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Abstract

Using complex notation, we present new simple expressions for two pairs of complex
supercharges in HKT supersymmetric sigma models. The second pair of supercharges
depends on the holomorphic antisymmetric “hypercomplex structure” tensor Ijk which
plays the same role for the HKT models as the complex structure tensor for the Kähler
models. When the Hamiltonian and supercharges commute with the momenta conjugate
to the imaginary parts of the complex coordinates, one can perform a Hamiltonian reduc-
tion. The models thus obtained represent a special class of quasicomplex sigma models
introduced recently in [1].
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1 Introduction

Supersymmetric quantum mechanical (SQM) models describing the motion of a supersymmetric
particle on a curved manifold have been studied since [2]. Most of these problems represent a
reformulation of classical problems of differential geometry. In particular, the model analyzed
in [2] boils down to the well-known de Rham complex.

The powerful supersymmetry formalism allows one to reproduce known mathematical re-
sults in a simple way. In this regard, one can mention the famous Atiyah-Singer theorem [3].
A pure mathematical proof of this theorem is rather complicated. On the other hand, its su-
persymmetric proof using the functional integral formalism [4] (see also [5, 6]) is transparent
and beautiful.

But supersymmetry makes it also possible to derive new results. In particular, it allows
to construct new differential geometry structures not studied before by mathematicians. For
example, the SQM model studied in [2] and involving an extra potential is called now “Witten
deformation of the de Rham complex”. There are other deformations of the classical de Rham
and Dolbeault complexes involving torsions [7, 8]. The HKT models (the subject of the present
paper) were first introduced by physicists in the supersymmetric sigma model framework [9] (see
also earlier papers [10, 11, 12, 13] where some elements of the HKT structure were displayed)
and only then were described in pure mathematical terms [14, 15]. Less known CKT and OKT
models [16, 17, 18] are still awaiting their appreciation by mathematicians. The same concerns
the recently discovered quasicomplex sigma models.

To find a way in this multitude of models, one needs road maps. We noticed in [19] that all
these models can be obtained from the trivial flat Dolbeault model with

Q = ψaπa, Q̄ = ψ̄aπ̄a, H = π̄aπa (1.1)

by two operations: (i) similarity transformation of complex supercharges and (ii) Hamiltonian
reduction. In particular, a similarity transformation

Q → eRQe−R, Q̄ → e−R†

Q̄eR
†

(1.2)

with R = ωabψaψ̄b applied to (1.1) gives a model describing a nontrivial Dolbeault complex. If
the metric

hmn̄ =
(

e−ωe−ω†
)

mn̄
(1.3)

thus obtained does not depend on imaginary parts of the complex coordinates zm, the momenta
πm− π̄m commute with the Hamiltonian and one can perform a Hamiltonian reduction giving a
model with half as much bosonic degrees of freedom {Re(zm)} 1. If the Hermitian metric (1.3)
involves an imaginary part,

hmn̄ =
1

2

(

g(mn̄) + ib[mn̄]

)

, (1.4)

we obtain a quasicomplex model [1] (the origin of the factor 1/2 in (1.4) will be clarified later).
If b[mn̄] = 0, we obtain a usual de Rham model of [2].

1The Hamiltonian can, of course, commute with any number of momenta. The corresponding Hamiltonian
reductions give different models some of which were discussed in [19]. In this paper, we will discuss only the
Hamiltonian reduction with respect to all imaginary parts of zm.
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Both Dolbeault and de Rham models can have extended supersymmetries. The de Rham
model with an extra pair of supercharges can be formulated for Kähler even-dimensional man-
ifolds [20, 21, 22]. Mathematicians know this model as the Kähler – de Rham complex. There
are also N = 8 supersymmetric (i.e. including 8 different real supercharges) de Rham models
with 3 extra pairs of supercharges and defined on hyper-Kähler manifolds. A Dolbeault model
with an extra pair of supercharges is called an HKT model 2. If its metric does not depend on
Im(zm), one can perform a Hamiltonian reduction.

Our main observation is that a model thus obtained belongs to the class of quasicomplex
models representing their special type. It enjoys N = 4 supersymmetry.

The explicit component expressions for the HKT supercharges were derived in [24]. However,
they were written in terms of real coordinates. To perform the Hamiltonian reduction described
above, we need first to represent them in complex form. If expressing in proper terms, the
corresponding expressions turn out to be very simple [see Eq.(3.18) below]. This representation
make manifest the kinship between the mathematical structure of the HKT models and the
structure of Kähler – de Rham models. The latter are characterized by a presence of the closed
Kähler form. The components of this form define the complex structure tensor IMN . Similarly,
an HKT manifold is characterized by the presence of a closed holomorphic (2, 0) - form. Its
components define a holomorphic tensor Imn which may be called a hypercomplex structure
tensor. 3

The plan of the paper is the following. Sect. 2 represents a mathematical introduction
where we translate many facts known to mathematicians into a language understandable to
physicists. 4 In Sect. 3, after reminding how simple expressions for the supercharges can be
derived in N = 2 models (the main idea is to treat the fermions with world indices rather than
the fermions with tangent space indices as basic dynamical variables), we present new nice
generic expressions for the complex HKT supercharges as well as the supercharges obtained
after their Hamiltonian reduction.

In Sect. 4 (the central section of the paper), we discuss the Hamiltonian reduction procedure
invoking superfield formalism. A generic DolbeaultN = 2 model is expressed via (2,2,0) chiral
superfields 5. When the metric depends only on real parts of the coordinates, one can perform
the Hamiltonian reduction with respect to imaginary parts. The reduced model is described in
terms of (1,2,1) multiplets — the imaginary parts of the coordinates are traded for auxiliary
fields. Likewise, N = 4 HKT models are described by (4,4,0) multiplets that involve four
real or two complex coordinates. After reduction, imaginary parts of the latter are traded for
auxiliary fields and we are led to (2,4,2). Generically, one obtained a deformed Kähler – de
Rham complex which involves extra “quasicomplex” terms. At the superfield level, such models
involve, besides the familiar Kähler potential term, a holomorphic F -term of some special form
[see Eq. (4.38)].

We emphasize that this type of Hamiltonian reduction differs from the Hamiltonian re-

2 HKT stands for hyper-Kähler with torsion. This name is probably a little bit misleading because these
manifolds are not hyper-Kähler and not even Kähler, but a better one was not invented.

3Throughout the paper, the real tensor indices are denoted by large latin letters M,N, . . ., while small latin
letters m, m̄, . . . are reserved for the holomorphic and antiholomorphic complex indices.

4Unfortunately, the papers written by mathematicians and by theorists doing mathematical physics are
written in rather different languages, even when they are devoted to basically the same subject. More often
than not they are mutually not understandable and translation is necessary.

