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Shapes describing the alpha decay, cluster

radioactivity, fusion, fission and fragmentation

phenomena

G Royer, J Jahan and N Mokus

Laboratoire Subatech, UMR: IMT - IN2P3/CNRS -Université, Nantes 44, France

Abstract. To model the alpha decay, cluster radioactivity, fusion, fission and
fragmentation phenomena of microscopic or macroscopic distributions of matter or
charge it is useful to simulate these deformed physical objects by geometric shapes
allowing the determination of their root mean square radius, volume, surface and
Coulomb energies as well as their moments of inertia and quadrupole moments. Most
of the shapes used in macroscopic nuclear physics are briefly recalled. In particular,
several shape sequences that we have used previously, mainly formed from generalized
lemniscatoids, are more extensively detailed. They allow to describe the transitions
from one compact configuration to several ones or vice versa.
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1. Introduction

In chemistry, mechanics, astrophysics, hydrodynamics, nuclear physics,... the

transition from one almost spherical system towards several spherical or ellipsoidal

objects or vice versa (alpha decay, cluster radioactivity, fragmentation, fission, fusion,...)

may be described in regarding the evolution of the density profile in the system during

the deformation or in following the deformation of specific assumed geometric shape

sequences. In this last approach to determine the macroscopic energy it is necessary to

know the main characteristics of the shape: the position of the centre of inertia, the

root mean square radius, the volume, the surface, the Coulomb function, the moments

of inertia, the quadrupole moment,...

An extensive review of the geometrical relationships used in macroscopic nuclear

physics may be found in Ref. [1]. In a first part, most of these shape sequences used

to describe the nuclear states and reactions are reviewed. In the following sections the

definitions and geometric properties of different shape sequences that we have previously

used and bring together recently [2] are recalled. Within macro-microscopic models they

allow the study of the fusion [3, 4], fission [5, 6], fragmentation [7, 8] and alpha decay

and cluster radioactivity processes [9, 10, 11]. The following shapes will be successively

presented: one ellipsoid, two ellipsoids, elliptic and hyperbolic generalized lemniscatoids,

prolate compact ternary shapes, bubbles and tori.
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To study n α-nuclei as nuclear molecules, different configurations such as linear

chain, triangle, square, tetrahedron, pentagon, square bipyramid, trigonal pyramid,

hexagon, octahedron, octagon and cube have also been selected [12].

2. Mini-review of the main theoretical nuclear shapes

Within macroscopic models such as the liquid drop model or droplet model the

total energy of a system is, mainly, the sum of the volume, surface and Coulomb energy

and shape-dependent functions are used. For charge or matter distributions of constant

density the relative shape-dependent surface Bs and Coulomb (or gravitational) Bc

functions are respectively [1]

Bs =
∫

σ

dσ

4πR0
2 , (1)

Bc =
15

16π2R0
5

∫
dτ
∫

dτ ′

|�r − �r ′| , (2)

where R0 is the radius of the sphere of same volume.

When the shapes are axially symmetric, Bc reduces to

Bc = 0.5
∫

v(θi)

v0

[
R(θi)

R0

]3

sin (θi)dθi. (3)

The potential v(θ) is determined at the surface of the shape, v0 being the surface

potential of the sphere

v(θi)

v0
=

3

2πR0
2

∫ ρ
[
(ρi + ρ)dz

dθ
+ (zi − z)dρ

dθ

]
K(k) − 1

2
[(ρi + ρ)2 + (zi − z)2]dz

dθ
D(k)√

(ρi + ρ)2 + (zi − z)2
dθ (4)

where ρ = R(θ) sin θ, z = R(θ) cos θ. D(k) and K(k) are calculated from elliptic

integrals. These shape-dependent Bs and Bc functions are dimensionless and equal

to one at the sphere.

For axially symmetric shapes the inverse effective moment of inertia is defined by

Ieff
−1 = I‖

−1 − I⊥−1. (5)

I‖ and I⊥ are the parallel and perpendicular moments of inertia.

The dimensionless quadrupole moment Q relatively to the z axis is given by

Q =
1

R0
5

∫∫∫
(3z2 − r2)dτ. (6)

.

The parameter β, often used in γ spectroscopy, follows

β =
0.75√

5π
QR0

2〈r2〉−1
, (7)

β = 2

√
π

5

I⊥ − I‖
I⊥ + 0.5I‖

. (8)
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2.1. Small deformations

For small oblate or prolate deformations from the sphere (nuclear ground states,

planets) the spheroidal expansions have been used [13] within a small expansion of the

eccentricity e. For prolate spheroids, the minor a and major c semi axes are given by

a = R0(1 − 1

6
e2 − 5

72
e4 + ...), c = R0(1 +

1

3
e2 +

2

9
e4 + ...). (9)

For oblate spheroids e2 must be replaced by −e2. The shape-dependent functions are:

I⊥ = 1 +
1

6
e2 +

2

9
e4 +

35

162
e6..., I‖ = 1 − 1

3
e2 − 1

9
e4 − 5

81
e6..., (10)

Ieff =
1

2
e2 +

5

12
e4 +

85

216
e6..., (11)

Q =
8π

15
e2(1 +

2

3
e2 +

5

9
e4 +

40

81
e6...), (12)

Bs = 1 +
2

45
e4 +

116

2835
e6..., Bc = 1 − 1

45
e4 − 64

2835
e6..., (13)

r2
rms =

3

5
(1 − 1

9
e2 +

1

9
e4 +

10

81
e6...). (14)

Several harmonic expansions have been proposed [1].

