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Abstract. The existence of super-heavy nuclei can only be explained by the introduction of stabilizing
ground state shell effects. The macroscopic-microscopic masses are constructed from the sum of a macro-
scopic, liquid-drop, energy contribution and a microscopic, shell-correction energy. In the present study,
shell-correction energies are inferred by subtracting the liquid-drop contributions to their corresponding
experimental masses. As most super-heavy nuclei masses are not precisely known, they are deduced from
measured Qα values. Furthermore, a detailed uncertainty analysis regarding experimental masses and
more importantly the liquid-drop masses delivers decisive theoretical constraints on shell-correction ener-
gies. The current work focuses on two α decay chains, the first, following from a hot fusion reaction leading
to the synthesis of 291Lv and the second, following from a cold fusion reaction leading to the synthesis of
277Cn. Contrasting the outcomes obtained for these two decay chains, demonstrates that mass measure-
ment precisions of about 50 keV are required in order to efficiently constrain the shell-correction energies
of super-heavy nuclei.

PACS. 21.10.Dr Binding energies and masses – 21.60.Ev Collective Models – 02.50.-r Probability theory,
stochastic processes, and statistics – 02.30.Zz Inverse problems

1 Introduction

The existence of super-heavy nuclei (SHN) can only be
explained by the introduction of stabilizing ground state
shell effects. In addition to ground state properties, shell
effects strongly influence the fission barriers which insure
the survival of the compound nucleus. Therefore, shell ef-
fects play a crucial role in our understanding of both the
structure and the production of SHN.

As discussed in ref. [1], shell corrections can be ob-
tained from a broad spectrum of models, however, the
results are ultimately dispersed, thus, proving the com-
pelling need to find suitable experimental constraints. Fur-
thermore, these additional quantum effects are included
in various ways within the few theoretical approaches, at
hand. This leads to discrepancies of few MeV in the fission
barriers calculations [2]. In turn, these discrepancies also
result in critical changes of the survival probability, and
therefore, of the production cross-section of SHN [3].

Given that masses are very sensitive to structural prop-
erties, they can provide constraints on shell effects. How-
ever, most SHN masses are not precisely known. Never-
theless, assuming that the last mass in an α decay chain
is well established, masses can be deduced from measured
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Qα values of decaying nuclei. In particular, we focus our
study on the decay chains:

291
116Lv → 287

114Fl → 283
112Cn → . . . → 267

104Rf

277
112Cn → 273

110Ds → 269
108Hs → . . . → 257

102No

The first following from a hot fusion reaction and the sec-
ond from a cold fusion one.

On the grounds that macroscopic-microscopic (MM)
models incorporate many structure effects, they certainly
provide accurate mass predictions. The MM masses are
the sum of a macroscopic liquid-drop (LD) energy con-
tribution and a microscopic shell-correction energy (SCE)
contribution which are obtained from single-particle spec-
tra using the Strutinsky method [4,5]. It was shown in
ref. [6] with a very simple MM model adjusted to experi-
mental masses that the parameters of the LD are practi-
cally uncorrelated to the parameters of the SCE part. This
tends to justify the usual MM assumption, i.e., the masses
can be expressed as a sum of two distinct contributions.
In a similar way, empirical SCE can be inferred by sub-
tracting the LD contribution to the experimental mass. In
order to procure consistent results, the LD model should,
itself, be fitted using theoretical SCE. From this, it is clear
that the empirical SCE deduced from the subtraction of
LD contribution to the experimental mass, will depend on
both the chosen theoretical SCE and LD model.
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In the following, we repeat the study done in ref. [1] in-
cluding a detailed uncertainty analysis of the experimental
masses and more importantly, of the LD contribution [7].
Considering these uncertainties delivers decisive theoreti-
cal constraints on SCE. In addition to the SCE and their
uncertainties, we provide correlation matrices for experi-
mental and LD masses, as well as for empirical SCE for all
nuclei in the studied decay chains. In order to fully com-
ply with international standards, the formulas needed to
compute uncertainties, covariances and correlations were
taken from refs. [8,9].