5We follow the notation of [25] such that the numerals count the numbers of the physical bosonic, physical
fermionic and auxiliary bosonic fields.
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duction for hyper-Kähler manifolds [26, 27, 28] and HKT manifolds [29] studied earlier. In
[26, 27, 28, 29], the reduction related models of the same type: hyper-Kählerian models to
hyper-Kählerian and HKT to HKT. In our case, the reduction changes the geometry: a Dol-
beault model gives after reduction a quasicomplex de Rham model and an HKT model gives a
quasicomplex Kähler model.

Short conclusions are drawn in the last section.
In AppendixA, we discuss in details how Hamiltonian reduction is described in Lagrangian

component formalism. In AppendixB, we present complete component Lagrangians of the
original HKT theory with several interacting (4,4,0) multiplets and of the quasicomplex Kähler
– de Rham theory with several interacting (2,4,2) multiplets. In AppendixC, we give some
technical details concerning establishing the correspondence between a generic HKT model
admitting reduction and its reduced Kähler – de Rham quasicomplex daughter.

2 Two definitions of HKT manifolds and their equiva-

lence.

We assume that the reader is familiar with the geometry of Kähler and hyper-Kähler manifolds.
For a reader physicist, we can recommend the excellent review [30]. The basic facts are the
following:

• A Kähler manifold is characterized by an antisymmetric complex structure tensor IMN .
6

The property IMNI
NK = −δKM holds. IMN is covariantly constant, ∇P IMN = 0. It follows

that the Kähler form Ω = IMN dx
M ∧ dxN is closed, dΩ = 0.

• A generic complex manifold also involves an antisymmetric complex structure tensor I,
but the standard covariant derivative ∇P IMN (with symmetric Christoffel symbols) does
not necessarily vanish. I should satisfy, however, certain integrability conditions,

∇[MIN ]P = I Q
M I S

N ∇[QIS]P . (2.1)

Eq.(2.1) amounts to the vanishing of the so called Nijenhuis tensor. 7 It is necessary to
be able to define (anti)holomorphic coordinates xM = {zm, z̄m̄} with Hermitian metric,
ds2 = 2hmn̄dz

mdz̄n̄ on the whole manifold. In addition, if (2.1) does not hold, nilpotent
supercharges cannot be constructed.

6Our index policy is the following. (i) Capital latin letters denote the indices in RN . (ii) small latin
letters are reserved for the indices of holomorphic variables. (iii) In most cases but not always, the indices of
antiholomorphic variables are marked with a bar (z̄m̄ etc) . (iv) By the reasons which become clear later, the
holomorphic indices in Sect.4.2.3 are Greek.

7The Nijenhuis tensor is defined as

N I
JK = IM[J∂MI

I
K] − IIM∂[JI

M
K] . (2.2)

Its vanishing may be expressed as a condition

∂[MI
P

N ] = I Q
M I S

N ∂[QI
P

S] . (2.3)

One can observe that one can as well replace the usual derivatives in (2.3) by covariant ones. Lowering the
index P then gives (2.1).
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When the complex coordinates are chosen, the tensor I N
M has the following nonzero

components,

I n
m = −Inm = −iδnm, I n̄

m̄ = −I n̄m̄ = iδn̄m̄ . (2.4)

It follows that Imn̄ = −In̄m = −ihmn̄.

• As was mentioned, a standard covariant derivative of IMN does not generically vanish.
However, for any I satisfying the conditions above, one can define an affine connection

Γ̂M
NK = ΓM

NK +
1

2
gMLCLNK (2.5)

with the torsion tensor CLNK antisymmetric under N ↔ K such that ∇̂P IMN = 0. If
one requires for the tensor CLNK to be totally antisymmetric, such connection is unique
and is called Bismut connection [31]. Explicitly,

C
(Bismut)
MNK (I) = I P

M I Q
N I R

K (∇P IQR +∇QIRP +∇RIPQ) . (2.6)

In complex coordinates, this tensor involves only the components of the type (2, 1) and
(1, 2). The explicit expressions are [5]

Cmnp̄ = Cnp̄m = Cp̄mn = ∂nhmp̄ − ∂mhnp̄,

Cm̄n̄p = Cn̄pm̄ = Cpm̄n̄ = ∂n̄hm̄p − ∂m̄hn̄p . (2.7)

• A hyper-Kähler manifold has three different antisymmetric covariantly constant complex
structures I, J,K satisfying the quaternion algebra

I2 = J2 = K2 = −1, IJ = K, JK = I, KI = J . (2.8)

• Finally, we define a hypercomplex manifold as a manifold with three integrable quater-
nionic complex structures whose standard covariant derivatives do not necessarily vanish.
The real dimension of a hypercomplex manifold is an integer multiple of 4 — the same
as for the hyper-Kähler manifolds.

We go over now to the HKT manifolds. There are two equivalent definitions:

Definition 1. An HKT manifold is a hypercomplex manifold where the complex structures
satisfy an additional constraint: they are covariantly constant with one and the same torsionful
Bismut affine connection,

CMNK(I) = CMNK(J) = CMNK(K) . (2.9)

Definition 2. An HKT manifold is a hypercomplex manifold where the (2, 0) - form

ω = ΩJ + iΩK = (J + iK)MN dx
M ∧ dxN (2.10)

(we will shortly see that it is holomorphic with respect to I) is closed,

∂Iω = 0
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.

We will give a proof here for the half of the equivalence theorem (see e.g. [15] for another
half). Taking (2.9) as a basic definition (suggested originally in [9]), we construct the closed
holomorphic (2, 0) - form. The existence of such form was first proven in [32]. We follow here
much more user-physicist-friendly [14].

As a first step, we introduce two operators associated with the complex structure I and
acting on n – forms. The operator ι is defined according to

if ω = ωM1...Mn
dxM1 ∧ · · · ∧ dxMn ,

then ιω = nωN [M2...Mn
(I)NM1]dx

M1 ∧ · · · ∧ dxMn . (2.11)

For a form ωp,q with p holomorphic and q antiholomorphic indices,

ιωp,q = i(p− q)ωp,q . (2.12)

Another operator ω → Iω is defined as

Iω = I N1

M1
...I Nn

Mn

ωN1...Nn
dxM1 ∧ · · · ∧ dxMn . (2.13)

When acting on the form of the type (p, q), it multiplies ω by the factor iq−p.
Finally, on top of the usual exterior derivative d, we introduce the operator

dI = [d, ι] .

Representing d as the sum of the holomorphic and antiholomorphic (with respect to I) exterior
derivatives, d = ∂I + ∂̄I and using (2.12), we easily derive dI = i(∂̄I − ∂I) (and hence ∂I =
(d+idI)/2). For an integrable I, complex coordinates can be chosen such the complex structure
matrix (2.4) is constant. In this case, we can write a simple explicit expression for dI ,

dIω = I S
M ∂SωN1...Nn

dxM ∧ dxN1 ∧ · · · ∧ dxNn . (2.14)

We prove now some simple lemmas.

