m) = m|j, m), (33) 
according to the Condon and Shortley phase convention [START_REF] Condon | Atomic Structure[END_REF]. Let us put

k = j -m, N -k = j + m ⇔ j = N 2 , m = -k + N 2 .
Therefore, the state |j, m) can be denoted as |N ; k since, for fixed j, then N is fixed and -j ≤ m ≤ j implies 0 ≤ k ≤ N . Consequently, Eqs. ( 31)-( 33) can be rewritten as

J + |N ; k = k(N -k + 1)|N ; k -1 , J -|N ; k = (N -k)(k + 1)|N ; k + 1 , J z |N ; k = N 2 -k |N ; k ,
to be compared with Eqs. ( 21), [START_REF] Brody | Entanglement of three-qubit geometry[END_REF], and [START_REF] Wei | Geometric measure of entanglement and applications to bipartite and multipartite quantum states[END_REF]. This leads to the identification

J + = q -, J -= q + , J z = N 2 I -K
which establishes a link between the Weyl-Heisenberg algebra A κ with κ = -1 N and the Lie algebra su [START_REF] Kimura | The Bloch-vector space for N -level systems -the sphericalcoordinate point of view[END_REF]. The rewriting of the Dicke state |N ; k , see Eq. [START_REF] Ashtekar | Geometrical formulation of quantum mechanics[END_REF], in terms of the variables j and m yields

|j, m) = (j -m)!(j + m)! (2j)! × {σ} σ     | 1 2 , 1 2 ) ⊗ | 1 2 , 1 2 ) ⊗ • • • ⊗ | 1 2 , 1 2 ) j+m ⊗ | 1 2 , - 1 
2 ) ⊗ | 1 2 , - 1 
2 ) ⊗ • • • ⊗ | 1 2 , - 1 2 ) 
j-m     ,
where the summation over {σ} runs on the permutations σ of the symmetric group S 2j restricted to the identity permutation and the permutations between the states

| 1 2 , 1 2 ) and | 1 2 , - 1 
2 ) exclusively (only the permutations leading to distinct vectors are permitted).

4

Separable qudit states

Factorization of a qudit

In this section, we start from a qudit (d-level state) and study on which condition such a state is separable in the direct product of d -1 qubit states.

The most general state in the space G d can be considered as a qudit |ψ d constituted from N = d-1 qubits. In other words, in terms of Dicke states we have

|ψ d = N k=0 c k |N ; k , N = d -1, c k ∈ C. ( 34 
)
We may ask the question: on which condition the vector |ψ d can be factorized as

|ψ d = |φ d-1 ⊗ |ϕ 1
involving a state |φ d-1 for N -1 qubits and a state |ϕ 1 for one qubit?

The use of Eq. ( 30) yields

|ψ d = N k=0 c k N -k N |N -1; k ⊗ |0 + k N |N -1; k -1 ⊗ |1 ,
which can be rewritten as

|ψ d = |u ⊗ |0 + |v ⊗ |1 ,
where

|u = N -1 k=0 c k N -k N |N -1; k , |v = N k=1 c k k N |N -1; k -1 . (35) 
Clearly, the state |ψ d is separable if there exists z in C such that

|v = z|u . (36) 
Then

|ψ d = |u ⊗ (|0 + z|1 ), (37) 
where

|u ≡ |φ d-1 , |0 + z|1 ≡ |ϕ 1 .
It is easy to show that Eq. ( 36) implies

N -1 k=0 c k+1 √ k + 1|N -1; k = z N -1 k=0 c k √ N -k|N -1; k .
Consequently, we get the recurrence relation

zc k √ N -k = c k+1 √ k + 1
that admits the solution

c k = c 0 z k C k N ,
where the coefficient c 0 can be calculated from the normalization condition ψ d |ψ d = 1. This leads to

c k = z k (1 + zz) N 2 N ! k!(N -k)! , k = 0, 1, • • • , N (38) 
up to a phase factor. Thus, the introduction of ( 38) into (34) leads to the separable state

|ψ d = 1 (1 + zz) N 2 N k=0 z k N ! k!(N -k)! |N ; k . (39) 
In order to identify the various factors occurring in the decomposition of the separable state [START_REF] Augusiak | Entangled symmetric states of N qubits with all positive partial transpositions[END_REF], as a tensor product, we note that the use of ( 38) in [START_REF] Mandilara | Entanglement classification of pure symmetric states via spin coherent states[END_REF] gives