2 Experimental mass excess

Most SHN masses are not precisely known. Nevertheless,
assuming the last mass in an α decay chain is known,
masses can be deduced from measured Qα values:

∆mExp (A,Z) = ∆mExp (A− 4, Z − 2)

+Qα (A,Z) +∆α (1)

where ∆mExp (A,Z) and Qα (A,Z) are respectively the
mass excess of the mother nucleus and the Qα value of the
α decay. The quantity ∆mExp (A− 4, Z − 2) is the mass
excess of the daughter nucleus and ∆α = 2.424 915 61(6)
MeV is the α particle’s mass excess. In particular, knowing
the Qα values for all nuclei in the decay chain and the
mass excess of the last nucleus, here ∆mExp(267Rf) or
∆mExp(257No), we can deduce all masses within the decay
chain. In the present work, it is assumed that the measured
Qα values correspond to transitions from the ground state
of the mother nucleus to the ground state of daughter
nucleus.

In the following, ∆mExp(267Rf), ∆mExp(257No) and
∆α are taken from the AME2016 table [10,11] and the
Qα values were extracted from refs. [12,13]. All of these
quantities are given in tables 1 and 2 alongside their uncer-
tainties and are assumed to be uncorrelated as they were
measured independently. They appear in italic to indicate
that they were not obtained in the present work.

As the quantities entering eq. (1) are uncorrelated, the
variance can be estimated using the familiar uncertainty
propagation formula:

u2
(
∆mExp (A,Z)

)
= u2 (Qα (A,Z)) + u2 (∆α)

+u2
(
∆mExp (A− 4, Z − 2)

)
.(2)

In this equation u(∆α) is very small as the alpha parti-
cle belongs to the most precisely known masses and thus,
plays no role in the present analysis.

Apart from∆mExp(267Rf) and∆mExp(257No), all mass
excesses and their uncertainties, shown in tables 1 and 2,
were calculated using eqs. (1) and (2), respectively. Clearly,
the dominating uncertainty, for the first decay chain, is the
one associated with ∆mExp(267Rf). However, this is not
the case for the second decay chain where the Qα values
uncertainties are the dominating ones.

The calculated mass excesses given in table 1 are com-
patible with the values given in the AME2016 [11], within

uncertainties that are quite large. This is not the case for
the values given in table 2. Note that in the AME2016 ta-
ble, values and uncertainties were not derived from purely
experimental data, but corrected by the trends of the mass
surface [10].

From eq. (1), it is clear that the mass of the mother nu-
cleus depends on the mass of the daughter nucleus. Thus,
all experimental masses within a decay chain are corre-
lated. The covariance can be easily obtained,

u
(
∆mExp (A,Z) , ∆mExp (A− 4, Z − 2)

)
= u2

(
∆mExp (A− 4, Z − 2)

)
. (3)

Similarly, all other covariances can be calculated and cor-
relation coefficients can be deduced from these. The results
are presented in tables 3 and 4. The correlation matrix for
the first decay chain given in table 3 shows strong positive
correlations between the experimental masses. This un-
doubtedly confirms, the influence of the large uncertainty
in ∆mExp(267Rf) upon all other experimental masses in
the decay chain. The outcome for the second decay chain
given in table 4 is quite different and shows weak posi-
tive correlations between the experimental masses, thus,
establishing the limited impact of the small uncertainty in
∆mExp(257No) on the experimental masses.

