

Tests of lepton flavour universality using semitauonic B decays at LHCb

Adam Morris

► To cite this version:

Adam Morris. Tests of lepton flavour universality using semitauonic B decays at LHCb. 10th International Workshop on the CKM Unitarity Triangle, Sep 2018, Heidelberg, Germany. in2p3-01917573

HAL Id: in2p3-01917573 https://hal.in2p3.fr/in2p3-01917573

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Tests of lepton flavour universality using semitauonic B decays at LHCb

Adam Morris, on behalf of the LHCb collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM

10th International Workshop on the CKM Unitarity Triangle Heidelberg, 20th September, 2018

Lepton Flavour Universality (LFU):

- In SM, electroweak couplings of charged leptons are identical (universal).
- Difference between e, μ and τ should therefore only be driven by mass.
- Test: ratios of branching fractions to final states differing by lepton flavour.

LFU tests in semitauonic *b*-hadron decays:

$$R(X_c) = rac{\mathcal{B}(X_b o X_c au^+
u_ au)}{\mathcal{B}(X_b o X_c \mu^+
u_\mu)}.$$
 $(X_b: b ext{-hadron}, X_c: c ext{-hadron})$

Introduction

Introduction

In this talk:

- $R(D^*)$ hadronic: $B^0 \rightarrow D^{*-} \ell^+ \nu$ with $\tau^+ \rightarrow 3\pi^{\pm}(\pi^0) \overline{\nu}_{\tau}$.
- $R(D^*)$ muonic: $B^0 \rightarrow D^{*-} \ell^+ \nu$ with $\tau^+ \rightarrow \mu^+ \nu_\mu \overline{\nu}_\tau$.
- $R(J/\psi)$ muonic: $B_c^+ \rightarrow J/\psi \ell^+ \nu$ with $\tau^+ \rightarrow \mu^+ \nu_\mu \overline{\nu}_\tau$.
- Complementary strategies: different backgrounds and systematics.
- LHCb 2011+2012 data: $3 \, {\rm fb}^{-1}$ at $\sqrt{s} = 7\&8 \, {\rm TeV}.$
- Using $D^{*-}
 ightarrow \overline{D}{}^0 (
 ightarrow {\cal K}^+ \pi^-) \pi^-$ and $J\!/\psi
 ightarrow \mu^+ \mu^-.$

Predictions:

- $R(D^*) = 0.258 \pm 0.005$ [HFLAV Summer 2018]
- $R(J\!/\psi) \in [0.25, 0.28]$ [PLB452 (1999) 120, arXiv:0211021, PRD73 (2006) 054024, PRD74 (2006) 074008]

[PDG]

$R(D^*)$ with $au^+ o 3\pi^\pm(\pi^0) \overline{ u}_ au$

$R(D^*)$ hadronic: introduction

$$\mathcal{K}(D^*) = rac{\mathcal{B}(B^0 o D^{*-} au^+
u_ au)}{\mathcal{B}(B^0 o D^{*-} 3\pi^\pm)} = rac{\mathcal{N}_{ ext{sig}}}{\mathcal{N}_{ ext{norm}}} rac{arepsilon_{ ext{norm}}}{arepsilon_{ ext{sig}}} rac{1}{\mathcal{B}(au^+ o 3\pi^\pm (\pi^0) \overline{
u}_ au)}$$

- Signal and normalisation same visible final state: $D^{*-}3\pi^{\pm}$.
- $N_{\rm sig}$ from 3D binned template fit:

•
$$q^2\equiv |P_{B^0}-P_{D^*}|^2$$
,

- au^+ decay time,
- Output of BDT trained to discriminate signal from $D^*D_s^+$.
- N_{norm} from unbinned max likelihood fit to $m(D^*3\pi^{\pm})$.
- Make use of three-prong tau vertex in selection.
- Convert $\mathcal{K}(D^*)$ to $R(D^*)$:

$$R(D^*) = \mathcal{K}(D^*) rac{\mathcal{B}(B^0 o D^{*-} 3 \pi^{\pm})}{\mathcal{B}(B^0 o D^{*-} \mu^+
u_\mu)}$$

$R(D^*)$ hadronic: backgrounds

- Most abundant background: $X_b \rightarrow D^{*-} 3\pi^{\pm} X.$
 - $\sim 100 imes$ more abundant than signal.
 - Suppressed by requiring τ^+ vertex to be $4\sigma_{\Delta z}$ downstream from *B* vertex.
 - Improves S/B by factor 160.
- Remaining backgrounds: double charm modes with non-negligible lifetimes:
 - $X_b
 ightarrow D^*D_s^+X \sim 10 imes$ signal,
 - $X_b \rightarrow D^* D^+ X \sim 1 imes$ signal,
 - $X_b \rightarrow D^* D^0 X \sim 0.2 \times$ signal.