|u = 1 √ 1 + zz |ψ d-1 .
Hence, Eq. ( 37) takes the form

|ψ d = |ψ d-1 ⊗ |z , (40) 
where

|z = 1 √ 1 + zz (|0 + z|1 ) (41) 
stands for a single qubit in the Majorana representation [START_REF] Majorana | Atomi orientati in campo magnetico variabile[END_REF] (the vector |z is nothing but a SU(2) coherent state for a spin j = 1 2 as can be seen by identifying the qubits |n = |0 and |1 to the spin

states |j, m) = | 1 2 , 1 2 ) and | 1 2 , - 1 
2 ), respectively). By iteration of Eq. ( 40), we obtain

|ψ d = |z ⊗ |z ⊗ • • • ⊗ |z , with N factors |z .
As a résumé, we have the following result. If the qudit state |ψ d given by Eq. ( 34) is separable, then it can be written

|ψ d = 1 (1 + zz) N 2 N k=0 z k N ! k!(N -k)! |N ; k = |z ⊗ |z ⊗ • • • ⊗ |z , (42) 
so that |ψ d is completely separable into the tensor product of N identical SU(2) coherent states for a spin j = 1 2 .

Separable states and coherent states

Let us consider the unitary displacement operator

D(ξ) = exp(ξq + i -ξq - i ), ξ ∈ C
for the i-th qubit. The action of D(ξ) on the i-th qubit |0 can be calculated to be

D(ξ)|0 = cos(|ξ|)|0 + ξ |ξ| sin(|ξ|)|1 . (43) 
By introducing

z = ξ |ξ| tan(|ξ|) ⇒ cos 2 (|ξ|) = 1 1 + zz in (43), we obtain D(ξ)|0 = 1 √ 1 + zz (|0 + z|1 ).
Hence, we have

D(ξ)|0 = |z ,
where |z is the coherent state defined in [START_REF] Novo | Genuine multiparticle entanglement of permutationally invariant states[END_REF]. This well-known result can be extended to the case of N qubits. The action of the operator exp(ξq + -ξq -), where q + and q -are given in [START_REF] Keyl | How to correct small quantum errors[END_REF], on the Dicke state

|N ; 0 = |00 • • • 0 reads exp(ξq + -ξq -)|N ; 0 = |z ⊗ |z ⊗ • • • ⊗ |z .
Therefore, the separable state |ψ d given by ( 42) can be written in three different forms, namely

|ψ d = 1 (1 + zz) N 2 N k=0 z k N ! k!(N -k)! |N ; k = |z ⊗ |z ⊗ • • • ⊗ |z = exp(ξq + -ξq -)|N ; 0 ,
where the last member coincides, modulo some changes of notation, with the Perelomov coherent state derived in [START_REF] Daoud | Bosonic and k-fermionic coherent states for a class of polynomial Weyl-Heisenberg algebras[END_REF] (see formulas ( 122) and ( 123) in [START_REF] Daoud | Bosonic and k-fermionic coherent states for a class of polynomial Weyl-Heisenberg algebras[END_REF]).

Majorana description

We now go back to the general case where the qudit state |ψ d of G d is not necessarily a separable state. This state (normalized to unity) can be written in two different forms, namely, as in Eq. ( 34)

|ψ d = c 0 |N ; 0 + c 1 |N ; 1 + • • • + c N |N ; N , N = d -1, N k=0 |c k | 2 = 1 (44) 
or, according to the Majorana description [START_REF] Majorana | Atomi orientati in campo magnetico variabile[END_REF], as

|ψ d = N d σ∈S N σ(|z 1 ⊗ |z 2 ⊗ • • • ⊗ |z N ) (45) 
(see Annexe for a discussion of the equivalence between ( 44) and ( 45) in the framework of the Bargmann function associated with |ψ d and the so-called Majorana stars). In Eq. ( 45), the state |z i (with

i = 1, 2, • • • , N
) is given by (41) with z = z i . Furthermore, N d is a normalization factor and the sum over σ runs here over all the permutations of the symmetric group S N . The coefficients c

0 , c 1 , c 2 , • • • , c N can be expressed in terms of the coefficients N d , z 1 , z 2 , • • • , z N .
The case where N is arbitrary is rather intricate. Therefore, for pedagogical reasons we start with the case of N = 2 qubits.

The case N = 2

For N = 2 (⇔ d = 3), on the one hand we have

|ψ 3 = c 0 |2; 0 + c 1 |2; 1 + c 2 |2; 2 , |c 0 | 2 + |c 1 | 2 + |c 2 | 2 = 1,
where the Dicke states |2; k with k = 0, 1, 2 are

|2; 0 = |00 , |2; 1 = 1 √ 2 (|01 + |10 ), |2; 2 = |11 . (46) 
On the other hand

|ψ 3 = N 3 (|z 1 ⊗ |z 2 + |z 2 ⊗ |z 1 )
.