The αn parameterization is defined by [14, 15, 16]

R(θ) = λ−1R0[1 +
N∑

n=1

αnPn(cos θ)], (15)

N being a cutoff parameter, λ a parameter allowing the volume conservation and Pn a

Legendre polynomial.

The volume conservation can be included into the deformation parameters [15]

R(θ) = R0[1 +
N∑

n=0

anPn(cos θ)]. (16)

The βn parameterization [17] takes into account the volume conservation only up to

quadratic terms in the deformation parameters

R(θ) = R0[1 +
N∑

n=2

(βnYn0(θ) − βn
2

4π
)]. (17)

Yn0 are the spherical harmonics. The parameter β2 is usually denoted by β.

The relative quadrupole and hexadecapole moments read [18]

Q = 4
√

π/5(β2 + 0.36β2
2 + 0.967β2β4 + 0.328β2

4 + 0.023β3
2 + ...),

Q4 =
4

3

√
π(β4 + 0.725β2

2 + 0.983β2β4 + 0.411β2
4 + 0.416β3

2 + ...). (18)

.

The εn parameterization has also been defined to describe deformations greater than

spheroidal deformations using expansions about a spheroid [19].
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To define the semi-axes a, b and c of triaxial ellipsoids the parameters βH and γH

have been introduced by Hill and Wheeler [14],

a = R0 exp[αHcos(γH − 2π

3
)], (19)

b = R0 exp[αHcos(γH +
2π

3
)], (20)

c = R0 exp[αHcos(γH)]. (21)

0 ≤ γH < π/3 and α is unrestricted.

βH =

√
4π

5
αH . (22)

When γ varies from 0 to π/3 the ellipsoid changes from axially prolate to axially oblate

shapes. The dimensionless surface and Coulomb functions are given by

Bs = 1 +
2

5
α2

H − 2

21
α3

Hcos(3γH).., Bc = 1 − 1

5
α2

H − 1

105
α3

Hcos(3γH).. (23)

This parameterization has been widely used to describe oblate nuclear ground states.

For the Bohr parameterization [17] the semiaxes are defined by

a = R0[1 +
√

5/4πβBcos(γB − 2π

3
)], (24)

b = R0[1 +
√

5/4πβBcos(γB +
2π

3
)], (25)

c = R0[1 +
√

5/4πβBcos(γB)]. (26)

so that in first order Bohr’s parameters βB, γB are equal to Hill and Wheeler’s parameters

βH , γH .

Recently, to describe precisely the nuclear ground-state shapes a ”stretched”

representation of the perturbed-spheroid parametrization has been introduced [20, 21].

The stretched coordinates ξ, η and ζ are defined by

ξ =

√
mω0

h̄
[1 − 2

3
ε2cos(γ +

2

3
π)] x, (27)

η =

√
mω0

h̄
[1 − 2

3
ε2cos(γ − 2

3
π)] y, (28)

ζ =

√
mω0

h̄
[1 − 2

3
ε2cos(γ)] z. (29)

and it follows the definitions of a stretched radius vector, a stretched polar angle and a

stretched azimuthal angle.
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2.2. Large deformations

The Lawrence shapes defined, in cylindrical coordinates, by the quartic ρ2 =

az4 + bz2 + c has first been used to describe both the spherical, spheroidal constricted,

scission and separated shapes [1, 22]. These shapes have been generalized to asymmetric

shapes [23] and given by

ρ2 = R3
0λ[z2

0 − (z + zs)
2][z2 | z2 | +(z + zs − z1)

2]. (30)

z0 is the half-length, z1 is the asymmetry parameter, z1 = 0 for symmetric shapes. z2 is

the constriction or necking-in parameter and zs is introduced to fix the centre of mass

at z = 0. λ guarantees volume conservation. The particular cases: sphere, spheroids,

scission and separated spheres occur respectively when z0 = R0 and z2 → ∞, z0 �= R0

and z2 → ∞, z2 = 0, z2 < 0.

Using the dimensionless parameters ζi = zi/R0 the geometric characteristics follow

Q =
8

5
πζ5

0λ[
1

7
ζ2
0 +

1

3
ζ2
2 −

1

3
λ(

1

21
ζ4
0 +

2

7
ζ2
0ζ

2
2 + ζ4

2)], (31)

I‖ = ζ5
0λ(

1

21
ζ4
0 +

2

7
ζ2
0ζ

2
2 + ζ4

2 ), (32)

I⊥ =
1

2
[I‖ + ζ5

0λ(
3

7
ζ2
0 + ζ2

2 )]. (33)

These shapes lead to rather elongated configurations with shallow necks and the scission

configuration of two tangent spheres is not reproduced.

To describe fusion, scattering of two nuclei or compact fission, different matched

surfaces of revolution have been proposed.

The two sphere parameterization for overlapping and separated fragments [24, 25, 26]

is defined as

ρ2 = r2 − (z − d)2 for z > 0, (34)

d is the distance from the centres of the separated or overlapping spheres to the origin.

r is the maximal transverse distance. Assuming volume conservation the radius of the

two spheres is R = 2−1/3R0. The parameter ε = 1− d/r is used. ε = 1 corresponds to a

single sphere, 0 < ε < 1 to two overlapping spheres, ε = 0 to two tangent spheres and

ε < 0 to two separated spheres.