[PRD 97, 072013 (2018)]

$R(D^*)$ hadronic: backgrounds

Discriminate between signal and double charm backgrounds using a BDT that exploits the resonant structures in the $3\pi^{\pm}$ systems from τ^+ and D_s^+ decays.

Control samples of $D^*D_s^+X$, D^*D^+X and D^*D^0X used to correct simulation.

$R(D^*)$ hadronic: fit and result

- Projections of 3D binned template fit shown for t(τ) (left) and q² (right) for each of the BDT bins.
- Signal purity increases with BDT output, while $D^*D_s^+X$ fraction decreases.
- Dominant background at high BDT output D*D+X due to long D+ lifetime.

•
$$N_{\rm sig} = 1296 \pm 86$$
, $N_{\rm norm} = 17660 \pm 158$.

 $\mathcal{K}(D^*) = 1.97 \pm 0.13\, ext{(stat)} \pm 0.18\, ext{(syst)}$

 $R(D^*) = 0.291 \pm 0.019 \,(\text{stat}) \pm 0.026 \,(\text{syst}) \pm 0.013 \,(\text{ext}).$

• 0.9σ above SM, compatible with experimental average.

[PRL 120, 171802 (2018), PRD 97, 072013 (2018)]

3/22

$R(D^*)$ hadronic: systematic uncertainties

- Uncertainties on double charm backgrounds should improve with more data and improved external measurements.
- Uncertainty on efficiency ratio should improve with more statistics.

Source	$rac{\delta R(D^*)}{R(D^*)}$ [%]
Simulated sample size	4.7
Empty bins in templates	1.3
Signal decay model	1.8
$D^{**} au u_{ au}$ and $D^{**}_s au u_{ au}$ feed-down	2.7
$D^+_s ightarrow 3\pi^\pm X$ decay model	2.5
$B ightarrow D^*D^+_s X$, D^*D^+X , D^*D^0X backgrounds	3.9
Combinatorial background	0.7
$B\! ightarrow D^{st\!-\!3}\pi^\pm X$ background	2.8
Efficiency ratio	3.9
Normalisation channel efficiency	2.0
(modelling of $B^0 o D^{st -} 3 \pi^\pm$)	
Total systematic uncertainty	9.1

[PRL 120, 171802 (2018), PRD 97, 072013 (2018)]

$R(D^*)$ with $au^+ o \mu^+ u_\mu \overline{ u}_ au$

$R(D^*)$ muonic: introduction

$$R(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

- Both modes have same visible final state: $D^{*-}\mu^+$.
- Neither fully reconstructable, due to neutrinos.
 - B^0 momentum approximated using B^0 decay vertex and scaling visible longitudinal momentum by $m(B^0)/m(D^{*-}\mu^+)$
 - Resolution on kinematic variables enough to distinguish between au/μ modes.
- 3D binned template fit to extract yields:
 - $q^2 \equiv |P_{B^0} P_{D^*}|^2$,
 - $m_{\rm miss}^2 \equiv |P_{B^0} P_{D^*} P_{\mu^+}|^2$,
 - $E_{\mu^+}^* \equiv$ muon energy in B^0 rest frame.

$R(D^*)$ muonic: fit and result

- Projections of 3D binned template fit shown for m_{miss}^2 (left) and $E_{\mu^+}^*$ (right) in each of the q^2 bins
- Dominant component is $B^0
 ightarrow D^* \mu^+
 u_\mu$
- $B^0
 ightarrow D^* au^+
 u_ au$ signal purity increases with q^2
- Backgrounds:
 - D** feed-down
 - Double charm
 - Combinatorial
 - Misidentified muon

 $R(D^*) = 0.336 \pm 0.027 \, (\text{stat}) \pm 0.030 \, (\text{syst})$

• 1.9σ above SM

$R(D^*)$ muonic: systematics

- MC statistics largest systematic.
- Mis-ID μ template: reduce with improved rejection and more sophisticated technique.

Source	$\delta R(D^*)[imes 10^{-2}]$
Simulated sample size (model)	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \! ightarrow D^{st+}(au^-/\mu^-) \overline{ u}$ form factors	0.6
$\overline{B} ightarrow D^{st+} X_c (ightarrow \mu u X') X$ shape corrections	0.5
${\cal B}(\overline{B}\! ightarrow D^{**} au^- \overline{ u}_{ au})/{\cal B}(\overline{B}\! ightarrow D^{**} \mu^- u_{\mu})$	0.5
$\overline{B} ightarrow D^{stst} (ightarrow D^st \pi \pi) \mu u$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} o D^{stst} (o D^{st+} \pi) \mu^- \overline{ u}_\mu$ form factors	0.3
$\overline{B} ightarrow D^{*+}(D^+_s ightarrow au u) X$ fraction	0.1
Simulated sample size (normalisation)	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
${\cal B}(au^- o \mu^- \overline{ u}_\mu u_ au)$	< 0.1
Total systematic uncertainty	3.0

[PRL 115, 112001 (2015)]

$R(J\!/\psi)$ with $au^+\! ightarrow\mu^+ u_\mu\overline u_ au$

$R(J/\psi)$ muonic: introduction

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \, \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \, \mu^+ \nu_{\mu})}$$

- Both modes have same visible final state: $J/\psi \mu^+$.
- 3D binned template fit to extract yields:
 - B_c^+ decay time,
 - $m_{\rm miss}^2$,
 - $Z(E^*_{\mu^+}, q^2) \equiv$ flattened 4 × 2 histogram of $E^*_{\mu^+}$ and q^2 .
- B_c^+ decay form factors not precisely determined; constrained experimentally from this analysis.
- Low rate of B_c^+ production, but no long-lived *D*-meson background.