Therefore, we have to compare

|ψ 3 = c 0 |00 + c 1 1 √ 2 (|01 + |10 ) + c 2 |11
with

|ψ 3 = N 3 1 1 + |z 1 | 2 1 1 + |z 2 | 2 [2|00 + (z 1 + z 2 )(|01 + |10 ) + 2z 1 z 2 |11 ] .
This leads to

1 2 c 0 = N 3 1 1 + |z 1 | 2 1 1 + |z 2 | 2 , 1 √ 2 c 1 = N 3 1 1 + |z 1 | 2 1 1 + |z 2 | 2 (z 1 + z 2 ), (47) 
1 2 c 2 = N 3 1 1 + |z 1 | 2 1 1 + |z 2 | 2 z 1 z 2 .
Of course, the complex numbers z 1 and z 2 are the roots of the equation

z 2 -(z 1 + z 2 )z + z 1 z 2 = 0. ( 48 
)
Therefore, by combining Eqs. ( 47) and ( 48), we end up with the quadratic equation

c 0 z 2 - √ 2c 1 z + c 2 = 0, (49) 
so that z 1 and z 2 are given by

z 1 = z + , z 2 = z -, z ± = c 1 ± c 2 1 -2c 0 c 2 √ 2c 0 ( 50 
)
for c 0 = 0 (z = 1 √ 2 c 2
c 1 for c 0 = 0). Observe that, when the so-called concurrence C defined by (see Ref. [START_REF] Wootters | Entanglement of formation of an arbitrary state of two qubits[END_REF])

C = |c 2 1 -2c 0 c 2 | (51) 
vanishes, we have z 1 = z 2 = z. Therefore, the state

|ψ 3 = |z ⊗ |z = 1 1 + zz |00 + z(|01 + |10 ) + z 2 |11
is separable.

The case N arbitrary

The case N arbitrary is very much involved. Equations ( 47) and ( 49) for N = 2 can be generalized as follows. In the general case of N qubits, the vector |ψ d of the space G d , normalized via ψ d |ψ d = 1, is given by ( 44) in terms of Dicke states or by [START_REF] Dicke | Coherence in spontaneous radiation processes[END_REF] in the Majorana representation. The coefficients

c 0 , c 1 , c 2 , • • • , c N are connected to the complex numbers N d , z 1 , z 2 , • • • , z N through c k = N !N 1 N 2 • • • N N N d k!(N -k)! N ! s k (z 1 z 2 • • • z N ),
where

s k (z 1 z 2 • • • z N ) is the elementary symmetric polynomial (invariant under S N ) in N variables z 1 , z 2 , • • • , z N defined as s 0 (z 1 z 2 • • • z N ) = 1, s k (z 1 z 2 • • • z N ) = 1≤i 1 <i 2 <•••<i k ≤N z i 1 z i 2 • • • z i k , k = 1, 2, • • • , N
and the normalization factors

N 1 , N 2 , • • • , N N , N d are given by N i = 1 √ 1 + zi z i , i = 1, 2, • • • , N (52) 
and

|N d | -2 = N ! σ∈S N N i=1 z i |z σ(i) , z i |z σ(i) = 1 + zi z σ(i) (1 + zi z i )(1 + zσ(i) z σ(i) ) . (53) 
Note that

|N d | -2 = N !perm(A N ), (54) 
where

perm(A N ) = σ∈S N N i=1 z i |z σ(i) = 1 N j=1 (1 + zj z j ) σ∈S N N i=1 (1 + zi z σ(i) ) (55) 
stands for the permanent of the N × N matrix A N of elements

(A N ) ij = z i |z j , i, j = 1, 2, • • • , N. Finally, for fixed c 0 , c 1 , • • • , c N , the numbers z 1 , z 2 , • • • , z N are the roots (Majorana roots) of the poly- nomial equation of degree N N k=0 (-1) k N ! k!(N -k)! c k z N -k = 0, ( 56 
)
which generalizes [START_REF] Daoud | Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems[END_REF].

The complete proof of ( 56) is based on the fact that two generic qubit states |z i and |z j , with j = i, are orthogonal if and only if the variables z i and z j satisfy

z j = -1 zi . The state |ψ d is orthogonal to the N states | -1 zi ⊗ | -1 zi ⊗ • • • ⊗ | -1 zi for i = 1, 2, • • • , N .
This orthogonality condition shows that the variables z i are indeed solutions of Eq. ( 56).