To study the exchange of nucleons between two fragments or nuclei the dumbbell

parameterization has been defined in adding a cylindrical neck between two portions of

a sphere [26, 27]. This shape sequence describes the two touching sphere configuration

but the derivatives of the curve are not continuous at the contact point of the cylinder

and spheres.

The most flexible parameterization is the matched quadratic surfaces [1, 20, 21, 28, 29].

Three smoothly joined portions of quadratic surfaces of revolution are used : spheres,

spheroids, hyperboloids, cylinders and cones. They are completely specified by

ρ2 = a2
1 −

a2
1

c2
1

(z − l1)
2, l1 − c1 ≤ z ≤ z1, (35)
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ρ2 = a2
2 −

a2
2

c2
2

(z − l2)
2, z2 ≤ z ≤ l2 + c2, (36)

ρ2 = a2
3 −

a2
3

c2
3

(z − l3)
2, z1 ≤ z ≤ z2. (37)

The left-hand surface is denoted by 1, the right-hand one by 2 and the middle one by 3.

Each surface is specified by the position of its center li, its transverse semiaxis ai, and

its semi-symmetry axis ci. At the left and right intersections of the middle surface with

the end surfaces the value of z is z1 and z2 respectively. After matching the surfaces and

their derivatives it remains 6 parameters:

σ1 = (l2 − l1)/u, σ2 = a2
3/c

2
3, σ3 = 0.5[a2

1/c
2
1 + a2

2/c
2
2], (38)

α1 = 0.5(l1 + l2)/u, α2 = (a2
1 − a2

2)/u
2, α3 = a2

1/c
2
1 − a2

2/c
2
2, (39)

where

u =
√

0.5(a2
1 + a2

2). (40)

A subset of the matched quadratic surfaces parameterization restricted to two

spheres smoothly connected by a quadratic surface has also been employed [30].

A deformed two-centre shell model [31] has been developed mainly built from

two ellipsoidally deformed Nilsson-type oscillators for axially symmetric shapes. The

selected shape consists of two overlapping or not ellipsoids and a sphere rolling around

the symmetry axis and being tangent to the two ellipsoids. Four geometric parameters

define the shape: the two ratios of the ellipsoid semiaxes, the neck sphere radius and

the distance between the fragment centres.

Recently [32] small and large deformations have been investigated within a Fourier

expansion of deformed shapes

ρ2 = R2
0

∞∑
n=1

[a2ncos(
(2n − 1)π

2

z − zsh

z0

) + a2n+1sin(nπ
z − zsh

z0

)]. (41)

The left and right ends of the shape are located at zmin = zsh − z0 and zmax = zsh + z0.

The shift parameter zsh allows to replace the centre of the nuclear shape at the origin of

the coordinate system. The parameters a2, a3 and a4 describe the quadrupole, octupole

and hexadecapole deformations or, equivalently, the elongation, reflection asymmetry

and neck degree of freedom.

It is worthwhile to note that even though the approach within Hartree-Fock-

Bogoliubov theory and Gogny forces [33] is very different from the liquid drop model

approach the idea is always to minimize the energy of the system via all the possible

deformations and, mainly, the Q2, Q3 and Q4 multipolar moments.

To describe ternary fission or quasi-molecular ternary excited states several

configurations have been investigated. A restricted family of three colinearly aligned

or triangle-like configurations has been defined but no simple formulas are available for

the parameterization or for the liquid drop energies [34]. A shape consisting of three

identical and aligned intersected spherical fragments or nuclei has also been used. The
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distance between the centers of the side fragments is the only degree of freedom, once

the parent is fixed [35].

The ellipsoidal and two separated ellipsoid shapes, the elliptic lemniscatoids [36],

the cassinian ovals [37, 38], the ternary shapes, the toroids [7, 39] and the bubbles [8, 39]

that we have also used or defined will be more detailed in the following sections.

3. Ellipsoidal shapes

In polar coordinates the axially symmetric ellipsoids are defined by

1/R(θ)2 = sin2 θ/a2 + cos2 θ/c2. (42)

a is the perpendicular semi-axis, c being half the elongation on the revolution axis. The

Figure 1. Ellipsoidal shapes versus the ratio s = a/c. The common revolution
axis is the horizontal axis. s is respectively: 1/3, 2/3, 1, 4/3 and 5/3. The ellipsoid is
oblate when s > 1 and prolate when s < 1.

relation a2 c = R3
0 ensures the volume conservation. R0 is the radius of the sphere (see

figure 1).

The related eccentricity is e2 = 1 − s2 for the prolate shape while for the oblate

case e2 = 1 − s−2 [40, 41, 42].