$R(J/\psi)$ muonic: fit and result

- Projections of 3D binned template fit shown.
- Largest component is $B_c^+ o J/\psi \, \mu^+
 u_\mu$ (19140 \pm 340 candidates).
- $B_c^+ \rightarrow J/\psi \, \tau^+ \nu_{ au}$ in red (1400 ± 300 candidates).
- Main background: $X_b \rightarrow J/\psi + \text{mis-ID}$ hadron.
- First evidence of the decay $B_c^+ \rightarrow J/\psi \, \tau^+ \nu_{\tau}$ (3 σ significance).

 $R(J\!/\psi\,) = 0.71 \pm 0.17\,(ext{stat}) \pm 0.18\,(ext{syst})$

• 2σ above the SM.

$R(J/\psi)$ muonic: systematics

- *B*⁺_c form factors: recent improvements should enter into updated measurement.
- MC statistics second-largest systematic.

Source	$\delta R(J/\psi)[imes 10^{-2}]$
Simulation sample size	8.0
$B_c^+ o J\!/\psi$ form factors	12.1
$B_c^+ o \psi(2S)$ form factors	3.2
Bias correction	5.4
$B_c^+ ightarrow J\!/\psi X_c X$ cocktail composition	3.6
Z binning strategy	5.6
Misidentification background strategy	5.4
Combinatorial background cocktail	4.5
Combinatorial $J\!/\psi$ sideband scaling	0.9
Empirical reweighting	1.6
Semitauonic $\psi(2S)$ and χ_c feed-down	0.9
Fixing $A_2(q^2)$ slope to zero	0.3
Efficiency ratio	0.6
${\cal B}(au^+\! ightarrow\mu^+ u_\mu\overline u_ au)$	0.2
Total systematic uncertainty	17.7

[PRL 120, 121801 (2018)]

Summary and conclusions

Summary

LHCb has made 3 tests of LFU with semitauonic B decays so far:

$$\begin{array}{lll} R(D^*) \mbox{ (hadronic)} &=& 0.291 \pm 0.019 \mbox{ (stat)} \pm 0.026 \mbox{ (syst)} \pm 0.013 \mbox{ (ext)}, \\ R(D^*) \mbox{ (muonic)} &=& 0.336 \pm 0.027 \mbox{ (stat)} \pm 0.030 \mbox{ (syst)}, \\ R(J/\psi) &=& 0.71 \ \pm 0.17 \ \mbox{ (stat)} \pm 0.18 \ \mbox{ (syst)}. \end{array}$$

Average of LHCb $R(D^*)$ results is 1.9σ above SM:

 $R(D^*) = 0.310 \pm 0.016 \,(\text{stat}) \pm 0.022 \,(\text{syst}).$

World averages

Between LHCb, BaBar and Belle: 9 measurements of LFU with semitauonic *B* decays so far.

- $6 \times R(D^*)$, $2 \times R(D)$, $1 \times R(J/\psi)$.
- All lie above the SM expectation.
- $R(D^*)$ average 3.0 σ from SM.

[HFLAV Summer 2018]

R(D) included for context

World averages

R(D*) BaBar, PRL109,101802(2012) 0.5 $\Delta \gamma^2 = 1.0$ contours Belle, PRD92.072014(2015) LHCb. PRL115.111803(2015) Average of SM predictions Belle, PRD94.072007(2016) 0.45 $R(D) = 0.299 \pm 0.003$ Belle, PRL118.211801(2017) LHCb, PRL120,171802(2018) R(D*) = 0.258 ± 0.005 0.4 Average 0.35 2σ 0.3 0.25 HFLAV Summer 2018 0.2 0.2 0.3 0.4 0.5 0.6 R(D)

[HFLAV Summer 2018]

- HFLAV summer 2018 $R(D) - R(D^*)$ average is 3.8 σ from the SM.
- Reduction from 4.1σ due to increase in theory uncertainties.