To sum up, we have the following central result. Any vector |ψ d in the space G d reads

|ψ d = N k=0 c k |N ; k ⇔ |ψ d = N !N 1 N 2 • • • N N N d N k=0 k!(N -k)! N ! s k (z 1 z 2 • • • z N )|N ; k , ( 57 
)
where the normalization factors N 1 , N 2 , • • • , N N , and N d (with d = N + 1) can be calculated from Eqs. ( 52) and ( 53) and the variables z 1 , z 2 , • • • , z N are given in terms of c 0 , c 1 , • • • , c N by Eq. ( 56).

Note that ( 53) can be rewritten as

|N d | -2 = N ! (1 + z1 z 1 )(1 + z2 z 2 ) • • • (1 + zN z N ) σ∈S N N i=1 (1 + zi z σ(i) ), so that |N !N 1 N 2 • • • N N N d | -2 = 1 N ! σ∈S N N i=1 (1 + zi z σ(i) ).
Therefore, Eq. ( 57) becomes

|ψ d = N ! σ∈S N N i=1 (1 + zi z σ(i) ) N k=0 k!(N -k)! N ! s k (z 1 z 2 • • • z N )|N ; k (58) 
up to a phase factor.

As a check of the last result, note that the introduction of ( 38) into (56) yields a trivial identity. Furthermore, in the particular case where the solutions of ( 56) are identical, i.e.,

z = z 1 = z 2 = • • • = z N ⇒ s k (zz • • • z) = N ! k!(N -k)! z k ,
then Eq. ( 58) leads to the completely separable state [START_REF] Tóth | Permutationally invariant quantum tomography[END_REF]. In this particular case, from Eq. ( 55) we have perm(A N ) = N ! (which is the maximum value of perm(A N )). Therefore, in the general case the quantity

P d = 1 N ! perm(A N ) = 1 N ! σ∈S N N i=1 z i |z σ(i) (59) 
can be used for characterizing the degree of entanglement of the state |ψ d .

5.3

The cases d = 2, 3, 4, and 5

Case d = 2

The state

|ψ 2 = c 0 |1; 0 + c 1 |1; 1 , |1; 0 = |0 , |1; 1 = |1
is the most general qubit (linear combination of the basic qubits |0 and |1 ). Of course, the notion of separability does not apply in this case.

Case d = 3

The general normalized qutrit vector is

|ψ 3 = c 0 |2; 0 + c 1 |2; 1 + c 2 |2; 2 , 2 k=0 |c k | 2 = 1,
where the Dicke states |2; k with k = 0, 1, 2 are

|2; 0 = |0 ⊗ |0 , |2; 1 = 1 √ 2 (|0 ⊗ |1 + |1 ⊗ |0 ), |2; 2 = |1 ⊗ |1 ,
cf. [START_REF] Tóth | Detection of multipartite entanglement in the vicinity of symmetric Dicke states[END_REF]. In the Majorana description, Eqs. ( 45), [START_REF] Green | A generalized method of field quantization[END_REF], and [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform[END_REF] gives

|ψ 3 = 1 2 √ P 3 (|z 1 ⊗ |z 2 + |z 2 ⊗ |z 1 ),
with

P 3 = 1 2 perm(A 2 ), = 1 2 (1 + | z 1 |z 2 | 2 ), = 1 2 (1 + z1 z 1 )(1 + z2 z 2 ) + (1 + z1 z 2 )(1 + z2 z 1 ) (1 + z1 z 1 )(1 + z2 z 2 ) ,
where z 1 and z 2 are the roots (50) of the quadratic equation [START_REF] Daoud | Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems[END_REF].

It can be shown that

| z 1 |z 2 | 2 = 1 -C 1 + C ⇔ P 3 = 1 1 + C ⇔ C = 1 P 3 -1,
where the concurrence C for a two-qubit system is defined by Eq. ( 51). Thus, another expression for

C is C = (1 + z1 z 1 )(1 + z2 z 2 ) -(1 + z1 z 2 )(1 + z2 z 1 ) (1 + z1 z 1 )(1 + z2 z 2 ) + (1 + z1 z 2 )(1 + z2 z 1 )
.

The possible values of C and P 3 are

1 2 ≤ P 3 ≤ 1 ⇔ 1 ≥ C ≥ 0.
Therefore, a vanishing concurrence C = 0 (which reflects the absence of entanglement) corresponds to

P 3 = 1; in the particular case P 3 = 1 ⇔ C = 0, we have z = z 1 = z 2 ⇔ z 1 |z 2 =
1 that leads to the separable state |ψ 3 = |z ⊗ |z . Furthermore, for C = 1 (which characterizes entangled states), we have P 3 = 1 2 ⇔ z 1 |z 2 = 0. Consequently, in the general case (z 1 and z 2 arbitrary), P 3 constitutes an alternative to the concurrence C for measuring the degree of entanglement of the general qutrit |ψ 3 .