For the prolate shape, the surface function is

Bs =
(1 − e2)1/3

2

[
1 +

sin−1(e)

e(1 − e2)1/2

]
(43)

and for the oblate shape

Bs =
(1 + ε2)1/3

2

[
1 +

ln(ε + (1 + ε2)1/2)

ε(1 + ε2)1/2

]
ε2 = s2 − 1. (44)

The relative Coulomb function reads in the prolate case

Bc =
(1 − e2)1/3

2e
ln
(

1 + e

1 − e

)
(45)

and for the oblate shape

Bc =
(1 + ε2)1/3

ε
tan−1 ε. (46)
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For the prolate ellipsoidal shapes, I and Q are given by

I⊥ =
s−4/3 + s2/3

2
, (47)

I‖ = s2/3, (48)

Q =
8π

15
(s−4/3 − s2/3). (49)

4. Two separated ellipsoid shapes

For separated binary systems it may be necessary to introduce the ellipsoidal

deformations (see figure 2) of the two objects (drops, nuclei, planets, galaxies,...).

Figure 2. Two coaxial ellipsoid shapes.

The Coulomb (or gravitational) interaction energy between two coaxial ellipsoids

is given by [40, 41, 43, 44, 45]

Ec,int(r) =
Q1Q2

r
[s(λ1) + s(λ2) − 1 + S(λ1, λ2)] λi

2 =
ci

2 − ai
2

r2
. (50)

In the prolate case, s(λi) is

s(λi) =
3

4

(
1

λi

− 1

λi
3

)
ln

(
1 + λi

1 − λi

)
+

3

2λi
2 , (51)

and, for the oblate configurations,

s(λi) =
3

2

(
1

ωi
+

1

ωi
3

)
tan−1 ωi − 3

2ωi
2

ωi
2 = −λi

2. (52)

S(λ1, λ2) is expressed by a two-fold summation

S(λ1, λ2) =
∞∑

j=1

∞∑
k=1

3

(2j + 1)(2j + 3)
× 3

(2k + 1)(2k + 3)
× (2j + 2k)!

(2j)!(2k)!
λ1

2jλ2
2k. (53)

5. Elliptic lemniscatoids and asymmetric binary quasimolecules

5.1. Elliptic lemniscatoids

The elliptic lemniscatoid shapes allows to describe continuously the transition from

to two tangent equal spheres to one sphere or vice-versa via compact and creviced shapes
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with almost spherical ends, assuming volume conservation. In nuclear physics this shape

sequence has been used to simulate, as a first approximation, the symmetric fusion and

fission [5, 36].

Mathematically, the lemniscatoid is the first pedal surface of a prolate ellipsoid and

the inverse of an oblate ellipsoid, the prolate ellipsoid being the reciprocal of the oblate

ellipsoid (see figure 3).

The prolate ellipsoidal shape is expressed as

x2/a2 + y2/a2 + z2/c2 = 1 (54)

while its reciprocal oblate ellipsoid reads as

a2x2 + a2y2 + c2z2 = 1. (55)

The elliptic lemniscatoid is given by

a2x2 + a2y2 + c2z2 = (x2 + y2 + z2)2. (56)

The ratio s = a/c of the neck radius to the half-elongation of the system defines

L

E1

E2

H

M

M�

O

Figure 3. Relation between the elliptic lemniscatoid L and the ellipsoids E1 and
E2. The point H of the lemniscatoid L is the projection of the point O onto the
tangential plane to the prolate ellipsoid E1 in M. The point M’ of the oblate ellipsoid
E2 is the inverse of H. The revolution axis is the horizontal axis.

completely the shape. When s increases from 0 to 1 the lemniscatoid varies continuously

from two tangent spheres to a single one (see figure 4). When the perpendicular x axis is

taken as axis of revolution the elliptic lemniscates generate pumpkin-like configurations

(see section 9)).

In polar coordinates, the elliptic lemniscatoids are simply given by

R(θ)2 = a2 sin2 θ + c2 cos2 θ. (57)

The volume and surface area follow

V ol =
4

3
πR0

3 =
π

12
c3

[
4 + 6s2 +

3s4

√
1 − s2

sinh−1
(

2

s2

√
1 − s2

)]
(58)

and

S = 4πR0
2Bs = 2πc2

[
1 +

s4

√
1 − s4

sinh−1
(

1

s2

√
1 − s4

)]
, (59)
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R0 being the radius of the spherical object.

r, the distance between the mass centres of the right and left parts of the object,

is defined by

r = 2

∫ c
0 zd3r∫ c
0 d3r

. (60)

For these elliptic lemniscatoids r is simply given by

r = πc41 + s2 + s4

3V
. (61)

The perpendicular and parallel moments of inertia (relatively to the moment of inertia

of the equivalent sphere 2
5
mR0

2) are

I⊥,rel = c5s2

512(1−s2)R0
5

[
112
s2 + 8 + 30s2 − 135s4 + 120s4−135s6√

1−s2 sinh−1
(√

1−s2

s2

)]
, (62)

I‖,rel = c5s2

512(1−s2)R0
5

[
32
s2 + 48 + 100s2 − 210s4 + 240s4−210s6√

1−s2 sinh−1
(√

1−s2

s2

)]
. (63)

The dimensionless quadrupole moment Q is

Q =
πc5s2

96(1 − s2)R0
5

⎡
⎣16

s2
− 8 − 14s2 + 15s4 − 24s4 − 15s6

√
1 − s2

sinh−1

⎛
⎝
√

1 − s2

s2

⎞
⎠
⎤
⎦ . (64)

Figure 4. On the left, evolution of the elliptic lemniscatoids versus the ratio
s = a/c. The shape varies continuously from two spheres (s = 0) to one sphere (s = 1).
The neck exists for s < 0.5

√
2. On the right, two halves of different lemniscatoids of

same perpendicular distance a are linked in the transverse plane.