Conclusions and prospects

- Hints of LFU violation in semitauonic *B* decays.
 - $R(D) R(D^*)$: 3.8 σ away from SM.
 - $R(J/\psi)$: 2 σ above SM.
- LHCb results only use Run 1 data: Runs 2,3,4... will bring much larger statistics.
- Many systematics will reduce with more data and more MC
- Others will reduce with improved external measurements (BESIII, Belle II)
- Analyses of more modes:
 - $b \to c \tau^- \overline{\nu}_{\tau}$: $R(D^+)$, $R(D^0)$, $R(D_s^{+(*)})$, $R(\Lambda_c^{+(*)})$...
 - $b \rightarrow u \tau^- \overline{\nu}_{\tau}$: $\Lambda^0_b \rightarrow p \tau^- \overline{\nu}_{\tau}$, $B^+ \rightarrow p \overline{p} \tau^+ \nu_{\tau}$...
- New observables beyond ratios of branching fractions, *e.g.* angular analyses to discriminate between NP models.

Backup slides

$R(D^*)$ with $au^+ o 3\pi^\pm(\pi^0) \overline{ u}_ au$

$R(D^*)$ hadronic

$$egin{aligned} \mathcal{R}(D^*) &= \mathcal{K}(D^*) rac{\mathcal{B}(B^0 o D^{*-} 3 \pi^{\pm})}{\mathcal{B}(B^0 o D^{*-} \mu^+
u_{\mu})} \ \mathcal{K}(D^*) &= rac{N_{ ext{sig}}}{N_{ ext{norm}}} rac{arepsilon_{ ext{norm}}}{arepsilon_{ ext{sig}}} rac{1}{\mathcal{B}(au^+ o 3 \pi^{\pm}(\pi^0) \overline{
u}_{ au})} \end{aligned}$$

- N_{sig} from 3D binned template fit
- $N_{\rm norm}$ from unbinned fit to $m(D^{*-}3\pi^{\pm})$
- Efficiencies *ε* from MC
- $\mathcal{B}(\tau^+ \to 3\pi^\pm \overline{\nu}_{ au}) = (9.31 \pm 0.05) \,\% \,[\text{PDG}]$
- $\mathcal{B}(\tau^+ \to 3\pi^\pm \pi^0 \overline{\nu}_{\tau}) = (4.61 \pm 0.05) \,\% \,[\text{PDG}]$
- $\mathcal{B}(B^0 \rightarrow D^{*-} 3\pi^{\pm})$ [LHCb, BaBar, Belle]
- $\mathcal{B}(B^0 \rightarrow D^{*-} \mu^+ \nu_\mu)$ [PDG]

*R(D**) hadronic: BDT

Adam Morris (CPPM)

LFU tests with semitauonic B decays at LHCb

$R(D^*)$ hadronic: D_s^+ , D^0 , D^+ control channels

$R(D^*)$ hadronic: normalisation

- Fit $m(D^{*-}3\pi^{\pm})$ for the number of B^0 candidates
 - Signal: sum of Gaussian and Crystal Ball with shared mean
 - Background: exponential function
- Fit $m(3\pi^{\pm})$ in 5.20 $< m(D^{*-}3\pi^{\pm}) <$ 5.35 GeV/ c^2 for number of D_s^+ candidates
 - Signal: Gaussian distribution
 - Background: exponential function
- $N_{\rm norm}$ is the difference of the two

 $N_{
m norm} = 17660 \pm 143 \, (
m stat) \pm 64 \, (
m syst) \pm 22 (D_s^+)$

$R(D^*)$ hadronic: neutral isolation

$R(D^*)$ hadronic: $X_b \rightarrow D^{*-} 3\pi^{\pm} X$ MC sample

- Inclusive $X_b \rightarrow D^{*-} 3\pi^{\pm} X$ MC sample
- Shown: different parents of the $3\pi^{\pm}$ system
 - Blue: *B*⁰
 - Yellow: other *b*-hadrons
 - Signal $B^0
 ightarrow D^{*-} au^+
 u_ au$
 - Prompt: directly from X_b
 - Charm (D_s^+, D^0, D^+)
 - B1B2: $3\pi^{\pm}$ and D^0 from different X_b
 - au^+ from a D_s^+ decay
 - $D^{**} au^+
 u_{ au}$ (*i.e.* more highly-excited $D^{(*)}$ states)
- Top: after initial selection
- Middle: all candidates in the template fit
- Bottom: 3 highest BDT bins

LHCb ГНСр

${\cal R}(D^*)$ hadronic: $D^{*-}D^+_s$ control sample

${\sf R}(D^*)$ hadronic: D^+_s decay model

• $X_b \rightarrow D^{*-}D_s^+X$ control sample obtained using BDT output

$R(D^*)$ hadronic: D_s^+ decay model

- $au^+
 ightarrow a_1(1260)^+ (
 ightarrow
 ho^0 \pi^+) \overline{
 u}_ au$
- Dominant source of ho^0 in D_s^+ decays due to $\eta' o
 ho^0 \gamma$
- Crucial to describe η' contribution accurately
- Fit results used to describe the $D_s^+
 ightarrow 3\pi^\pm X$ model in the template fit