Proposition 1.

dIω = (−1)nId(Iω) , (2.15)

where n is the order of the form.
Proof: Choose the complex coordinates. Consider the R.H.S. of (2.15) and use the complex

expression (2.4) for I. The components I N
M are thus constant and the partial derivatives do

not act upon them. The form d(Iω) has the order n+1 and, according to (2.13), the expression
Id(Iω) has altogether (n + 1) + n = 2n + 1 factors of I. This involves n pairs giving I2 = −1
[ this compensates the factor (−1)n] and we are left with just one unpaired factor. We obtain
the expression (2.14). In contrast to (2.14), the R.H.S. of (2.15) has a tensorial form and is
valid with any choice of coordinates.

Proposition 2. The form (2.10) has the type (2, 0) with respect to I.
Proof: Indeed, using the definition (2.11) and the properties (2.8), it is easy to derive

ιω = 2iω.
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Proposition 3. For any complex manifold,

dIΩI =
1

3
CMPQ dx

M ∧ dxP ∧ dxQ . (2.16)

Proof: Choosing complex coordinates and bearing in mind (2.4), (2.14) and (2.7), we derive

dIΩI = Cmpq̄dz
m ∧ dzp ∧ dz̄q̄ + Cm̄p̄qdz̄

m̄ ∧ dz̄p̄ ∧ dzq ,

which coincides with (2.16).

Corollary: For the HKT manifolds where the Bismut torsions for I, J,K coincide,

dIΩI = dJΩJ = dKΩK . (2.17)

Proposition 4. Let I, J,K be quaternion complex structures. Then

IΩI = ΩI , JΩJ = ΩJ , KΩK = ΩK ,

JΩI = KΩI = −ΩI , IΩJ = KΩJ = −ΩJ , IΩK = JΩK = −ΩK .
(2.18)

Proof: Let us prove the relation JΩI = −ΩI . By definition,

JΩI = J P
M J Q

S IPQ dx
M ∧ dxS .

On the other hand,
J P
M J Q

S IPQ = −KMQJ
Q

S = −IMS .

Other relations are proved similarly.

Remark. The condition (2.17) can be rewritten bearing in mind (2.15) and the first line
in (2.18) as

IdΩI = JdΩJ = KdΩK . (2.19)

We are ready now to prove the main theorem

Theorem 1.

∂I(ΩJ + iΩK) = 0 . (2.20)

Proof. The real and imaginary parts of (2.20) give a kind of Cauchy-Riemann conditions

dΩJ − dIΩK = 0, dΩK + dIΩJ = 0 . (2.21)

Consider the first relation. We obtain

dIΩK
1
= Id(IΩK)

4
= −IdΩK = −JKdΩK

remark
= −J2dΩJ = dΩJ .

The number “1” above the equality sign means in virtue of the Proposition 1, etc.
The relation dΩK + dIΩJ = 0 is proved similarly.
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3 Supercharges and reduced supercharges.

3.1 De Rham, Kähler - de Rham, Dolbeault, and quasicomplex
systems.

The classical supercharges of the best known de Rham SQM sigma model are usually presented
in the form

Q = ψM
(

PM − iΩM,ABψAψ̄B

)

,

Q̄ = ψ̄M
(

PM − iΩM,ABψ̄AψB

)

,
(3.1)

where A, B are the tangent space indices, ψA = eAMψ
M , gMN = eAMeAN , and

ΩM,AB = eAN

(

∂Me
N
B + ΓN

MT e
T
B

)

(3.2)

are spin connections. The “flat” fermion variables ψA, ψ̄A constitute, together with xM , PM ,
the orthogonal canonically conjugated pairs.

For our purposes, it is more convenient to express the supercharges in terms of fermionic
variables carrying world indices. The commutation relations are in this case more complicated,

{

xM ,ΠN

}

P.B.
= δMN ,

{

ψM , ψ̄N
}

P.B.
= −igMN ,

{

ΠM , ψ
N
}

P.B.
= −1

2
∂Mg

NQψQ,
{

ΠM , ψ̄
N
}

P.B.
= −1

2
∂Mg

NQψ̄Q.
(3.3)

({}P.B. stands for a Poisson bracket). On the other hand, the expressions for the supercharges
become much simpler [1],

Q = ψM
(

ΠM − i
2
∂MgNP ψ

N ψ̄P
)

,

Q̄ = ψ̄M
(

ΠM + i
2
∂MgNP ψ

P ψ̄N
)

,
(3.4)

Note that the momenta PM and ΠM are not the same. PM is the variation of the Lagrangian
over ẋM while keeping ψA and ψ̄A fixed. And ΠM is the variation of the Lagrangian over ẋM

while keeping ψM and ψ̄M fixed. These two canonical momenta are related as [8]

PM = ΠM +
i

2

[

(∂MeAP )eAQ − (∂MeAQ)eAP

]

ψP ψ̄Q . (3.5)

The covariant quantum supercharges that act on the wave functions normalized with the
measure dµ =

√

det(g) dNx have the same functional form with the operators ΠM = −i∂/∂xM
and ψ̄M = gMN∂/∂ψN .

For Kähler manifolds, the de Rham complex can be extended to involve an extra pair of
supercharges. Being expressed in the same terms as in (3.4), they acquire a very simple form
[19],

R = ψNI M
N

(

ΠM − i
2
∂MgNP ψ

N ψ̄P
)

,

R̄ = ψ̄NI M
N

(

ΠM + i
2
∂MgNP ψ

P ψ̄N
)

,
(3.6)

Similar simple expressions can be derived for the supercharges of the Dolbeault complex,

Q =
√
2ψm

(

Πm − i
2
∂mhnp̄ ψ

nψ̄p̄
)

,

Q̄ =
√
2 ψ̄m̄

(

Π̄m̄ + i
2
∂m̄hpn̄ ψ

pψ̄n̄
)

.
(3.7)

7



When hmn̄ does not depend on Im(zp), one can perform a Hamiltonian reduction with
identification Πm ≡ Π̄m̄ → ΠM/2.