5.2. Asymmetric binary quasimolecules

To describe the path from one sphere to two different spheres in contact or vice

versa (see figure 4) two halves of different elliptic lemniscatoids may be connected in the

transverse plane assuming the same transversal radius. These shape sequence allows

the study of the alpha emission or capture and cluster radioactivity [9, 10, 11, 46],

the asymmetric fusion [3, 4] and the asymmetric fission through compact and creviced

shapes [6].
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Mathematically the shape is defined by

R(θ)2 =

{
a2 sin2 θ + c1

2 cos2 θ 0 ≤ θ ≤ π/2

a2 sin2 θ + c2
2 cos2 θ π/2 ≤ θ ≤ π.

(65)

c1 and c2 are the two half-elongations on the z axis.

The relation R0
3 = R1

3 + R2
3 ensured the volume conservation, R0, R1 and R2

being the radii of the total and different spheres.

The two parameters s1 = a/c1 and s2 = a/c2 define completely the quasimolecular

shape. The two radii R1 and R2 allows to link s1 and s2:

s2
2 =

s1
2

s1
2 + (1 − s1

2)(R2/R1)2
. (66)

When s1 increases from 0 to 1 the shape varies from to two touching unequal spheres

to one sphere. The volume conservation of the two parts is assumed. The separation

plane is at a distance zv from the origin. r1 and r2 are calculated from the quantity zv,

solution of the equation

1

3
z3 − 1

2
a2z +

1

12
(2c2

3 + 3a2c2) + (67)

1

2

√
c2

2 − a2

[
D2 sinh−1

(
c2

D

)
− D2 sinh−1

(
z

D

)
− z

√
z2 + D2

]
=

4

3
R2

3

with D2 = a4/4(c2
2 − a2).

The positions r1 and r2 are then obtained by

r1 =
1

4
3
R1

3

{
zv

4 − a2zv
2

4
+

c1
4 + a2c1

2 + a4

12
− (68)

as2
2

3(1 − s2
2)

⎡
⎣
(

zv
2(1 − s2

2)

s2
2

+
a2

4

)3/2

− a3

8

⎤
⎦
⎫⎬
⎭

and

r2 =
1

4
3
R2

3

{
zv

4 − a2zv
2

4
− a4

4

(
1 − s2

2

s2
4

)
+ (69)

as2
2

3(1 − s2
2)

⎡
⎣a3

(
1

s2
2
− 1

2

)3

−
(

zv
2(1 − s2

2)

s2
2

+
a2

4

)3/2
⎤
⎦
⎫⎬
⎭ .

The distance r between the mass centres of the right and left parts of the physical object

is r = r1 + r2.

In nuclear physics the search for superheavy nuclei and new very asymmetric

decay has renewed interest in the understanding and description of the alpha decay

and cluster radioactivity. Since the pioneering work of Viola and Seaborg [47] several

models have been developed and regularly improved [48, 49, 50, 51, 52, 53, 54, 55, 56,

57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75] and analytic

expressions have been proposed to calculate rapidly the alpha and cluster decay half-

lives. Comparisons between these models and their predictive capacities may be found

in Ref. [68, 69, 73, 74].
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6. Hyperbolic lemniscatoids

The shape of a viscous object at the scission point depends strongly on the mean

free path of its constituants and its viscosity. The scission may occur through compact

and creviced shapes or through shallow and elongated shapes. This last deformation

valley can be simulated within hyperbolic lemniscatoids (Cassinian ovaloids) [37, 38].

For the one-body configurations the hyperbolic lemniscatoids are expressed as

x2 = −z2 + 0.5c2(s2 − 1) + 0.5c
√

8(1 − s2)z2 + c2(1 + s2)2. (70)

For the two-body shapes the ovals are defined by

x2 = −z2 − 0.5c2(s2 + 1) + 0.5c
√

8(1 + s2)z2 + c2(1 − s2)2. (71)

These shapes are one-parameter dependent when the volume conservation is assumed.

For the one-body shapes the ratio s = a/c of the minor and major axes can still be used.

For the two-body configurations, the opposite s of the ratio of the distance between the

tips of the fragments and the system elongation has been selected (see figure 5 and [38]).

When s evolves from -1 to 1 the shapes varies from two infinitely separated and identical

spherical objects to one sphere.

Figure 5. Cassinian ovals versus the parameter s. At the scission point, the
configuration is the Bernoulli lemniscate. The development of a neck begins when
s <

√
3/3.

For the one-body shape the volume of the system is

V ol =
πc3

12

⎡
⎣−2 + 6s2 + 3

(1 + s2)2√
2(1 − s2)

sinh−1

⎛
⎝2
√

2(1 − s2)

1 + s2

⎞
⎠
⎤
⎦ (72)

and for the two-body shapes

V ol =
πc3

12

⎡
⎣−2(1 + s)3 + 3

(1 − s2)2√
2(1 + s2)

sinh−1

⎛
⎝2(1 + s)

√
2(1 + s2)

(1 − s)2

⎞
⎠
⎤
⎦ .(73)

For the one-body shapes, the surface function reads

Bs =
c2

4R0
2 ×

⎡
⎣4(1 + s2) + 2

√
2(1 + s2)

1 − s2
s2F

(
sin−1

√
1 − s2,

1√
1 + s2

)
(74)

− 2(1 + s2)

√
2(1 + s2)

1 − s2
E

(
sin−1

√
1 − s2,

1√
1 + s2

)⎤
⎦ ,
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E and F being incomplete elliptic integrals. Bs is calculated numerically for the two-

body configuration.