$R(D^*)$ hadronic: D_s^+ decay model fit results

D_s^+ decay	Relative contribution	Correction to MC	
$\eta\pi^+(X)$	0.156 ± 0.010		
ηho^+	0.109 ± 0.016	0.88 ± 0.13	
$\eta\pi^+$	0.047 ± 0.014	0.75 ± 0.23	
$\eta'\pi^+(X)$	0.317 ± 0.015		
$\eta' ho^+$	0.179 ± 0.016	0.710 ± 0.063	
$\eta^\prime \pi^+$	0.138 ± 0.015	0.808 ± 0.088	
$\phi\pi^+(X),\ \omega\pi^+(X)$	0.206 ± 0.02		
ϕho^+ , ωho^+	0.043 ± 0.022	0.28 ± 0.14	
$\phi\pi^+$, $\omega\pi^+$	0.163 ± 0.021	1.588 ± 0.208	
η3π	0.104 ± 0.021	1.81 ± 0.36	
$\eta' 3\pi$	0.0835 ± 0.0102	5.39 ± 0.66	
$\omega 3\pi$	0.0415 ± 0.0122	5.19 ± 1.53	
$K^0 3\pi$	0.0204 ± 0.0139	1.0 ± 0.7	
$\phi 3\pi$	0.0141	0.97	
$ au^+ (o 3\pi(N) \overline{ u}_ au) u_ au$	0.0135	0.97	
$X_{nr}3\pi$	0.038 ± 0.005	6.69 ± 0.94	

Adam Morris (CPPM)

LFU tests with semitauonic B decays at LHCb

$R(D^*)$ hadronic: fit projections

Fit component	Normalisation
$B^0 ightarrow D^{*-} au^+ (ightarrow 3 \pi \overline{ u}_ au) u_ au$	$N_{ m sig} imes f_{ au ightarrow 3\pi u}$
$B^0 ightarrow D^{st -} au^+ (ightarrow 3\pi \pi^0 \overline{ u}_ au) u_ au$	$N_{ m sig} imes (1 - f_{ au ightarrow 3 \pi u})$
$B ightarrow D^{**} au^+ u_{ au}$	$N_{ m sig} imes f_{D^{**} au u}$
$B ightarrow D^{*-}D^+X$	$f_{D^+} imes N_{D_s}$
$B ightarrow D^{st -} D^0 X$ different vertices	$f_{D^0}^{ u_1 u_2} imes N_{D^0}^{ m sv}$
$B ightarrow D^{st -} D^0 X$ same vertex	$\tilde{N}_{D^0}^{sv}$
$B^0 ightarrow D^{st-}_s D^+_s$	$N_{D_s} \times f_{D_s^+}/k$
$B^0 ightarrow D^{*-}_s D^{*+}_s$	$N_{D_s} imes 1/k$
$B^0 o D^{*-} D^*_{s0}(2317)^+$	$N_{D_s} imes f_{D_{ro}^{*+}}/k$
$B^0 ightarrow D^{st-} D_{s1}(2460)^+$	$N_{D_s} imes f_{D_{c1}^+}^{so}/k$
$B^{0,+} ightarrow D^{st st} D^+_s X$	$N_{D_s} \times f_{D_s^+ X}/k$
$B^0_s ightarrow D^{*-}_s D^+_s X$	$N_{D_s} \times f_{(D_s^+X)_s}/k$
$B ightarrow D^{st-} 3\pi X$	$N_{B \to D^* 3 \pi X}$
B1B2 combinatorics	N _{B1B2}
Combinatoric D^{*-}	N _{notD*}

Adam Morris (CPPM)

$R(D^*)$ hadronic: fit results

Parameter	Fit result	Constraint
N _{sig}	1296 ± 86	
$f_{ au ightarrow 3\pi u}$	0.78	0.78 (fixed)
$f_{D^{**}\tau\nu}$	0.11	0.11 (fixed)
$N_{D^0}^{sv}$	445 ± 22	445 ± 22
$f_{D^0}^{v_1v_2}$	0.41 ± 0.22	
\tilde{N}_{D_s}	6835 ± 166	
f_{D^+}	0.245 ± 0.020	
$N_{B ightarrow D^* 3 \pi X}$	424 ± 21	443 ± 22
$f_{D^+_{-}}$	0.494 ± 0.028	0.467 ± 0.032
$f_{D_{r_0}^{*+}}^{-s}$	$0^{+0.010}_{-0.000}$	$0^{+0.042}_{-0.000}$
$f_{D_{-1}^+}$	0.384 ± 0.044	0.444 ± 0.064
$f_{D_{\epsilon}^{+}X}$	0.836 ± 0.077	0.647 ± 0.107
$f_{(D_{\epsilon}^{+}X)_{\epsilon}}$	0.159 ± 0.034	0.138 ± 0.040
\hat{N}_{B1B2}	197	197 (fixed)
$N_{\text{not}D^*}$	243	243 (fixed)