It is interesting to note that P 3 can be alternatively written as

P 3 = 1 4 (3 + n 1 .n 2 )
where the vectors

n k = z k + zk 1 + z k zk , -i z k -zk 1 + z k zk , 1 -z k zk 1 + z k zk (60) 
(with k = 1, 2 and i = √ -1) are unit vectors in the space R 3 which serve to locate points on the Bloch sphere. Therefore, entangled states are obtained for n 1 .n 2 = -1 (in this case, P 3 takes its minimal value 1 2 ).

Note the following relation

n i .n j = 2| z i |z j | 2 -1 (61) 
valid for arbitrary i and j. This relation will be useful for deriving closed-form expressions of P d in higher dimensional cases.

Case d = 4

In this case, the general state |ψ 4 of G 4 is made of N = 3 qubits. It takes the form

|ψ 4 = c 0 |3; 0 + c 1 |3; 1 + c 2 |3; 2 + c 3 |3; 3 , 3 k=0 |c k | 2 = 1,
where the Dicke states |3; k with k = 0, 1, 2, 3 are

|3; 0 = |0 ⊗ |0 ⊗ |0 , |3; 1 = 1 √ 3 (|0 ⊗ |0 ⊗ |1 + |0 ⊗ |1 ⊗ |0 + |1 ⊗ |0 ⊗ |0 ), |3; 2 = 1 √ 3 (|0 ⊗ |1 ⊗ |1 + |1 ⊗ |0 ⊗ |1 + |1 ⊗ |1 ⊗ |0 ), |3; 3 = |1 ⊗ |1 ⊗ |1 .
In the Majorana representation, we have

|N 4 | -1 |ψ 4 = |z 1 ⊗ |z 2 ⊗ |z 3 + |z 2 ⊗ |z 1 ⊗ |z 3 + |z 1 ⊗ |z 3 ⊗ |z 2 + |z 3 ⊗ |z 2 ⊗ |z 1 + |z 2 ⊗ |z 3 ⊗ |z 1 + |z 3 ⊗ |z 1 ⊗ |z 2 ,
where the states |z i are given by ( 41) with z = z 1 , z 2 , z 3 and the complex numbers z 1 , z 2 , z 3 are solutions of the polynomial equation of degree 3

c 0 z 3 - √ 3c 1 z 2 + √ 3c 2 z -c 3 = 0.
The normalization factor N 4 reads

|N 4 | -2 = 3!perm(A 3 ) = (3!) 2 P 4 , with P 4 = 1 6 1 + | z 1 |z 2 | 2 + | z 2 |z 3 | 2 + | z 3 |z 1 | 2 + z 1 |z 2 z 2 |z 3 z 3 |z 1 + z 1 |z 3 z 3 |z 2 z 2 |z 1
or alternatively

P 4 = 1 6 (3 + n 1 .n 2 + n 2 .n 3 + n 3 .n 1 ),
where the components of the vectors n i (i = 1, 2, 3) are given by [START_REF] Manko | The quantum strong subadditivity condition for systems without subsystems[END_REF]. From Eq. ( 61), we get

P 4 = 1 3 (| z 1 |z 2 | 2 + | z 2 |z 3 | 2 + | z 3 |z 1 | 2 )
that clearly shows that

1 3 ≤ P 4 ≤ 1
The case of complete separability corresponds to P 4 = 1. The minimal value P 4 = 1 3 is obtained for entangled states.

Case d = 5

In this case, the variables z i (i = 1, 2, 3, 4) are solutions of the equation of degree 4

c 0 z 4 - √ 4c 1 z 3 + √ 6c 2 z 2 - √ 4c 3 z + c 4 = 0.
The calculation of P 5 yields

P 5 = 1 4! -6 + 4(| z 1 |z 2 | 2 + | z 1 |z 3 | 2 + | z 1 |z 4 | 2 + | z 2 |z 3 | 2 + | z 2 |z 4 | 2 + | z 3 |z 4 | 2 ) + 2(| z 1 |z 2 | 2 | z 3 |z 4 | 2 + | z 1 |z 3 | 2 | z 2 |z 4 | 2 + | z 1 |z 4 | 2 | z 2 |z 3 | 2 )
or

P 5 = 1 4! 15 2 + 5 2 (n 1 .n 2 + n 1 .n 3 + n 1 .n 4 + n 2 .n 3 + n 2 .n 4 + n 3 .n 4 ) + 1 2 ((n 1 .n 2 )(n 3 .n 4 ) + (n 1 .n 3 )(n 2 .n 4 ) + (n 1 .n 4 )(n 2 .n 3 )) with 1 4 ≤ P 5 ≤ 1.
The minimal value P 5 = 1 4 can be obtained from

z 1 |z 2 = z 1 |z 3 = z 1 |z 4 = 0 (62) 
or from any analogue equality deduced from (62) by permutations of the indices 1, 2, 3, 4.