The distance r between the centres of the right and left parts is for the one and

two-body shapes

r =
c4

8R0
3 × (1 + 4s2 + s4), (75)

r =
c4

8R0
3 × (1 − s2)3

1 + s2
. (76)

For the one-body shapes the parallel and perpendicular moments of inertia are given by

I‖ =
c5

512(1 − s2)R0
5 × (77)

[
147 − 27s2 − 15s4 − 225s6 − 15(1+s2)2(15−34s2+15s4)

2
√

2(1−s2)
sinh−1

(
2
√

2(1−s2)

1+s2

)]
,

I⊥ =
c5

1024(1 − s2)R0
5 × (78)

[
269 + 251s2 − 145s4 − 255s6 − 15(1+s2)2(17−30s2+17s4)

2
√

2(1−s2)
sinh−1

(
2
√

2(1−s2)

1+s2

)]
.

The quadrupole moment is defined by

Q =
πc5

192(1 − s2)R0
5 × (79)

⎡
⎣−5 + 61s2 − 23s4 + 39s6 +

3(1 + s2)2(13 − 38s2 + 13s4)

2
√

2(1 − s2)
sinh−1

⎛
⎝2
√

2(1 − s2)

1 + s2

⎞
⎠
⎤
⎦ .

For the two-body shapes these quantities are expressed as

I‖ =
c5

512(1 + s2)R0
5 ×

[
147 + 225s + 27s2 − 15s3 − 15s4 + 27s5 + 225s6 + 147s7 (80)

−15(1 − s2)2(15 + 34s2 + 15s4)

2
√

2(1 + s2)
sinh−1

⎛
⎝2(1 + s)

√
2(1 + s2)

(1 − s)2

⎞
⎠
⎤
⎦ ,

I⊥ =
c5

1024(1 + s2)R0
5 ×

[
269 + 255s − 251s2 − 145s3 − 145s4 − 251s5 + 255s6 (81)

+269s7 − 15(1 − s2)2(17 + 30s2 + 17s4)

2
√

2(1 + s2)
sinh−1

⎛
⎝2(1 + s)

√
2(1 + s2)

(1 − s)2

⎞
⎠
⎤
⎦ ,

Q =
πc5

192(1 − s2)R0
5 ×

[
−5 − 39s − 61s2 − 23s3 − 23s4 − 61s5 − 39s6 − 5s7 (82)

+
3(1 − s2)2(13 + 38s2 + 13s4)

2
√

2(1 + s2)
sinh−1

⎛
⎝2(1 + s)

√
2(1 + s2)

(1 − s)2

⎞
⎠
⎤
⎦ .
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7. Comparison between the elliptic lemniscatoid and hyperbolic

lemniscatoid shape valleys

The elliptic lemniscatoid shape sequence describes the rapid transition from one sphere

to two tangent spheres or vice versa and to the rapid formation and rupture of a neck in

one-body systems while keeping almost spherical ends or the rapid coalescence of almost

spherical separated systems. The hyperbolic lemniscatoid shape sequence describes a

deformation where the elongation occurs before the constriction.

The quadrupole moment and the perpendicular moment of inertia which are the

main available geometrical experimental data are similar in the two paths. In contrast

the parallel and effective moment of inertia are quite different in the two valleys (see

figure 6 and [38]) but their values are difficult to obtain experimentally (via the angular

distribution of the fragments). So it is not easy from the experimental data to know the

real path investigated in nuclear reactions at low energies.

Figure 6. Relative parallel, perpendicular and inverse effective moments of inertia
and quadrupole moment for the hyperbolic (path I) and elliptic (path II) lemniscatoid
shape paths.

The different possible shapes taken by a fissioning nucleus were firstly explore using

a development of the radius in terms of Legendre polynomials, thinking that the fission

process is only governed by the balance between the repulsive Coulomb forces and the

attractive surface tension forces. This method leads naturally to smooth elongated

one-body configurations resembling to hyperbolic lemniscatoids. Later on, it appears

that, within liquid drop models, to reproduce the fusion data and the alpha and cluster

radioactivities one must introduce an additional term, the so-called proximity energy,

to take into account the strong nuclear interaction between nucleons of the surfaces in
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regard between almost spherical nuclei or in a deep crevice in one-body shapes. This

proximity energy is evidently very small for elongated shapes with shallow necks and,

then, it is often neglected. In contrast this term is essential to describe the fusion

or fission through compact and creviced shapes. It has been shown [5, 38] that it

exists a degeneracy in energy between these two deformation valleys. These two paths

implicitly seem to correspond to different values of the nuclear viscosity (diabaticity or

adiabaticity ?) and then different dynamics and different degrees of thermalization. The

dependence of the nuclear viscosity on the temperature, angular momentum, isospin,...

obtained from fission experiments may be found in [76].