LHCb ГНСр

$R(D^*)$ hadronic: more detailed systematics

Contribution	Value in %
${\cal B}(au^+ o 3\pi\overline{ u}_{ au})/{\cal B}(au^+ o 3\pi(\pi^0)\overline{ u}_{ au})$	0.7
Form factors (template shapes)	0.7
Form factors (efficiency)	1.0
au polarisation effects	0.4
Other $ au$ decays	1.0
$B ightarrow D^{stst} au^+ u_{ au}$	2.3
$B^0_s o D^{st au}_s au^+ u_{ au}$ feed-down	1.5
$D^+_{m s} ightarrow 3\pi X$ decay model	2.5
$D_{s}^{ar{+}}$, D^{0} and D^{+} template shape	2.9
$B ightarrow D^{st -} D^+_s(X)$ and $B ightarrow D^{st -} D^0(X)$ decay model	2.6
$D^{*-}3\pi X$ from B decays	2.8
Combinatorial background (shape + normalisation)	0.7
Bias due to empty bins in templates	1.3
Size of simulation samples	4.1
Trigger acceptance	1.2
Trigger efficiency	1.0
Online selection	2.0
Offline selection	2.0
Charged-isolation algorithm	1.0
Particle identification	1.3
Normalisation channel	1.0
Signal efficiencies (size of simulation samples)	1.7
Normalisation channel efficiency (size of simulation samples)	1.6
Normalisation channel efficiency (modeling of $B^0 \rightarrow D^{*-}3\pi$)	2.0
Total uncertainty	9.1

$R(D^*)$ hadronic: feed-down systematics

- $B^0
 ightarrow D^{**} au
 u$ and $B^+
 ightarrow D^{**} au
 u$ constitute potential feed-down to the signal
- $D^{**}(2420)^0$ is reconstructed using its decay to $D^{*+}\pi^+$ as a cross-check
- The observation of the $D^{**}(2420)^0$ peak allows to compute the $D^{**}3\pi$ BDT distribution and to deduce a $D^{**}\tau\nu$ upper limit with the following assumption:
 - $D^{**0}\tau\nu = D^{**}(2420)^0\tau\nu$ (no sign of $D^{**}(2460)^0$)

•
$$D^{**+} au
u = D^{**0} au
u$$

- This upper limit is consistent with the theoretical prediction
- Subtraction in the signal of 0.11 \pm 0.04 due to $D^{**} au
 u$ events leading to an error of 2.3%

LFU tests with semitauonic B decays at LHCb

$R(D^*)$ hadronic: prospects for systematics

Source	$\frac{\delta R(D^*)}{R(D^*)}$ [%]	Future
Simulated sample size	4.7	Produce more MC (fast simulation)
Empty bins in templates	1.3	
Signal decay model	1.8	
$D^{**} \tau \nu_{\tau}$ and $D_s^{**} \tau \nu_{\tau}$ feed-down	2.7	Measure $R(D^{**}(2420)^0)$
$D^+_s ightarrow 3\pi^\pm X$ decay model	2.5	BESIII measurement
$B ightarrow D^*D^+_s X$, D^*D^+X , D^*D^0X backgrounds	3.9	Improves with stats
Combinatorial background	0.7	
$B\! ightarrow D^{st\!-} 3\pi^{\pm}X$ background	2.8	Stronger rejection
Efficiency ratio	3.9	Improves with stats
Normalisation channel efficiency	2.0	
(modelling of $B^0 o D^{*-} 3\pi^\pm$)		
Total systematic uncertainty	9.1	

$R(D^*)$ hadronic: prospects for systematics

- Shape of $B \rightarrow D^*DX$ background (2.9%): scale with statistics
- $D_s^+
 ightarrow 3\pi X$ decay model (2.5%): BESIII future measurement.
- Branching fraction of $B^0
 ightarrow D^*3\pi$: can be precisely measured by Belle II.
- $B \to D^{*-} 3\pi X$ background: strong cut on $\sigma_{\Delta z}$ between the au and the D^0 vertices.
- With more data, measure $R(D^{**}(2420)^0)$ and constrain D^{**} feed-down
- Efficiency ratio: will improve with more data.

$R(D^*)$ with $au^+ o \mu^+ u_\mu \overline{ u}_ au$

$R(D^*)$ muonic: kinematics

 $egin{aligned} R(D^*) &= rac{\mathcal{B}(B^0 o D^{*-} au^+
u_ au)}{\mathcal{B}(B^0 o D^{*-} \mu^+
u_\mu)} \ ext{with} \ au^+ o \mu^+
u_\mu ar
u_ au \end{aligned}$