3 LD mass excess

The LD contribution to the mass can be deduced from the
binding energy using a specific LD model. In the present
work, the LD model was taken from Ref. [14] and is hereby
reproduced:

BLD =
(
p1 + p2I

2
)
A+

(
p3 + p4I

2
)
A

2
3 + p5

Z2

A
1
3

+ p6
Z2

A

+p7 |N − Z| e−( A
50 )

2

+ p8e
−80I2 + Epair, (4)

with I = (N − Z)/A. The pairing energy term, Epair in
eq. (4), comes from ref. [15] and reads:

Epair =



p9

N
1
3

+ p10

Z
1
3

+ p11

A
2
3

+ p12
A N=Z, odd

p9

N
1
3

+ p10

Z
1
3

+ p11

A
2
3

N and Z, odd
p10

Z
1
3

N even, Z odd
p9

N
1
3

N odd, Z even

0 N even, Z even.

(5)

As in ref. [14], the LD from eq. (4) is fitted upon exper-
imental masses with added theoretical shell-corrections.
The experimental masses were taken from the AME2016
table [10,11] and the theoretical SCE from the Thomas-
Fermi model [15,16]. As the sole existence of SHN is based
on shell effects, the addition of theoretical SCE to experi-
mental masses is certainly required. However, the stability
of SHN cannot be understood by solely looking at the SCE
at the ground state. For instance, stability against fission
comes from the energy difference between the ground state
and the saddle point, i.e., the fission barrier. Nevertheless,
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Table 1. Table containing the results concerning the first decay chain along with their uncertainties. The Qα values and their
uncertainties were taken from ref. [12] and ∆mExp(267Rf) from refs. [10,11]. The last column gives the theoretical SCE taken
from refs. [15,16]. All quantities are given in MeV.

Nuclei Qα ∆mExp ∆mLD SCE SCE from refs. [15,16]

267
104Rf - 113.440±0.580 117.140±0.059 -3.700±0.583 -5.08
271
106Sg 8.67±0.08 124.535±0.585 128.126±0.063 -3.591±0.589 -5.18
275
108Hs 9.44±0.06 136.400±0.589 139.725±0.068 -3.325±0.592 -4.90
279
110Ds 9.84±0.06 148.665±0.592 151.929±0.074 -3.264±0.596 -4.91
283
112Cn 9.67±0.06 160.760±0.595 164.731±0.081 -3.971±0.600 -6.19
287
114Fl 10.16±0.06 173.345±0.598 178.124±0.090 -4.779±0.604 -7.74
291
116Lv 10.89±0.07 186.659±0.602 192.101±0.099 -5.442±0.610 -8.07

Table 2. Table containing the results concerning the second decay chain along with their uncertainties. The Qα values and
their uncertainties were deduced from the α particle’s energies presented in ref. [13] and ∆mExp(257No) from refs. [10,11]. The
last column gives the theoretical SCE taken from refs. [15,16]. All quantities are given in MeV.

Nuclei Qα ∆mExp ∆mLD SCE SCE from refs. [15,16]

257
102No - 90.247±0.007 94.833±0.049 -4.586±0.050 -5.77
261
104Rf 8.65±0.02 101.322±0.021 106.075±0.054 -4.753±0.058 -6.79
265
106Sg 8.84±0.03 112.587±0.037 117.918±0.061 -5.331±0.071 -6.38
269
108Hs 9.35±0.02 124.362±0.042 130.357±0.068 -5.995±0.080 -5.30
273
110Ds 11.31±0.02 138.097±0.046 143.383±0.076 -5.286±0.089 -4.34
277
112Cn 11.42±0.02 151.942±0.050 156.991±0.085 -5.049±0.099 -4.11

Table 3. Experimental mass excess correlation matrix for the
first decay chain.

267Rf 1.00 0.99 0.98 0.98 0.97 0.97 0.96
271Sg 0.99 1.00 0.99 0.98 0.98 0.97 0.97
275Hs 0.98 0.99 1.00 0.99 0.98 0.98 0.97
279Ds 0.98 0.98 0.99 1.00 0.99 0.98 0.98
283Cn 0.97 0.98 0.98 0.99 1.00 0.99 0.98
287Fl 0.97 0.97 0.98 0.98 0.99 1.00 0.99
291Lv 0.96 0.97 0.97 0.98 0.98 0.99 1.00

Table 4. Experimental mass excess correlation matrix for the
second decay chain.