8. Prolate symmetric and asymmetric ternary shapes

8.1. Prolate symmetric ternary shapes

Assuming volume conservation, prolate symmetric ternary shapes varying from

three aligned tangent identical spheres to one sphere or vice versa can be described

from elliptic lemniscatoids. Such configurations may simulate several excited molecular

states of 12C formed from three α particles during the stellar nucleosynthesis. To define

these ternary quasimolecular shapes, the cartesian coordinates are preferable to the

polar coordinates since the symmetry plane does not correspond to the neck planes.

In the first quadrant the equation defining these shapes is (see figure 7 and [77])

x2 = 0.5
[
a2 − 2(z − d)2 +

√
a4 + 4(z − d)2(c2 − a2)

]
. (83)

a and c are respectively the neck radius and half the elongation of the corresponding

binary shape. The parameter s = a/c is always sufficient to define the shape. d is the

distance between the transverse x axis and the position of the crevice, namely

d =

⎧⎨
⎩ 0.5c

√
1−2s2

1−s2 for 0 ≤ s < 0.5
√

2

0 for 0.5
√

2 ≤ s ≤ 1.
(84)

The maximal perpendicular distance is given by

hmax =

{
0.5c/(1 − s2)1/2 when 0 ≤ s < 0.5

√
2

a when 0.5
√

2 ≤ s ≤ 1.
(85)

The volume is given by

V ol =
4

3
πR0

3 =
πc3

12

[
4 + 6s2 + g(α) +

3s4

√
1 − s2

ln

(
2 − s2 + 2

√
1 − s2

h(α)

)]
, (86)

R0 being the radius of the total sphere, α = d/c and

g(α) =

{
6α + 6αs2 − 8α3 for 0 ≤ s < 0.5

√
2

0 for 0.5
√

2 ≤ s ≤ 1
(87)

and

h(α) =

{ −2α
√

1 − s2 + 1 − s2 when 0 ≤ s ≤ 0.5
√

2

s2 when 0.5
√

2 ≤ s ≤ 1.
(88)
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The dimensionless surface function is

Bs =

⎧⎪⎨
⎪⎩

c2

2R2
0

[
1 +

√
1−2s2

2
+ s4√

1−s4 ln
( √

2(1+
√

1−s4)√
1−s2−

√
(1+s2)(1−2s2)

)]
for 0 ≤ s ≤ 0.5

√
2

c2

2R2
0

[
1 + s4√

1−s4 ln
(

1+
√

1−s4

s2

)]
for 0.5

√
2 ≤ s < 1.

(89)

The distance between the right and left parts of the system is expressed as

r =

⎧⎨
⎩ c

(
2α + πc3(11−8s2)

48V (1−s2)2

)
when 0 ≤ s < 0.5

√
2

πc4

3V
(1 + s2 + s4) when 0.5

√
2 ≤ s ≤ 1.

(90)

When the three spheres are separated, the total length of the shape is

l = 1.5r + 1.625R1, (91)

the radius of a small sphere being R1 = 3−1/3R0.

Figure 7. On the left, prolate and symmetric ternary quasimolecular shapes. The
shape varies from three touching equal and aligned spheres (s = 0) to one sphere
(s = 1). The neck disappears when s >

√
2/2. On the right, quasimolecular shapes

varying from one sphere to two equal spheres in contact with a central smaller sphere.
The ratio between the radii is 0.5.

8.2. Prolate asymmetric ternary shapes

To describe more asymmetric ternary configurations (see figure 7) and [78, 79])

from the asymmetric binary quasimolecular shapes (see section 5) it is sufficient to cut

the smallest fragment at its maximal perpendicular distance by a plane perpendicular

to the axis of revolution and to introduce a mirror symmetry. Then, the two parameters

s1 = a/c1 and s2 = a/c2 define completely the shape mathematically. a is the neck

radius. c1 and c2 are respectively the elongations of the external and central fragments.

The one sphere configuration correspond to s1 = s2 = 1. For s1 = s2 = 0 two equal

spheres of radius R1 touch a central smaller sphere of radius R2. s1 and s2 may be

linked by the expression

s2
2 =

s1
2

s1
2 + (1 − s1

2)(R2/R1)2
(92)

and consequently

c2
2 = c1

2[s1
2 + (1 − s1

2)(R2/R1)
2]. (93)

In the first quadrant the shape is defined by

x2 = −(z − d)2 + 0.5si
2ci

2 + 0.5ci

√
4(1 − si

2)(z − d)2 + si
4ci

2 (94)
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(i = 1 for z > d and i = 2 for z < d).

The volume is given by

V ol =
πc1

3

12

[
4 + 6s1

2 +
3s1

4

√
1 − s1

2
sinh−1

(
2
√

1 − s1
2

s1
2

)]
(95)

+
πc2

3

12

[
6α + 6αs2

2 − 8α3 +
3s2

4

√
1 − s2

2
sinh−1

(
2α

√
1 − s2

2

s2
2

)]

where α = d/c2.

The surface S reads

S = 2πc1
2

[
1 +

s1
4

√
1 − s1

4
sinh−1

(√
1 − s1

4

s1
2

)]
(96)

+2πc2
2

⎡
⎣α√1 − s2

2 +
s2

4

√
1 − s2

4
sinh−1

⎛
⎝α
√

2(1 − s2
4)

s2
2

⎞
⎠
⎤
⎦ .