8 If hmn̄ are real, we obtain the de Rham supercharges
(3.4). 9 For a generic Hermitian metric (1.4), we obtain the supercharges of a quasicomplex
model,

Q = ψM
[

ΠM − i
2
∂M

(

g(NP ) + ib[NP ]

)

ψN ψ̄P
]

,

Q̄ = ψ̄M
[

ΠM + i
2
∂M

(

g(NP ) − ib[NP ]

)

ψP ψ̄N
]

.
(3.8)

3.2 HKT supercharges

The expressions for four real supercharges in an HKT model were derived in [24]. They are

Q = ψM
(

PM − i
2
ΩM,ABψ

AψB + i
12
CMNP ψ

NψP
)

, (3.9)

Qa=1,2,3 = ψQ(Ia)Q
M
(

PM − i
2
ΩM,ABψ

AψB − i
4
CMNP ψ

NχP
)

, (3.10)

where ΨM are here real fermions with {ΨM ,ΨN}P.B. = −iδMN and Ia = {I, J,K}.
We choose now complex coordinates xM = {zm, z̄m̄} and construct the complex combina-

tions

S =
Q+ iQ1

2
, S̄ =

Q− iQ1

2
, R =

Q2 + iQ3

2
, R̄ =

Q2 − iQ3

2
. (3.11)

A short calculation gives

S
HKT

=
√
2ψm

[

Pm − iΩm,kl̄ ψ
kψ̄ l̄

]

,

S̄
HKT

=
√
2 ψ̄m̄

[

P̄m̄ − iΩ̄m̄,kl̄ ψ
kψ̄ l̄

]

,
(3.12)

R
HKT

=
√
2ψnIn

m̄
[

P̄m̄ − i
(

Ω̄m̄,kl̄ +
1
2
Cm̄,kl̄

)

ψkψ̄ l̄
]

,

R̄
HKT

=
√
2 ψ̄n̄I n̄

m
[

Pm − i
(

Ωm,kl̄ +
1
2
Cmkl̄

)

ψkψ̄ l̄
]

,
(3.13)

where Ωm,kl̄ = Ωm,ab̄e
a
ke

b̄
l̄
and I = J + iK.

It is noteworthy that in the expressions for S and S̄, the torsions Cmkl̄, Cm̄kl̄ cancelled such
that S, S̄ represent usual Dolbeault supercharges (cf. (3.15) of Ref.[5]). The torsions enter,
however in R and R̄. For hyper-Kähler manifolds, there are no torsions and the expressions
(3.13) simplify.

Substituting the explicit expressions of Ω and C via vielbeins,

Ωm,kl̄ = eāl̄ ∂[me
a
k] − ea(m∂k)e

ā
l̄ , Ω̄m̄,kl̄ = −eak∂̄[m̄eāl̄] + eā(m̄∂l̄)e

a
k , (3.14)

8This implies the convention

z = x+ iy, z̄ = x− iy,
∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

,
∂

∂z̄
=

1

2

(

∂

∂x
+ i

∂

∂y

)

for each complex coordinate.
9When deriving this, we have to take into account (1.4) and to bear in mind that the canonical de Rham

fermions ψM carrying the world indices and satisfying (3.3) have an additional factor 1/
√
2 compared to ψm.
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1
2
Cmkl̄ = −eā

l̄
∂[me

a
k] + ea[m∂k]e

ā
l̄
, 1

2
C̄m̄l̄k = −eak∂̄[m̄eāl̄] + eā[m̄∂l̄]e

a
k , (3.15)

we derive for the supercharges

S
HKT

=
√
2ψm

[

Pm − i
(

eā
l̄
∂me

a
k

)

ψkψ̄ l̄
]

,

S̄
HKT

=
√
2 ψ̄m̄

[

P̄m̄ + i
(

eak∂̄m̄e
ā
l̄

)

ψkψ̄ l̄
]

,
(3.16)

R
HKT

=
√
2ψnIn

m̄
[

P̄m̄ − i
(

eā
l̄
∂̄m̄e

a
k

)

ψkψ̄ l̄
]

,

R̄
HKT

=
√
2ψ̄n̄I n̄

m
[

Pm + i
(

eak∂me
ā
l̄

)

ψkψ̄ l̄
]

.
(3.17)

At the last step, we go over from the momenta Pm, P̄m̄ to the momenta Πm, Π̄m̄ (which are
relevant when ψm and ψ̄m̄ rather than ψa and ψ̄ā are treated as fundamental dynamic variables)
according to (3.5). The supercharges take the simple nice form

S
HKT

=
√
2ψm

[

Πm − i
2
(∂mhkl̄)ψ

kψ̄ l̄
]

,

S̄
HKT

=
√
2 ψ̄m̄

[

Π̄m̄ + i
2

(

∂̄m̄hkl̄
)

ψkψ̄ l̄
]

,
(3.18)

R
HKT

=
√
2ψnIn

m̄
[

Π̄m̄ − i
2

(

∂̄m̄hkl̄
)

ψkψ̄ l̄
]

,

R̄
HKT

=
√
2 ψ̄n̄I n̄

m
[

Πm + i
2
(∂mhkl̄)ψ

kψ̄ l̄
]

.
(3.19)

We observe a remarkable similarity with (3.4), (3.6). For an HKT manifold, the matrix
In

m̄ plays the same role as the usual complex structure for the Kähler - de Rham complex. I
can thus be called the matrix of hypercomplex structure. The form Imn dz

m ∧ dzn is closed, as
dictated by (2.20).

When hmn̄ does not depend on the imaginary coordinate parts, one can perform the Hamil-
tonian reduction. As an HKT manifold is a complex manifold of a special kind, we obtain after
reduction a quasicomplex model of a special kind. The reduced supercharges are

S
quasi

= ψM
[

ΠM − i
2
∂M (gKL + ibKL)ψ

Kψ̄L
]

,

S̄
quasi

= ψ̄M
[

ΠM + i
2
∂M (gKL + ibKL)ψ

Kψ̄L
]

,
(3.20)

R
quasi

= ψNIN
M
[

ΠM − i
2
∂M (gKL + ibKL)ψ

Kψ̄L
]

,

R̄
quasi

= ψ̄NIN
M
[

ΠM + i
2
∂M (gKL + ibKL)ψ

Kψ̄L
]

(3.21)

When the imaginary part of the metric bKL vanish, the supercharges (3.20), (3.21) boil
down to the Kähler supercharges (3.4), (3.6). When it does not, we are dealing with the Kähler
quasicomplex model to be discussed in more details in the next section.

4 Hamiltonian reduction and superfields.

Hamiltonians of supersymmetric systems are expressed in components, and Hamiltonian reduc-
tion is usually described in components too — see the component expressions for the reduced
supercharges (3.8), (3.20), (3.21) in the previous section. But it is interesting and instructive
to see what does it correspond to in Lagrangian superfield formulation.