Case d arbitrary

The general case is approached in Section (5.2). For d arbitrary, it can be shown that

1 N ≤ P d ≤ 1,
the situation where P d = 1 corresponding to complete separability and P d = 1 N to entangled states. Therefore, the parameter P d can serve as a measure of the entanglement of the symmetric qudit state |ψ d described by N = d -1 qubits.

The minimal value of P d can be obtained when

z 1 |z 2 = z 1 |z 3 = • • • = z 1 |z N = 0.
(63) Thus, Eq. ( 59) can be reduced to

P d = 1 N ! σ∈S N-1 N i=2 z i |z σ(i) .
The condition (63) implies that

z 2 = z 3 = • • • = z N .
In this case, we have

σ∈S N-1 N i=2 z i |z σ(i) = (N -1)!
and the minimal value of P d is

P d = (N -1)! N ! = 1 N .
The same result can be obtained equally well, due to the invariance of P d under permutation symmetry, from any of the following conditions

z 2 |z 1 = z 2 |z 3 = • • • = z 2 |z N = 0, z 3 |z 1 = z 3 |z 2 = • • • = z 3 |z N = 0, . . . z N |z 1 = z N |z 2 = • • • = z N |z N -1 = 0.
instead of the condition (63).

6 Fubini-Study metric

The separable case

The adequate approach to deal with the geometrical properties of a quantum state manifold is based on the derivation of the corresponding Fubini-Study metric [START_REF] Anandan | Geometry of quantum evolution[END_REF]. The Fubini-Study metric is defined by the infinitesimal distance ds between two neighboring quantum states. This derivation is simplified by adopting the coherent states formalism. Indeed, for a single qubit coherent state |z this is realized in the following way. Let us define the Kähler potential K(z; z) as

K(z; z) = ln( 0|z ) -2 . ( 64 
)
Using the expression (41) of the coherent state |z , we have

K(z; z) = ln(1 + zz)
and the metric tensor

g = ∂ 2 K ∂z∂ z becomes g = 1 (1 + zz) 2 ,
so that the Fubini-Study metric ds 2 reads ds 2 = gdzdz = 1 (1 + zz) 2 dzdz, which coincides with the metric of the unit sphere. This provides us with a simple way to describe the 2-sphere S 2 , or equivalently the complex projective space CP 1 , usually regarded as the space of states of a 1 2 -spin particle.

This can be generalized to the completely separable state

|z 1 z 2 • • • z N = |z 1 ⊗ |z 2 ⊗ • • • ⊗ |z N
constructed from the tensor product of N qubit coherent states. In this case, the Kähler potential is given by

K(z 1 z2 • • • zN ; z 1 z 2 • • • z N ) = ln( 00 • • • 0|z 1 z 2 • • • z N ) -2 . ( 65 
)
This leads to

K(z 1 z2 • • • zN ; z 1 z 2 • • • z N ) = N i=1 ln(1 + zi z i ). ( 66 
)
The metric tensor g is defined via its components

g ij = ∂ 2 K ∂z i ∂ zj ⇒ g ij = δ i,j 1 (1 + zi z i ) 2 .
Finally, the Fubini-Study line element ds 2 is

ds 2 = g ij dz i dz j = N i=1 1 (1 + zi z i ) 2 dz i dz i (67) associated with the complex space CP 1 × CP 1 × • • • × CP 1 .
In the special case where the complex variables z i are identical, i.e., z

1 = z 2 = • • • = z N = z, the state |z 1 z 2 • • • z N reduces
to the coherent state given by [START_REF] Tóth | Permutationally invariant quantum tomography[END_REF]. In this case, the Fubini-Study metric takes the form

ds 2 = N 1 (1 + zz) 2 dzdz,
which describes the unit 2-sphere, of radius √ N , written in stereographic coordinates.