The distance between the mass centres of the right and left parts is

r =
πc1

4

3V
(1 + s1

2 + s1
4) + c2

[
2α +

πc2
3α4

3V
.
−5 + 8s2

2 + 16s2
6 − 16s2

8

(1 − 2s2
2)2

]
. (97)

When the three spheres are separated :

Bs =
2 + (R2/R1)

2

(2 + (R2/R1)3)2/3
(98)

r =
3

2 + (R2/R1)3

(
(R2/R1)

4R1

4
+

4

3
D

)
. (99)

2D is the distance between the centres of the two equal external spheres.

9. More exotic shapes

Experimentally, very distorted configurations have been observed in nuclear physics,

astrophysics... and some of them can be roughly approximated by toroidal shapes and

bubbles. For example, in heavy-ion reactions at Fermi energies, complicated shapes

intermediate between toroids and bubbles have been indirectly detected [80, 81]. These

systems are often transient states formed after a violent collision and evolving towards

pumpkin-like shapes and, later on, tori and n-spheres emitted in the same plane or

evolving to bubbles splitting in the whole space.

A pumpkin-like shape may be generated by elliptic lemniscates (see figure 4) in

taking the vertical axis as axis of revolution (see figure 8). The dimensionless parameter

s = a/c is always sufficient to characterize the shape. When s diminishes from 1 to 0, an

hollow progressively appears. The shape varies from a sphere to a ring torus for which

the upper and lower hollows are connected together. Later on, this initial configuration

evolves to a torus with large radius rt. The dimensionless parameter st allows to follow

this evolution [7, 8]

st = (rt − rs)/2rs, (100)

rs and rt being the sausage and torus radii.
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Figure 8. Pumpkin-like configuration versus the ratio s of the semi-axes and torus
defined by the sausage rs and torus rt radii. The axis of revolution is the vertical axis.

9.1. Pumpkin-like shapes

The volume, moment of inertia, mean square radius and surface function are given

by

V ol =
4πR0

3

3
=

4πc3

3

⎡
⎣s3

4
+

3

8

⎛
⎝s +

sin−1
(√

1 − s2
)

√
1 − s2

⎞
⎠
⎤
⎦ , (101)

I⊥,rel =
3c5

2R0
5(1 − s2)

⎛
⎝− s7

24
− s5

16
− 25s3

192
+

35s

128
− 5

16

(
s2 − 7

8

) sin−1
(√

1 − s2
)

√
1 − s2

⎞
⎠ ,(102)

〈r2〉rel =
〈r2〉
3
5
R0

2 =
5c5

4R0
5

⎡
⎣2s5

15
+

s3

6
+

1

4

⎛
⎝s +

sin−1
(√

1 − s2
)

√
1 − s2

⎞
⎠
⎤
⎦ , (103)

Bs =
s

4πR0
2 =

c2

2R0
2

⎛
⎝s2 +

sin−1
(√

1 − s4
)

√
1 − s4

⎞
⎠ . (104)

9.2. Ring torus

For a formed torus these quantities are given by

V ol =
4πR0

3

3
= 2π2rtrs

2 =
π2ct

3

4
(1 + 2st), (105)

I⊥,rel =
35

32
(1 + 3st + 3st

2)

(
16

3π(1 + 2st)

)2/3

, (106)

〈r2〉rel =
5

6
(1 + 2st + 2st

2)

(
16

3π(1 + 2st)

)2/3

, (107)

Bs =
4π2rsrt

4πR0
2 =

πct
2

4R0
2 (1 + 2st), (108)

and finally

rs = R0

(
2

3π(1 + 2s)

)1/3

. (109)
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9.3. Bubbles

Bubbles of thick skin are often formed within violent reactions where the out of

equilibrium effects play an essential role. Calculations within bubbles of constant density

can give a first rough approach of the more complex reality [8]. Assuming volume

conservation, the bubble characteristics can be calculated from the ratio p = r1/r2 of

the inner and outer radii r1 and r2.

V ol =
4πR0

3

3
=

4π

3
(r2

3 − r1
3), (110)

r1 = R0p(1 − p3)−1/3, (111)

r2 = R0(1 − p3)−1/3. (112)

The relative root mean square radius reads

〈r2〉rel

1/2
=

〈r2〉1/2√
3/5R0

= (1 − p5)1/2(1 − p3)−5/6. (113)

The surface, Coulomb and moment of inertia functions are

Bs =
1 + p2

(1 − p3)2/3
, (114)

Bc =
1 − 2.5p3 + 1.5p5

(1 − p3)5/3
, (115)

I⊥,rel = (1 − p5)(1 − p3)−5/3. (116)

10. Summary

In a first part, most of the geometrical shapes defined to model the nuclear states

and reactions (alpha decay, cluster radioactivity, fusion, fission and fragmentation) are

briefly reviewed. Later on, the shape sequences that we have used previously, mainly

formed from generalized lemniscatoids, are more extensively detailed. Their geometric

characteristics are given: root mean square radius, volume, surface and Coulomb

energies as well as their moments of inertia and quadrupole moments. These shapes

allow to describe the transitions from one compact configuration to several ones or vice

versa and may be perhaps useful also to describe physical objects such as drops, droplets

and fluids in chemistry, mechanics, astrophysics, hydrodynamics,...
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