- Precise SM prediction: $R(D^*) = 0.258 \pm 0.005$ [HFLAV]
- Normalisation mode with the same visible final state
- $\mathcal{B}(au^+ o \mu^+
 u_\mu ar{
 u}_ au) = (17.39 \pm 0.04)\%$
- Separate τ and μ via a 3D binned template fit to:
 - $q^2 \equiv |P_{B^0} P_{D^*}|^2$,
 - $m_{\text{miss}}^2 \equiv |P_{B^0} P_{D^*} P_{\mu^+}|^2$,
 - $E_{\mu^+}^* \equiv$ muon energy in B^0 rest frame.
- Background and signal shapes extracted from control samples and

simulation validated against data

Adam Morris (CPPM)

 E_{μ}^{*}

 m_{miss}^2

 $q^{2} = (p_{\ell} + p_{\nu})^{2}$ $= m_{W^{*}}^{2}$

Problem of missing neutrino: no analytical solution for \vec{p}_B . Approximate *B* momentum with $p_B^z = \frac{m_B}{m_{D^*\mu}} p_{D^*\mu}^z$ and exploit the measured *B* flight trajectory. This leads to ~18% resolution on q^2 , m_{miss}^2 and E_{μ}^* , enough to preserve the discrimining features of the original variables.

$R(D^*)$ muonic: kinematics

	$D^* au u_ au$	$D^*\mu u_\mu$
$m_{\rm miss}^2$	> 0	\simeq 0
E^*_{μ}	softer	harder
q^2	$> m_{ au}^2$	> 0

au mode (red) and μ mode (blue) using truth (top) and reconstructed (bottom) quantities.

Adam Morris (CPPM)

$R(D^*)$ muonic: control samples

- \overline{B} ightarrow $[D_1, D_2^*, D_1'] \mu^- \overline{
 u}_\mu$ control sample.
 - Require exactly 1 track selected by the isolation MVA with the opposite charge to the *D*^{*+} candiadte.

$R(D^*)$ muonic: control samples

 $\overline{B}
ightarrow D^{**} (
ightarrow D^{*+} \pi^+ \pi^-) \mu^- \overline{
u}_{\mu}$ control sample.

• Require exactly two tracks with opposite charge selected by the isolation MVA.

$R(D^*)$ muonic: control samples

- $B \rightarrow D^{*+}X_c (\rightarrow \mu \nu X')X$ control sample.
 - Require isolation MVA to identify a track consistent with the *B* vertex and at least one track with K[±] hypothesis near the *B*.

циср

$R(D^*)$ muonic: fit projections

$R(J\!/\psi)$ with $au^+\! ightarrow\mu^+ u_\mu\overline u_ au$

$R(J/\psi)$ muonic

• Generalisation of $R(D^*)$ to B_c^+

$$egin{aligned} R(J\!/\psi\,) &= rac{\mathcal{B}(B_c^+ o J\!/\psi\, au^+
u_ au)}{\mathcal{B}(B_c^+ o J\!/\psi\,\mu^+
u_\mu)} \end{aligned}$$

- Prediction: $R(J/\psi) \in [0.25, 0.28]$ [PLB452 (1999) 120, arXiv:0211021, PRD73 (2006) 054024, PRD74 (2006) 074008]
- B_c^+ decay form factors not yet precise
- Like in $R(D^*)$, use m^2_{miss} , E^*_{μ} and q^2 . Add information from B^+_c decay time
- Imperfect reconstruction due to missing neutrinos. The broad shapes of the distributions are smeared but their discriminating power is preserved

$R(J/\psi)$ muonic: kinematics

Adam Morris (CPPM)

LFU tests with semitauonic B decays at LHCb

$R(J/\psi)$ muonic: Z variable

Trick to make a 3D fit with 4 variables: the Z variable merges information from q^2 and E_{μ}^* $q^2 \,({\rm GeV}^2)$ 10.12Z = 4Z=5Z=6Z=77.15Z = 0Z = 1Z=2Z = 3 $\rightarrow E_{\mu} (\text{GeV})$ 0.68 1.151.643.18

$R(J/\psi)$ muonic: fit projections in bins of Z

$R(J/\psi)$ muonic: fit projections in bins of Z

$R(J/\psi)$ muonic: feed-down

Adam Morris (CPPM)