9



4.1 Dolbeault → quasicomplex de Rham.

The Dolbeault complex is described by a set of chiral complex (2, 2, 0) superfields Zm [5].
They are expressed into components as

Zm = zm +
√
2 θψm − iθθ̄żm (4.1)

The corresponding supersymmetry transformations are

δzm = −
√
2 ǫψm , δψm = i

√
2 ǭżm , (4.2)

δz̄m =
√
2 ǭψ̄m , δψ̄m = −i

√
2 ǫ ˙̄zm . (4.3)

We set now ψm =
√
2χm, zm = xm + iym to obtain

δxm = −ǫχm + ǭχ̄m , δym = i(ǫχm + ǭχ̄m) , (4.4)

δχm = ǭ(iẋm − ẏm) , δχ̄m = −ǫ(iẋm + ẏm) . (4.5)

and observe that (4.2) coincides with the transformation law for a (1, 2, 1) real superfield

Xm ≡ XM = xM + θχM + χ̄M θ̄ +BMθθ̄, (4.6)

if identifying ẏm = Im(żm) ≡ BM . 10

The Lagrangian of the pure Dolbeault sigma model (without gauge field) is expressed via
chiral superfields as

L = −1
4

∫

dθ̄dθ hmn̄(Z, Z̄)DZ
mD̄Z̄ n̄ (4.7)

with Hermitian metric hmn̄ and

Dθ = ∂θ − iθ̄∂t , D̄θ = −∂θ̄ + iθ∂t . (4.8)

If the metric does not depend on Im(zm), one can perform the Hamiltonian reduction. The
reduced Lagrangian should be expressed via the superfields XM as

Lreduced = −1

2

∫

dθ̄dθ [g(MN)(X) + ib[MN ](X)]DXMD̄XN , (4.9)

where g/2 and b/2 are real and imaginary parts of the Hermitian metric h, according to (1.4).
Heuristically, (4.9) is obtained from (4.7) by substituting Zm, Z̄m̄ → 2XM , while taking into
account (1.4). When hmn̄ is real, this is the usual de Rham model. When it involves an
antisymmetric imaginary part, we arrive at the quasicomplex de Rham model of Ref.[1].

The fact that the reduction of (4.7) gives (4.9) looks very natural. It can be accurately
derived in the following way: (i) Express the Lagrangian (4.7) into components. (ii) It is
invariant under the shifts ym → ym + cm (the corollary of the fact that the Hamiltonian
commutes with the corresponding canonical momentum). In other words, it does not explicitly
depend on ym, but only on ẏm. (iii) Substitute

√
2χM for ψm and BM for ẏm. The result

coincides with the component expansion of (4.9).
A more detailed justification of this procedure at the component level is given in Appendix A.

10The observation that the supertransformation laws for the multiplets with the same net number of the
fermionic and bosonic components, but with a different distribution of the latter among the dynamic and
auxiliary fields, coincide under such identification was made long time ago in [33, 34]. This was discussed in the
Hamiltonian reduction context in [35] and in gauging approach (when the Hamiltonian commutes with Im(Πm),
one can impose the first class constraint Im(Πm) = 0 and treat the system as a gauge one) in [36].

10



4.2 HKT → quasicomplex Kähler.

Consider now the N = 4 supersymmetric HKT model. The Lagrangian is expressed via linear 11

N = 4 supermultiplets of the type (4,4,0) [38, 16, 39, 40]. A (4,4,0) multiplet lives in the
N = 4 superspace with the coordinates (t, θik

′

), (θik′) = −ǫijǫk′l′θjl′ ≡ −θk′j. The indices
i = 1, 2 and k′ = 1, 2 are doublet indices of the SUL(2) and SUR(2) groups respectively, which
form the full automorphism group SO(4) = SUL(2)× SUR(2) of the N=4 superalgebra. Each
multiplet carries a 4-vector or two spinor indices. Its component decomposition is

X il′ = xil
′ − θik

′

χl′

k′ + iθik
′

θk′kẋ
kl′ − i

3
θii

′

θi′kθ
kk′χ̇l′

k′ − 1
12
θkk

′

θk′jθ
ji′θi′k ẍ

kl′, (4.10)

and so it encompasses four real bosonic component fields (xik′) = −ǫijǫk′l′xjl′ and four real

fermionic component fields (χi′k) = −ǫi′j′ǫklχj′l.
The set xik

′

satisfying the pseudoreality condition can be represented as 4 real coordinates

xM = 1
2
(σM)k′ix

ik′ , σM = (~σ, i) (4.11)

or else as two complex coordinates vm, m = 1, 2, 12

xik
′

=

(

v̄2 v̄1

v1 −v2
)

. (4.12)

The same holds for the superfields X ik′.
The second representation (via two complex coordinates) is convenient when performing the

Hamiltonian reduction. We may represent vm = xm + iym and express the laws of supersym-
metry transformations via xm and ym. Similar to what was the case for the N = 2 superfields,
one can be convinced that these laws coincide with the supersymmetry transformations for the

(2,4,2) multiplet if identifying ẏm with the auxiliary fields BM (see [41] for the discussion
of the reduction (4,4,0) → (2,4,2) in superfield language using gauging procedure). Thus, to
perform the Hamiltonian reduction using the Lagrangian language, one should only substitute
ẏm → BM in the component expression for the Lagrangian.

A wide class of HKT models are described by the superfield Lagrangian involving n (4,4,0)
linear multiplets,

L =

∫

d4θL(Xα) , (4.13)

where α = 1, . . . , n is the flavor index.

4.2.1 4-dimensional model.

Consider as the simplest example the model with only one multiplet, n = 1.
The simplest HKT metric is a conformally flat metric in 4 dimensions,

ds2 = G(x) dxMdxM . (4.14)

11There are also models expressed via nonlinear multiplets [37], which we will not discuss here.
12We are changing notation here reserving the symbol z for the complex coordinates of the reduced model,

see Eq.(4.29) below.
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The complex structures can be chosen as

I N
M =









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









, J N
M =









0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0









, K N
M =









0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0









.(4.15)

These are self-dual matrices expressible via ’t Hooft symbols. The characteristic for a HKT
manifold closed holomorphic form is

ω = ΩJ + iΩK = 2G(x) dv1 ∧ dv2 , (4.16)

i.e. Imn = G(x) ǫmn. The complex supercharges (3.18) with this hypercomplex structure matrix
were written down in [24, 19]. When G depends only on Re(vm), one can perform a Hamiltonian
reduction. After that, we are left with only one complex coordinate z = Re(v1) + iRe(v2), the
complex metric involves only one component and is real. We obtain the usual N = 4 Kähler
model on a manifold of real dimension 2.

Note that in Ref.[1] a certain nontrivial quasicomplex 2-dimensional model was constructed
and studied. It was observed that the spectrum of this model involves degenerate quartets
and enjoys N = 4 supersymmetry. The corresponding metric cannot be obtained, however, by
a Hamiltonian reduction of an HKT metric and the observed extended supersymmetry has a
different origin.

4.2.2 4n–dimensional model.

When n > 1, the situation becomes more complicated and more interesting. The 8–dimensional
model described by two linear (4, 4, 0) multiplets was studied in details in [18]. We consider here
a model with an arbitrary number n of such multiplets. Anticipating a subsequent reduction,
it is convenient to use the complex notation and describe each of them as the N=4 superfield
Vm
α (t; θ, η, θ̄, η̄) where θ, η, θ̄, η̄ are odd coordinates of N=4 superspace and m = 1, 2. The

fields Vm are related to X ik′ as in (4.12).
To make things quite transparent, we can represent them in terms of N=2 superfields.