257No 1.00 0.33 0.19 0.16 0.15 0.13
261Rf 0.33 1.00 0.57 0.50 0.45 0.41
265Sg 0.19 0.57 1.00 0.87 0.79 0.72
269Hs 0.16 0.50 0.87 1.00 0.90 0.82
273Ds 0.15 0.45 0.79 0.90 1.00 0.91
277Cn 0.13 0.41 0.72 0.82 0.91 1.00

in the following we shall only focus our attention on the
SCE at the ground state.

The uncertainty in the parameters is estimated with
the standard regression analysis method which stands on
an extended mathematical corpus. The main features are
recalled here for the sake of completeness. The errors of the
model ε are added in order to encompass its shortcomings
and it is assumed that the experimental masses can be
described by

∆mExp = ∆mLD + SCE + ε. (6)

As usual in standard regression, it is also assumed that
the errors follow a Gaussian distribution with zero mean
and a uniform variance σ (homoscedastic hypothesis). As
detailed in ref. [7], these errors leads to uncertainties in
the parameters of the LD model and in all deduced quan-
tities. In this article, we use the vocabulary of the GUM [8]
that distinguishes errors defined as deviations of the model
from the “true” experimental data, and the uncertainties
that estimate the dispersion of a quantity. It should be
borne in mind that the model is only meant to describe
the LD energies, while the errors may also inherit flaws
from the liquid-drop itself including pairing, the shell cor-
rections, as well as other issues having unknown origins.

Note that the uncertainties in the experimental bind-
ing energies were neglected as they are very small with
respect to the errors, and uncertainties in the theoreti-
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Table 5. Theoretical LD mass excess correlation matrix for
the first decay chain.

267Rf 1.00 0.99 0.97 0.94 0.91 0.88 0.84
271Sg 0.99 1.00 0.99 0.97 0.95 0.93 0.90
275Hs 0.97 0.99 1.00 0.99 0.98 0.96 0.94
279Ds 0.94 0.97 0.99 1.00 0.99 0.98 0.97
283Cn 0.91 0.95 0.98 0.99 1.00 0.99 0.99
287Fl 0.88 0.93 0.96 0.98 0.99 1.00 0.99
291Lv 0.84 0.90 0.94 0.97 0.99 0.99 1.00

Table 6. Theoretical LD mass excess correlation matrix for
the second decay chain.

257No 1.00 0.99 0.97 0.95 0.92 0.90
261Rf 0.99 1.00 0.99 0.98 0.96 0.94
265Sg 0.97 0.99 1.00 0.99 0.98 0.97
269Hs 0.95 0.98 0.99 1.00 0.99 0.99
273Ds 0.92 0.96 0.98 0.99 1.00 0.99
277Cn 0.90 0.94 0.97 0.99 0.99 1.00

cal shell correction energies are disregarded at this stage
because they are not available.

In this study, the parameters, their uncertainties and
correlation matrix, obtained as in ref. [7], are reported in
appendix A. The LD contributions to the masses of the
nuclei entering an α decay chain, are established with the
same formula and parameters, consequently, they are very
strongly correlated. Results, for the two decay chains, are
presented in tables 1 and 2 while the corresponding corre-
lation matrices are exposed in tables 5 and 6, respectively.

Note that the uncertainties in the LD masses are very
small with respect to the errors of the model, estimated
by the root mean square of the fit: σ̂ = RMS = 602 keV.

