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• C++ with ROOT as its only dependency • Powerful tool for Dalitz plot fits • Can do time-dependent fits • Single-threaded, but many clever optimisations

• MINT: https://twiki.cern.ch/twiki/bin/view/Main/MintTutorial

• C++ interface • Can do 3-and 4-body final states • Can be used as a generator in the LHCb simulation package Gauss Generic GPU-based fitting:

• GooFit: https://github.com/GooFit

• C++ with python bindings • Has a third-party library for amplitude fits

• Ipanema-β: https://gitlab.cern.ch/bsm-fleet/Ipanema Existing frameworks lack functionality and/or flexibility to cover all cases that might be encountered in amplitude anlaysis. Users may spend a lot of time altering the framework itself to suit their needs, e.g.:

• Non-scalars in the initial/final states

• Complicated relationships between parameters

• Fitting projections of the full phase space

• Fitting partially-reconstructed decays For n-body final states with complicated models, we need:

• Speed (of computation)

• Speed (of development) Amplitude analysis: similarities with machine learning Maximum-likelihood fitting (particularly amplitude analysis) is very similar to machine-learning:

• Large amounts of data -many evaluations of the same function

• Complicated models

• Optimisable parameters TensorFlow: introduction

Open source library developed by Google: https://www.tensorflow.org/

• Primarily a machine learning library, but the core functionality is suitable for other tasks

• Symbolic mathematics

• High-performance numerical computation using dataflow graphs

• Calling functions builds a directed graph, which can then be optimised and compiled

• TF can find analytic derivatives of a graph

• Python, C++ and Java interfaces

• Runs on many architectures out-of-the-box, including GPUs
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TensorFlow: principles Functions: symbolic dataflow graphs

• Each node is an operation

• Edges represent the flow of data Data: tensors (n-dimensional arrays)

• Input and output of mathematical operations

• Operations are vectorised Input:

• Placeholders: used to represent data when building dataflow graphs.

• Variables: can change value during a session, e.g. fit parameters. Output:

• Numpy arrays Evaluation:

• Construct a 'session' TensorFlow: features for amplitude analysis Vectorisation:

• Most functions will calculate element-wise over a tensor

• Ideal for maximum-likelihood fits, where the same function must be evaluated repeatedly for a large number of points Analytic gradient:

• TF can derive analytic gradients from graphs

• Greatly speed up convergence when passed to a minimiser Partial execution:

• TF can cache parts of a graph unaffected by changes in parameters

• In practice, this does not work as expected, but one can manually inject the value of a tensor when running a session Minimisation:

• TF has minimisers for training machine-learning algorithms... • ... which not particularly suitable for fitting 

TensorFlow alone is almost a suitable framework for amplitude fits. TensorFlowAnalysis (https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/) adds some crucial features:

• Read/write ROOT ntuples

• Fit parameter class (extends tf.Variable)

• Interface to Minuit

• Toy generation • Simple 2D Dalitz plot model: • Using MC integration for the normalisation:

#
# Call the model on placeholders to build the dataflow graphs model_data = model(phsp.data_placeholder) model_norm = model(norm.data_placeholder) # Assemble into a negative log-likelihood graph to be minmised nll = UnbinnedNLL(model_data, Integral(model_norm))

• Input data samples are numpy arrays:

# Both samples of the form data [event][variable] data_sample = ReadNTuple(tree, [branches...]) norm_sample = sess.run(phsp.RectangularGridSample(400, 400))

• Minimise the NLL with Minuit: TensorFlowAnalysis: higher-level features Some recent features allow the user to quickly build an amplitude model of an n-body decay.

The Particle class:

• Holds intrinsic properties and mother/daughter relationships • Useful to quickly define different decay chains within an amplitude model

• Handles rotations and boosts HelicityMatrixDecayChain:

• Takes the head Particle of the decay chain and a dict of helicity amplitude parameters

• Builds a dict of matrix elements in the helicity formalism for a specific decay chain PHSPGenerator and NBody:

• Construct a phase space object given the mother mass and a list of final-state daughter masses
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Performance

Benchmark runs (fit time only), compare 2 machines:

• CPU1: Intel Core i5-3570 (4 cores), 3.4GHz, 16 Gb RAM GPU1: NVidia GeForce 750Ti (640 CUDA cores), 2 Gb VRAM

• CPU2: Intel Xeon E5-2620 (32 cores), 2.1GHz, 64 Gb RAM GPU2: NVidia Quadro p5000 (2560 CUDA cores), 16 Gb VRAM Two isobar models:

• D 0 → K 0 S π + π -: 18 resonances, 36 free parameters • Λ b → D 0 pπ -: 3 resonances, 4 non-resonant amplitudes, 28 free parameters Adam Morris (CPPM)
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  a*tf.sin(w*x+p)

  Phase space object phsp = DalitzPhaseSpace(ma, mb, mc, md) # Fit parameters mass = Const(0.770) width = FitParameter("width", 0.150, 0.1, 0.2, 0.001) a = Complex( FitParameter("Re(A)", ...), FitParameter("Im(A)", ...) ) # Fit model as a function of 2D tensor of data def model(x) : m2ab = phsp.M2ab(x) # Phase space class provides access to m2bc = phsp.M2bc(x) # individual kinematic variables ampl = a*BreitWigner(mass, width, ...)*Zemach(...) + ... return Density(ampl)

  result = RunMinuit(sess, nll, {phsp.data_placeholder: data_sample, phsp.norm_placeholder: norm_sample}) WriteFitResults(result, "result.txt") • Complex combinations of parameters: def HelicityCouplingsFromLS(ja, jb, jc, lb, lc, bls): a = 0. for ls, b in bls.iteritems(): # Where b is a Complex(FitParameter(...), FitParameter(...)) l = ls[0] s = ls[1] coeff = math.sqrt((l+1)/(ja+1))*Clebsch(jb, lb, jc, -lc, s, lb-lc) *Clebsch(l, 0, s, lb-lc, ja, lb-lc) a += Const(coeff)*b return a
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TensorFlowAnalysis: fitting

Straightforward to modify the NLL to add functionality, e.g.:

• Weighted fit: • Simultaneous fit: TensorFlowAnalysis: limitations Some issues with using TensorFlow for amplitude fits:

• Python 2 only (for now)

• TF not readily available on LXplus

• Binary distributions available from debian-based distros and Mac

• Available from pip without machine-specific optimisations • Can install from source: tricky (especially with CUDA) but possible.

• Memory usage can be several GB:

• Especially with anlaytic gradient/large datasets/complicated models • Limiting for consumer-grade GPUs

• Double precision essential

• Limiting for consumer-grade GPUs

• Slow RAM-VRAM transfer TensorFlowAnalysis: plans

• Port to python 3

• Expand the library

• Save/load compiled graphs

• Graph-building can sometimes take longer than minimisation

• Optimisations of CPU and memory usage; better caching • More symbolic maths

• Sympy, in particular, works well with TF

• Self-documentation 

Summary

• TensorFlow is a good basis for an amplitude fitting framework

• High-performance architectures can be exploited without expert knowledge

• Models written in TFA are portable and can, with small effort, work standalone from TF: easy to share with theorists

• Flexibility of TFA allows for rapid and simple development of complicated fits

• TensorFlowAnalysis package: library to perform amplitude analysis fits. In active development, used for a few ongoing baryonic decay analyses at LHCb.
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