Each superfield Vm
α is expressed via two (2, 2, 0) complex superfields V m

α and their conjugates.
Its expansion of in η, η̄ reads [18]

Vm
α = V m

α + η ǫmnD̄V̄ n̄
α − iηη̄ V̇ m

α , V̄m̄
α = V̄ m̄

α − η̄ ǫm̄n̄DV n
α + iηη̄ ˙̄V m̄

α , (4.17)

with D ≡ Dθ and D̄ ≡ D̄θ defined in (4.8). V m
α (θ, θ̄) are chiral superfields, D̄θV

m
α = 0,

DθV̄
m̄
α = 0. They have a standard component expansion

V m
α = vmα +

√
2 θ ψm

α − iθθ̄ v̇mα , V̄ m̄
α = v̄m̄α −

√
2 θ̄ ψ̄m̄

α + iθθ̄ ˙̄vm̄α , (4.18)

The superfield action is

S = 1
4

∫

dt dθdθ̄ dηdη̄L(Vα, V̄α) =
1
4

∫

dt dθdθ̄
(

∆αβ
mn̄L

)

DV m
α D̄V̄ n̄

β , (4.19)

where

∆αβ
mn̄L ≡ ∂2L(V, V̄ )

∂V m
α ∂V̄ n̄

β

+ ǫmkǫn̄l̄
∂2L(V, V̄ )
∂V̄ k̄

α ∂V
l
β

. (4.20)
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Note that, for α = β,

∆αα
mn̄ = δmn̄

∂2L
∂V k

α ∂V̄
k̄
α

(here no summation with respect to α) . (4.21)

The R.H.S. of Eq.(4.19) expresses the action in terms of the N = 2 superfields. It is
invariant under ”hidden” supersymmetry transformations [37]

δηV
m
α = −ǫηǫmnD̄V̄ n̄

α , δηV̄
m̄
α = ǭηǫ

m̄n̄DV n
α . (4.22)

Integrating it further over d2θ, we obtain the component Lagrangian. Its bosonic part 13

reads

Lb =
(

∆αβ
mn̄L

)

v̇mα ˙̄vn̄β , (4.23)

The Lagrangian (4.23) implies the target space metric

ds2 =
(

∆αβ
mn̄L

)

dvmα dv̄
n̄
β . (4.24)

The closed holomorphic form is

Ω = 1
2
ǫmk

∂2L
∂v̄k̄α∂v

n
β

dvmα ∧ dvnβ . (4.25)

4.2.3 The reduced model and its superfield description.

When L is real, the metric (4.24) is Hermitian, but not necessarily symmetric and real. To
be able to perform the Hamiltonian reduction, we have to impose an extra constraint for the
metric to be independent on Im(vmα ). This implies also certain constraints on L. A generic
admissible form of L will be written and discussed in Appendix C. Here we write a restricted
Ansatz for L generating the metric with a constant antisymmetric under α↔ β part,

L = K − i
2
Cαβ

(

V1
αV̄1

β − V2
αV̄2

β

)

(4.26)

with a real function K generating the real symmetric part of the target space metric (4.24) that
does not depend on Im(vmα ), and a real constant antisymmetric Cαβ = −Cβα (the coefficients
are chosen for further convenience).

Consider the second term in (4.26). Its contribution to the bosonic kinetic Lagrangian reads

Lbos = −2 Cαβ
(

ẋ1αẏ
1
β − ẋ2αẏ

2
β

)

. (4.27)

Bearing in mind our recipe ẏmα → BM
α , this gives

Lred
bos = −2 Cαβ

(

ẋ1αB
1
β − ẋ2αB

M
β

)

(4.28)

in the reduced Lagrangian. The presence of the structure (4.28) is characteristic to quasicom-
plex de Rham models — see Eq.(B.8). In our case, we are dealing with an N = 4 model, a
deformation of the Kähler - de Rham complex not studied before. To reveal Kählerian nature

13See Appendix B for the complete expression.
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of the reduced model, we introduce new complex coordinates (made out of the real parts of vmα
and of BM

α ),

zα = x1α + ix2α , Aα = B1
α + iB2

α . (4.29)

In this variables, the full bosonic Lagrangian of the reduced model has the form

Lb = hαβ̄(z, z̄)
(

żα ˙̄zβ̄ + AαĀβ̄
)

− C[αβ]
(

żαAβ + ˙̄zᾱĀβ̄
)

, (4.30)

where

hαβ̄ =
∂2K

∂zα∂z̄β̄
(4.31)

Besides the familiar first term with the Kähler metric, the Lagrangian (4.30) involves also
an extra term involving C[αβ]. In modifies the full complex metric obtained after excluding the

the auxiliary fields Aα, Āβ̄,

h̃αβ̄ = hαβ̄ + C[αδ]h
γ̄δC[γ̄β̄] , (4.32)

where hᾱβhβγ̄ = δᾱγ̄ , hαγ̄h
γ̄β = δβα.

We will see now how this system is expressed in terms of the (2, 4, 2) superfields. In contrast
to the n = 1 case where the extra terms in (4.30) were absent, and the reduced model is a
well-known Kähler – de Rham model, with the Lagrangian representing a superspace integral
of the Kähler potential, when n ≥ 2, the superfield Lagrangian is somewhat more complicated.

We consider a set of n chiral (2, 4, 2) multiplets Zα(t; θ, θ̄, η, η̄) satisfying the constraints

D̄θ Zα = 0 , D̄η Zα = 0 , (4.33)

where Dθ, D̄θ are defined by (4.8) and

Dη = ∂η − iη̄∂t , D̄η = −∂η̄ + iη∂t . (4.34)

It is convenient to represent Zα viaN = 2 superfields [5]: the usual chiral (2, 2, 0) superfield
Zα(θ, θ̄) and the superfield Φα(θ, θ̄) of the type (0, 2, 2),

Zα = Zα +
√
2 ηΦα − iηη̄ Żα , (4.35)

where

Zα = zα +
√
2 θ φα − iθθ̄ żα , D̄θ Z

α = 0 , (4.36)

Φα = ϕα +
√
2 θ Aα − iθθ̄ ϕ̇α , D̄θ Φ

α = 0 . (4.37)

In (4.36), (4.37) the dynamical fields zα and complex auxiliary fields Aα are bosonic whereas
φα, ϕα are fermionic.

Now, the standard Kähler model is described by the action ∼
∫

dt dθdθ̄ dηdη̄K(Z, Z̄). We
note that one can add to this expression F -terms of a certain particular form, 14

S = 1
4

∫

dt dθdθ̄ dηdη̄K(Z, Z̄) + 1
4

∫

dt dθ dηFαβ(Z)ZαŻβ − 1
4

∫

dt dθ̄ dη̄ F̄ᾱβ̄(Z̄)Z̄ ᾱ ˙̄Z β̄ .(4.38)

14This is specific for d = 1. In d ≥ 2 field theories, it is absent. Probably, this is the reason why such a
structure was not considered before.
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The action is expressed in terms of the N = 2 superfields (4.36), (4.37) as follows,

S = −1
4

∫

dt dθ̄dθ hαβ̄(Z, Z̄)
(

DZαD̄Z̄ β̄ − 2ΦαΦ̄β̄
)

+ 1√
2

[
∫

dt dθ C[αβ](Z) ΦαŻβ + c.c.