The arbitrary case

We now apply the just described geometrical picture to calculate the Fubini-Study metric for an arbitrary multiqubit symmetric state |ψ d . Here, we define the Kähler potential through

K(z 1 z2 • • • zN ; z 1 z 2 • • • z N ) = ln( 00 • • • 0|ψ d ) -2
as a generalization of (64) and (65). It is easy to show that ( 00

• • • 0|ψ d ) -2 = 1 N ! σ∈S N N i=1 z i |z σ(i) N j=1 (1 + zj z j ), = 1 N ! perm(A N ) N i=1 (1 + zi z i ), = P d N i=1 (1 + zi z i ).
Hence, we otain

K(z 1 z2 • • • zN ; z 1 z 2 • • • z N ) = ln P d + N i=1 ln(1 + zi z i )
in terms of the parameter P d defined by [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform[END_REF]. As a result, the Kähler potential splits into two parts: one term is the Kähler potential corresponding to a completely separable state involving N qubits, cf. (66), and the other term depends exclusively on the parameter P d which characterizes the degree of entanglement of the state |ψ d . Then, the components of the corresponding metric tensor g are

g ij = ∂ 2 K ∂z i ∂ zj = ∂ 2 ln P d ∂z i ∂ zj + δ i,j 1 (1 + zi z i ) 2
and the Fubini-Study line element ds 2 is

ds 2 = g ij dz i dz j = ∂ 2 ln P d ∂z i ∂ zj dz i dz j + N i=1 1 (1 + zi z i ) 2 dz i dz i .
In the special case where P d = 1, corresponding to a completely separable state, the last equation gives back (67) valid for a multiqubit separable state. This is a further indication that the parameter P d encodes the geometrical aspects due to the entanglement of a multiqubit symmetric state.

Annexe: Majorana stars and zeros of the Bargmann function

The main idea 45)). The variables z i , called Majorana stars [START_REF] Bacry | Constellations and projective classical groups[END_REF], can be determined from the zeros of the Bargmann function ψ : z → ψ(z) associated with the state |ψ d . In fact, denoting by ω i

Expression of |ψ d in terms of the Bargmann zeros

We now look for the expression of the state vector |ψ d in terms of the Bargmann zeros ω i (i = 1, 2, • • • , k max ). To this end, we remark that the scalar product between the state

|ω i = 1 √ 1 + ωi ω i (|1 -ω i |0 )
and the coherent state |z ≡ |1 : z (see Eq. ( 41)) is

z|ω i = z -ω i (1 + zz)(1 + ωi ω i ) , i = 1, 2, • • • , k max .
Thus, the polynomial P(z) can be written as

P(z) = d kmax (1 + zz) kmax 2 kmax i=1 √ 1 + ωi ω i z|ω i .
Furthermore, by noting that

z|0 = 1 √ 1 + zz ,
we extend the definition of the states |ω i (initially defined for i = 1, 2, • • • , k max ) by taking

|ω i = |0 , i = k max + 1, k max + 2, • • • , N,
so that the Bargmann function takes the form

ψ(z) = d kmax kmax i=1 √ 1 + ωi ω i N j=1 z|ω j .
Since the representation ψ d → ψ is unique up to permutations of the |ω i , the Bargmann function can be rewritten as

ψ(z) = d kmax kmax i=1 √ 1 + ωi ω i 1 N ! σ∈S N N j=1 z|ω σ(j)
or alternatively as

ψ(z) = N d σ∈S N N : z|ω σ(1) ω σ(2) • • • ω σ(N ) , (71) 
where the normalization constant N d is given by

N d = 1 N ! d kmax kmax i=1 √ 1 + ωi ω i .
Comparing Eqs. ( 68) and (71), we find that the state |ψ d can be expressed as

|ψ d = N d σ∈S N σ(|ω 1 ⊗ |ω 2 ⊗ • • • ⊗ |ω N ) (72) 
in terms of the k max zeros ω i for i = 1, 2, • • • , k max of the Bargmann function ψ and of their extension

ω k max+1 = ω k max+2 = • • • = ω N = 0.

Expression of |ψ d in terms of the Majorana stars

We note that the states |ω i with i = 1, 2, • • • , k max can be written in terms of the coherent states |z i ≡ |1 : z i by putting

z i =      -1 ω i if i = 1, 2, • • • , k max , 0 if i = k max + 1, k max + 2, • • • , N.
We verify that

|ω i = |z i , i = 1, 2, • • • , N
up to irrelevant phase factors. Hence, the symmetric qudit state |ψ d given by (72) can be expressed as

|ψ d = N d σ∈S N σ(|z 1 ⊗ |z 2 ⊗ • • • ⊗ |z N ) (73) 
in terms of the coherent states |z i . Equation ( 73) is identical to (45): we thus recover Eq. ( 45).

Equation satisfied by the Majorana stars

The zeros ω i of the Bargmann function (69) satisfy P(ω i ) = 0. From Eq. (70), we thus get

kmax k=0 N ! k!(N -k)! c k ω k i = 0 ⇒ N k=0 N ! k!(N -k)! c k ω k i = 0 or in terms of the z i kmax k=0 (-1) k N ! k!(N -k)! c k z N -k i = 0 ⇒ N k=0 (-1) k N ! k!(N -k)! c k z N -k i = 0
in agreement with Eq. (56).