4 Deduced empirical shell-correction energies

In sect. 2, informations regarding the α decay chains were
used to determine ∆mExp and in sect. 3, a specific LD
model was used to obtain ∆mLD. As mentioned in the
introduction, empirical SCE of can be inferred by sub-
tracting the LD contribution to the experimental masses:

SCE = ∆mExp −∆mLD. (7)

Notice, the two terms entering the r.h.s. of eq. (7) are
independent, thus, SCE uncertainties simply read:

u2 (SCE) = u2
(
∆mExp

)
+ u2

(
∆mLD

)
. (8)

The SCE are given side by side with their uncertainties in
tables 1 and 2 and contrasting these tables yields the ensu-
ing conclusion. Since, the last masses in decay chains, fol-
lowing from hot fusion reactions, are not precisely known,

Table 7. SCE correlation matrix for the first decay chain.

267Rf 1.00 0.99 0.98 0.97 0.97 0.96 0.96
271Sg 0.99 1.00 0.99 0.98 0.98 0.97 0.97
275Hs 0.98 0.99 1.00 0.99 0.98 0.98 0.97
279Ds 0.97 0.98 0.99 1.00 0.99 0.98 0.98
283Cn 0.97 0.98 0.98 0.99 1.00 0.99 0.98
287Fl 0.96 0.97 0.98 0.98 0.99 1.00 0.99
291Lv 0.96 0.97 0.97 0.98 0.98 0.99 1.00

the corresponding SCE are loosely constrained and cer-
tainly, one could assert the opposite for decay chains sub-
sequent to cold fusion reactions. Nevertheless, climbing-up
the decay chain, the uncertainties in the SCE tend to grow,
reaching their maximum for the mother nucleus. This is a
direct consequence of the increasing number of Qα values
involved, along with their uncertainties, and causing the
escalation of uncertainties in the SCE.

If we include the error of the model into the analysis,
the previous equation becomes

u2 (SCE) = u2
(
∆mExp

)
+ u2

(
∆mLD

)
+ σ̂2. (9)

Typical values range from 604 et 610 keV for the second
chain given in table 2. This shows that errors are domi-
nating in this case. Regarding the first decay chain given
in table 1, uncertainties in the experimental masses are
similar to the standard deviation of the errors and typi-
cal values for uncertainties in SCE including errors range
from 838 to 857 keV.

As discussed in sect. 2, the values taken by ∆mExp

all are correlated together. Likewise, in sect. 3, we have
seen that all ∆mLD are correlated together. Accordingly,
this is also the case for SCE of all nuclei in a decay chain.
As for the experimental and LD masses, we can construct
the SCE correlation matrices given in tables 7 and 8. No-
tice, in the case of the first decay chain that the corre-
lations regarding experimental masses, cf. table 3, and
those concerning SCE, cf. table 7, are very resemblant.
This can be interpreted as coming from the uncertainty in
∆mExp(267Rf) which plainly prevails over all other sources
of both uncertainties and correlations. However, in the
case of the second decay chain, tables 4 and 8 do not share
this similarity. This can be understood as coming from the
minute uncertainty associated with ∆mExp(257No). Con-
sequently, the SCE correlations may only be explained by
the strong correlations between LD masses.

5 Discussion and conclusion

Masses and shell correction energies are very sensitive pa-
rameters of the estimate of super-heavy production cross-
sections as they affect the Q-value of the reaction and the
fission barrriers [3]. Thus, their uncertainties as well as
their covariances should be carefully estimated before es-
timating uncertainties in these cross-sections or adjusting
the other parameters of the underlying models.
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Table 8. SCE correlation matrix for the second decay chain.