]

(4.39)

where

Cαβ = Fαβ + Zγ∂αFγβ . (4.40)

The full component expression of this Lagrangian is written in Appendix B. Its bosonic part
(B.4) depends on the holomorphic antisymmetric tensor C[αβ]. The expression (4.30) corre-
sponds to the particular choice of constant real Fαβ = Cαβ .

Alternatively, one can express the Lagrangian of this deformed Kähler model via an even
number of real (1, 2, 1) multiplets [obviously, (2, 4, 2) = (2, 2, 0) + (0, 2, 2) = (1, 2, 1) +
(1, 2, 1)]. The model represents then a particular case of the quasicomplex de Rham model
(4.9), with the metric g(MN) and the real antisymmetric tensor b[MN ] having a particular form
depending on the Hermitian hαβ̄ and the holomorphic C[αβ] in Eq.(4.30).

5 Conclusions.

We list again here the most essential original observations made in this paper.

1. We derived the new simple representation (3.18) for the HKT supercharges. In contrast
to [24], the supercharges are expressed via complex coordinates and the fermion variables
with world (rather than the tangent space) indices. The second pair of the supercharges
involves the holomorphic matrix Imn of hypercomplex structure.

2. We presented the new quasicomplex Kähler – de Rham model (4.38) where, in addition
to the standard Kähler structure, the Lagrangian involves extra F -terms of a certain
particular form.

3. We have shown that the models of this kind are obtained after a Hamiltonian reduction
of HKT models. We discussed and justified the known recipe, according to which the
canonical velocities corresponding to the variables subject to reduction in the original
Lagrangian should be replaced by the auxiliary fields, ẏm → BM . In the beginning of
Sect. 4, we showed how the supertransformation laws of the original multiplet and the
reduced multiplet match. In Appendix A, we explored how the Hamiltonian reduction
works at the Lagrangian component level for a wide class of systems (not necessarily
supersymmetric.

It is interesting to see how this procedure works for CKT and OKT models. What kind
of models are obtained as a result of their Hamiltonian reduction ? This question is under
study now.
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Appendix A: Hamiltonian reduction in

component Lagrangian language.

As was discussed in the main text, the reduced component Lagrangian is obtained from the
original Lagrangian by trading time derivatives of the coordinates subject to reduction (in our
case, time derivatives of the imaginary coordinates parts) by auxiliary fields. We will illustrate
here how it works by an explicit calculation. Namely, we compare the reduced Hamiltonians
obtained by (i) Hamiltonian reduction from the original one and (ii) by the Legendre transfor-
mation from the reduced Lagrangian and show that they coincide.

Our starting point is the complex sigma model with the coordinates

zm = xm + iym , z̄m̄ = xm − iym . (A.1)

The metric tensor hmn̄ is Hermitian, but not necessarily real,

hmn̄ =
1

2

(

g(mn) + ib[mn]

)

. (A.2)

In the case when the real tensors g(mn) and b[mn] and other structures in the Hamiltonian do
not depend on the imaginary parts ym, we can perform the Hamiltonian reduction. Disregard
for simplicity the fermion variables (the recipe ẏm → BM works actually not only for SQM
where it is justified by comparing the supertransformation laws before and after reduction, but
also for purely bosonic systems) and consider the Lagrangian

L = hmn̄ż
m ˙̄zn̄ +Gmż

m + Ḡm̄ ˙̄zm̄ − V , (A.3)

where Gm, Ḡm̄ and V do not depend on the imaginary parts ym. 15

The corresponding Hamiltonian is

H = (π̄n̄ − Ḡn̄)(h
−1)n̄m(πm −Gm) + V . (A.4)

We represent now
πm = 1

2

(

p(x)m − ip(y)m

)

, π̄m̄ = 1
2

(

p(x)m + ip(y)m

)

. (A.5)

and perform the reduction. The reduced Hamiltonian is

Hred = 1
4
(h−1)NM(pN − 2ḠN)(pM − 2GM) + V , (A.6)

15We need not be concerned with their nature, though one can also note that, in the Dolbeault model we
are mostly interested in here (HKT models represent their particular case), Gm is associated with the gauge
potential. In the full Lagrangian that also includes fermions, Gm contains in addition a bilinear in fermions
term.
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where (h−1)NM ≡ (h−1)n̄m. We are now using capital Latin indices and are not displaying
anymore the superscript (x) for p.

On the other hand, the reduced Lagrangian is obtained from (A.3) by substituting ẏm → BM

(BM being the real auxiliary fields) and reads

Lred = hMN(ẋ
M + iBM )(ẋN − iBN ) +GM(ẋM + iBM ) + ḠM(ẋM − iBM)− V . (A.7)

Representing
GM = 1

2
(RM + iMM ) , ḠM = 1

2
(RM − iMM) . (A.8)

and excluding BM , we obtain

Lred =
1

2
GMN ẋ

M ẋN +
[

RM + bMK(g
−1)KNMN

]

ẋM − 1
2
(g−1)MNMMMN − V , (A.9)

where
GMN = gMN + bMK(g

−1)KLbLN . (A.10)

Bearing in mind that the tensor (h−1)NM entering (A.6) is expressed as

(h−1)NM = 2
[

(G−1)NM − i(G−1)NKbKL(g
−1)LM

]

, (A.11)

it is a straightforward exercise to verify that (A.6) and (A.9) are related to each other by the
standard Legendre transformation.

Appendix B: Component Lagrangians

B.1. Multiplets (4, 4, 0)

Superfield action (4.19) of interacting linear (4,4,0) multiplets yields the component La-
grangian L = Lb + L2f + L4f ,

Lb =
(

∆αβ
mn̄L

)

v̇mα ˙̄vn̄β , (B.1)

L2f = i
2

(

∆αβ
mn̄L

)(

ψm
α

˙̄ψn̄
β − ψ̇m

α ψ̄
n̄
β

)

+i
(

∂γk∆
αβ
mn̄L

)

v̇mα ψ̄
n̄
βψ

k
γ − i

(

∂̄γ
k̄
∆αβ

mn̄L
)

ψ̄k̄
γψ

m
α
˙̄vn̄β (B.2)

+ i
2

(

v̇kγ∂
γ
k − ˙̄vk̄γ ∂̄

γ

k̄

)(

∆αβ
mn̄L

)

ψm
α ψ̄

n̄
β ,

L4f = 1
4
ǫmp ǫk̄r̄

(

∆γδ

rl̄
∆βα

np̄L
)