Concluding remarks

In this paper we discussed the role of a specific generalized Weyl-Heisenberg algebra in the algebraic structure of qubits and qudits. The use of this generalized Weyl-Heisenberg algebra is based on the fact that qubits are neither fermions nor bosons. Indeed, in the standard theoretical approach of quantum information, a qubit is a vector in a two-dimensional Hilbert space as for fermions and the Hilbert space of a multiqubit system has a tensor product structure like for bosons. In this respect, the commutation rules of the raising and lowering operators for qubits are not specified by relations of bosonic type or of fermionic type.

By using a collection of N = d -1 qubits, we gave a realization of the d-dimensional representation space of the generalized Weyl-Heisenbeg algebra. In particular, we demonstrated that the vectors of this representation space coincide with the Dicke states. These states are of special interest for describing multiqubit quantum systems possessing exchange symmetry. Another advantage of this algebraic description via the generalized Weyl-Heisenberg algebra concerns the separability of multiqubit states invariant under permutations. Hence, starting from the decomposition of Dicke states, we investigated the condition for the separability of symmetric qudits made of N = d -1 qubit states. Our results show that exchange symmetry implies that the superposition of Dicke states are globally entangled unless they are fully separable and coincide with the coherent states, in the Perelomov sense, associated with the generalized Weyl-Heisenberg algebra.

In the Majorana description of a symmetric qudit state in terms of symmetrized tensor products of N = d -1 qubits, we introduced a parameter P d connected to the permanent of the matrix characterizing the overlap between the N qubits. This parameter provides us with a quantitative measure of the entanglement for the qudit arising from N qubits. This was illustrated in the special case d = 3, for which the parameter P d constitutes an alternative to the Wootters concurrence C for N = 2 qubits. Therefore, we propose that P d be called perma-concurrence as a contraction of permanent and concurrence. Other examples of P d were given for d = 4 and 5. The results highlight the interest of the perma-concurrence P d for measuring the entanglement of a symmetric qudit state developed in terms of tensor products of qubit coherent states.

In the annexe, we further investigated the formalism of qubit coherent states to describe qudit states in the Fock-Hilbert space corresponding to the generalized Weyl-Heisenberg algebra. More precisely, we used the Fock-Bargmann representation for describing any symmetric qudit constructed from N = d -1 qubits with the help of an analytic function, the so-called Bargmann function. The zeros of the Bargmann function were related to the Majorana stars which provide an alternative way to describe Fock-Hilbert states as tensor products of qubit coherent states labeled by complex variables, namely, Majorana stars on the Bloch sphere.

Recently, new entropic and information inequalities for one qudit, which differs from a multiqubit system, have been developed [START_REF] Manko | The quantum strong subadditivity condition for systems without subsystems[END_REF]. Therefore, it will be a challenge to ask whether the qudit picture proposed in this paper can be adapted in terms of linear combinations of Dicke states.

To close this paper, note that it might be interesting to introduce Dicke states in the construction of the so-called mutually unbiased bases used in quantum information. This approach, feasible in view of the connection between mutually unbiased bases and angular momentum states [START_REF] Kibler | Formulas for mutually unbiased bases in systems of qudits[END_REF], could be the object of a future work.

  Indeed, each Dicke state |N ; k and, more generally, any linear combination of the N + 1 Dicke states |N ; k (with k = 0, 1, • • • , N ) transform as the totally symmetric irreducible representation [N ] of the group S N of the permutations of the N = d -1 qubits.

  An arbitrary normalized state |ψ d of the space G d can be written either in terms of the Dicke states |N ; k with k = 0, 1, • • • , N = d -1 (see Eq. (44)) or in terms of the coherent states |z i for i = 1, 2, • • • , N (see Eq.(

the zeros of the Bargmann function ψ, we shall show that the Majorana stars z i can be obtained from the Bargmann zeros ω i via

and we shall give the equation satisfied by the variables z i .

Determining the Bargmann zeros

In the analytic Fock-Bargmann representation [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform[END_REF], an arbitrary normalized state |ψ d of G d is represented by the Bargmann function ψ defined by

where the bra N : z| follows from the coherent state

corresponding to the completely separable state [START_REF] Tóth | Permutationally invariant quantum tomography[END_REF]. Thus, we have

which can be decomposed as

where

In fact, the polynomial

is of degree k max ≤ N , where k max is the maximum value of the index k for which c k = 0. Therefore, the polynomial P(z) can be factorized as

where ω i (i = 1, 2, • • • , k max ) are called the Bargmann zeros.
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