257No 1.00 0.93 0.83 0.81 0.79 0.77
261Rf 0.93 1.00 0.90 0.87 0.85 0.83
265Sg 0.83 0.90 1.00 0.96 0.93 0.90
269Hs 0.81 0.87 0.96 1.00 0.97 0.94
273Ds 0.79 0.85 0.93 0.97 1.00 0.97
277Cn 0.77 0.83 0.90 0.94 0.97 1.00

In MM models, the SCE is generally determined from
single particle spectra. To ensure the consistency of the
whole mass description, another adjustment is necessary
to guarantee that ∆mExp = ∆mLD+SCE. In order to as-
sess the consistency between the microscopic and macro-
scopic contributions of existing microscopic-macroscopic
models, we propose, in the present work to infer empirical
SCE by subtracting the LD contributions to their corre-
sponding experimental masses. Assuming the last masses
entering the decay chains were known, experimental masses
were deduced from measured Qα values, together with
their uncertainties. The LD contributions to the masses
were calculated using a specific LD model which was fit-
ted to experimental masses, corrected by theoretical SCE.
The uncertainty analysis of the LD part of the mass is
based on standard regression that accounts for the errors
of the complete MM model even if the uncertainties in
theoretical SCE were not included because they are not
available. The present work is a first step toward a more
extended uncertainty analysis of a complete MM model.

Excluding the correlation matrices, all the results gath-
ered in this work are presented in tables 1 and 2. Ef-
forts were made to provide uncertainties for every calcu-
lated quantity within the present work. Considering these
uncertainties brings theoretical constrains on SCE which
play a crucial role in our understanding of both the struc-
ture and the production of SHN.

As some of the SHN masses, e.g., ∆mExp(267Rf), bear
considerable uncertainties which plainly prevail over all
other sources of both uncertainties and correlations. This
study confirms that improved SHN mass measurements
are absolutely necessary in order to better constrain SCE.
Following up on this idea, reducing the mass uncertainty
of the last nucleus in a decay chain to about 50 keV should
be enough and any further reduction would be fruitless as
the dominating uncertainties would then be coming from
measured Qα values and the LDM.

One should be cautious as it should be stressed that
MM masses are obtained by minimizing the total sum of
the LD energy and the theoretical SCE with respect to de-
formation. Thus, both the macroscopic and microscopic
parts of the MM model are coherently glued together
through deformation. As the chosen LD model bears no
deformation and the theoretical SCE were obtained inde-
pendently, this coherence is lost in the present study. Once
again, it is clear that the SCE deduced in the present work
depend on both the chosen theoretical SCE and LD model.

A Liquid drop model

In this appendix, we present the results relative to the
regression analysis of the liquid-drop model used in this
work, cf. eq. (4).

The model is adjusted to the nuclear binding energies
deduced from the atomic mass excesses found in refs. [10,
11] for all nuclei satisfying N,Z ≥ 8 with uncertainties
below 150 keV, thus, a total of 2315 nuclei are considered.

As discussed in ref. [7], the uncertainties in the pa-
rameters and the correlations between them, are a direct
consequence of the regression hypotheses. According to
these hypotheses, the errors follow a gaussian distribution
with zero mean and variance σ2. This variance can then
be propagated onto the parameters leading to their covari-
ances, from which, their uncertainties and correlations can
be deduced.

Table 9 contains the parameters and their uncertain-
ties while table 10 presents the correlations between the
parameters. The detailed regression analysis is fully ex-
posed in ref. [7]. However, in the present work, the pair-
ing, cf. eq. (5), is adjusted as well which was not done in
ref. [7]. Nevertheless, the method remains unchanged.
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0.73 -0.22 -0.80 0.05 -0.85 0.16 1.00 0.37 -0.03 -0.05 -0.01 0.13
0.80 -0.87 -0.67 0.72 -0.48 -0.57 0.37 1.00 -0.03 -0.03 0.02 -0.19
0.04 -0.03 -0.08 0.03 -0.04 0.05 -0.03 -0.03 1.00 0.45 -0.66 0.06
0.03 -0.02 -0.07 0.03 -0.02 0.04 -0.05 -0.03 0.45 1.00 -0.67 0.07

-0.03 0.01 0.05 -0.01 0.03 -0.02 -0.01 0.02 -0.66 -0.67 1.00 -0.24
-0.02 0.12 -0.04 -0.12 -0.09 0.19 0.13 -0.19 0.06 0.07 -0.24 1.00