Angular observables

Full angular distribution in $B o D^* (o D\pi) \ell \overline{ u}_\ell$

The full angular distribution is given by

$$\begin{aligned} \frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{\ell}d\cos\theta_{D}d\chi} &= \frac{3G_{F}^{2}|V_{cb}|^{2}}{256(2\pi)^{4}m_{B}^{3}}q^{2}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}\sqrt{\lambda_{D^{*}}(q^{2})} \times B(D^{*} \to D\pi) \times \left\{ \\ [|H_{+}|^{2}+|H_{-}|^{2}]\left(1+\cos^{2}\theta_{\ell}+\frac{m_{\ell}^{2}}{q^{2}}\sin^{2}\theta_{\ell}\right)\sin^{2}\theta_{D}+2[|H_{+}|^{2}-|H_{-}|^{2}]\cos\theta_{\ell}\sin^{2}\theta_{D} \\ &+4|H_{0}|^{2}\left(\sin^{2}\theta_{\ell}+\frac{m_{\ell}^{2}}{q^{2}}\cos^{2}\theta_{\ell}\right)\cos^{2}\theta_{D}+4|H_{t}|^{2}\frac{m_{\ell}^{2}}{q^{2}}\cos^{2}\theta_{D} \\ &-2\beta_{\ell}^{2}\left(\Re[H_{+}H_{-}^{*}]\cos2\chi+\Im[H_{+}H_{-}^{*}]\sin2\chi\right)\sin^{2}\theta_{\ell}\sin^{2}\theta_{D} \\ &-\beta_{\ell}^{2}\left(\Re[H_{+}H_{0}^{*}+H_{-}H_{0}^{*}]\cos\chi+\Im[H_{+}H_{0}^{*}-H_{-}H_{0}^{*}]\sin\chi\right)\sin2\theta_{\ell}\sin2\theta_{D} \\ &-2\Re\left[H_{+}H_{0}^{*}-H_{-}H_{0}^{*}-\frac{m_{\ell}^{2}}{q^{2}}\left(H_{+}H_{t}^{*}+H_{-}H_{t}^{*}\right)\right]\cos\chi\sin\theta_{\ell}\sin2\theta_{D} \\ &-2\Im\left[H_{+}H_{0}^{*}+H_{-}H_{0}^{*}-\frac{m_{\ell}^{2}}{q^{2}}\left(H_{+}H_{t}^{*}-H_{-}H_{t}^{*}\right)\right]\sin\chi\sin\theta_{\ell}\sin2\theta_{D} +8\Re[H_{0}H_{t}^{*}]\frac{m_{\ell}^{2}}{q^{2}}\cos\theta_{\ell}\cos^{2}\theta_{D}\right\} \end{aligned}$$

$B o D^* (\to D\pi) \ell \overline{ u}_{\ell}$: observables sensitive to NP

What can be extracted from the proposed observables:

$$\begin{aligned} d\Gamma/dq^2 & \left[|H_+|^2 + |H_-|^2 + |H_0|^2 \right] \left(1 + \frac{m_\ell^2}{2q^2} \right) + \frac{3}{2} \frac{m_\ell^2}{q^2} |H_t|^2 \\ 1 - \mathcal{A}_{\lambda_\ell} & |H_+|^2 + |H_-|^2 + |H_0|^2 + 3|H_t|^2 \\ \mathcal{A}_{FB} & |H_+|^2 - |H_-|^2 + 2\frac{m_\ell^2}{q^2} \Re \Big[H_0 H_t^* \Big] \\ \mathcal{R}_{L,T} & |H_+|^2 + |H_-|^2 \\ \mathcal{A}_5 & |H_+|^2 - |H_-|^2 \\ \mathcal{C}_X & \Re \Big[H_+ H_-^* \Big] \\ \mathcal{S}_X & \Im \Big[H_+ H_-^* \Big] \\ \mathcal{S}_X & \Im \Big[(H_+ + H_-) H_0^* - \frac{m_\ell^2}{q^2} \Big((H_+ - H_-) H_t^* \Big] \\ \mathcal{A}_9 & \Re \Big[(H_+ - H_-) H_0^* - \frac{m_\ell^2}{q^2} \Big((H_+ + H_-) H_t^* \Big] \\ \mathcal{A}_{10} & \Im \Big[(H_+ - H_-) H_0^* \Big] \end{aligned}$$
(=0 in the SM)
$$\mathcal{A}_{11} & \Re \Big[(H_+ + H_-) H_0^* \Big] \end{aligned}$$

Best discriminating variable to NP

$$Heff = \frac{G_F}{\sqrt{2}} V_{cb} \Big[(1 + g_V) \overline{c} \gamma_\mu b \\ + (-1 + g_A) \overline{c} \gamma_\mu \gamma_5 b \\ + g_5 i \partial_\mu (\overline{c} b) \\ + g_P i \partial_\mu (\overline{c} \gamma_5 b) \\ + g_T i \partial_\nu (\overline{c} i \sigma_{\mu\nu} b) \Big] (\overline{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell)$$

 $\times:$ "not sensitive"

* * *: "maximally sensitive"

Quantity	g∨	gА	gs	gр	gт
\mathcal{A}^{D}_{FB}	×	-	***	-	*
$\mathcal{A}^{D}_{\lambda_{ au}}$	×	-	***	-	**
$\mathcal{A}_{FB}^{D^*}$	*	***	-	***	*
$\mathcal{A}^{D^*}_{\lambda_{ au}}$	×	×	-	**	*
$R_{L,T}$	×	×	-	**	**
A_5	**	**	-	*	***
C _x	*	×	-	**	**
S_{χ}	***	***	_	×	***
A_8	**	**	-	**	***
A ₉	*	*	_	**	**
A ₁₀	**	**	_	×	**
A ₁₁	×	×	_	**	**