ψm
α ψ

n
β ψ̄

k̄
γ ψ̄

l̄
δ , (B.3)

where ∂ α
m = ∂/∂vmα , ∂̄ α

m̄ = ∂/∂v̄m̄α and ∆αβ
mn̄L is defined by (4.20).
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B.2. Multiplets (2, 4, 2)

The component Lagrangian L̃ = L̃b + L̃2f + L̃4f of the superfield action (4.38) of interacting
linear chiral (2,4,2) multiplets has the following form

L̃b =
(

∂α∂̄β̄K
)

(

żα ˙̄zβ̄ + AαĀβ̄
)

− C[αβ] żαAβ − C̄[ᾱβ̄] ˙̄zᾱĀβ̄ , (B.4)

L̃2f = i
2

(

∂α∂̄β̄K
)

(

φ̄β̄φ̇α − ˙̄φβ̄φα + ϕ̄β̄ϕ̇α − ˙̄ϕβ̄ϕα
)

−1
2
C[αβ]

(

ϕαφ̇β − φαϕ̇β
)

+ 1
2
C̄[ᾱβ̄]

(

ϕ̄ᾱ ˙̄φβ̄ − φ̄ᾱ ˙̄ϕβ̄
)

− i
2

[(

∂α∂β∂̄γ̄K
)

żα −
(

∂̄ᾱ∂β ∂̄γ̄K
)

˙̄zᾱ
] (

φβφ̄γ̄ + ϕβϕ̄γ̄
)

−
(

∂α∂̄β̄∂̄γ̄K
)

Aαφ̄β̄ϕ̄γ̄ +
(

∂̄ᾱ∂β∂γK
)

Āᾱφβϕγ

−1
2
φγ

(

∂γC[αβ]
)

żαϕβ + 1
2
ϕγ

(

∂γC[αβ]
)

żαφβ

+1
2
φ̄γ̄

(

∂̄γ̄ C̄[ᾱβ̄]
)

˙̄zᾱϕ̄β̄ − 1
2
ϕ̄γ̄

(

∂̄γ̄ C̄[ᾱβ̄]
)

˙̄zᾱφ̄β̄ ,

(B.5)

L̃4f = −
(

∂α∂β∂̄γ̄ ∂̄δ̄K
)

φαϕβφ̄γ̄ϕ̄δ̄ , (B.6)

where ∂α ≡ ∂/∂zα, ∂̄ᾱ ≡ ∂/∂z̄ᾱ and Cαβ = ∂α(z
γFγβ), C̄ᾱβ̄ = ∂ᾱ(z̄

γ̄F̄γ̄β̄). Note the identities

∂αC[βγ] + ∂βC[γα] + ∂γC[αβ] = 0 , ∂̄ᾱC̄[β̄γ̄] + ∂̄β̄ C̄[γ̄ᾱ] + ∂̄γ̄ C̄[ᾱβ̄] = 0 . (B.7)

It is instructive to compare the Lagrangian (B.4) - (B.6) with the Lagrangian of a generic
quasicomplex N = 2 model derived in [1]. The expression of the Lagrangian (4.9) into the
components of (4.6) reads

L =
1

2
g(MN)

(

ẋM ẋN +BMBN
)

+ b[MN ]ẋ
MBN +

i

2
g(MN)

(

χ̄N∇χM −∇χ̄NχM
)

− 1

2
b[MN ]

(

χ̄N χ̇M − ˙̄χNχM
)

− 1

2
∂P∂Q

(

g(MN) + ib[MN ]

)

χM χ̄NχP χ̄Q

+GM,PQB
MχP χ̄Q − 1

2

(

∂Mb[NP ] + ∂Nb[MP ]

)

ẋPχM χ̄N , (B.8)

GM,PQ = ΓM,PQ − i

2

(

∂Mb[PQ] + ∂P b[QM ] + ∂Qb[MP ]

)

, (B.9)

with ΓM,PQ being the standard Christoffels for g(MN),

ΓM,PQ =
1

2

[

∂P g(MQ) + ∂Qg(MP ) − ∂Mg(PQ)

]

, (B.10)

and

∇ψM = ψ̇M + ΓM
NQẋ

NψQ . (B.11)

One can observe that the Lagrangian (B.8) involves among other terms the b-dependent
4-fermion term ∼ bχχ̄χχ̄ and the terms (∂b)Fχχ̄, which do not have a counterpart in (B.5),
(B.6). Well, one can explicitly show that, in the N = 4 case for particular b[MN ] depending on
holomorphic Cαβ , these contributions vanish, indeed.
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Appendix C: Reduction of general HKT models

We will construct here a generic form of the HKT prepotential in (4.13) allowing reduction and
show that the bosonic action of the reduced model coincides with (4.30) with generic Fαβ.

We define the superfields

Vm
α = Xm

α + iYm
α , Zα = X 1

α + iX 2
α , Ξα = Y1

α + iY2
α (C.1)

with bosonic component fields

vmα = xmα + iymα , zα = x1α + ix2α, ξα = y1α + iy2α . (C.2)

We consider now the operator ∆αβ
mn̄ entering (4.20) and express it in terms of z, z̄, ξ, ξ̄,

2∆αβ

11̄ =
∂2

∂zα∂z̄β
+

∂2

∂zβ∂z̄α
+ i

(

∂2

∂zα∂ξβ
− ∂2

∂zβ∂ξα
+

∂2

∂z̄α∂ξ̄β
− ∂2

∂z̄β∂ξ̄α

)

+
∂2

∂ξα∂ξ̄β
+

∂2

∂ξβ∂ξ̄α

2∆αβ

22̄
=

∂2

∂zα∂z̄β
+

∂2

∂zβ∂z̄α
− i

(

∂2

∂zα∂ξβ
− ∂2

∂zβ∂ξα
+

∂2

∂z̄α∂ξ̄β
− ∂2

∂z̄β∂ξ̄α

)

+
∂2

∂ξα∂ξ̄β
+

∂2

∂ξβ∂ξ̄α

2∆αβ

12̄
= i

(

∂2

∂z̄α∂zβ
− ∂2

∂zα∂z̄β

)

+
∂2

∂ξα∂zβ
− ∂2

∂zα∂ξβ
+

∂2

∂z̄α∂ξ̄β
− ∂2

∂z̄β∂ξ̄α

+i

(

∂2

∂ξ̄α∂ξβ
− ∂2

∂ξα∂ξ̄β

)

2∆αβ

21̄
= i

(

∂2

∂zα∂z̄β
− ∂2

∂z̄α∂zβ

)

+
∂2

∂ξα∂zβ
− ∂2

∂zα∂ξβ
+

∂2

∂z̄α∂ξ̄β
− ∂2

∂z̄β∂ξ̄α

−i
(

∂2

∂ξ̄α∂ξβ
− ∂2

∂ξα∂ξ̄β

)

. (C.3)

The second term in (4.26) is expressed via Z, Z̄,Ξ, Ξ̄ as

− 1
2
Cαβ

(

ZαΞβ + Z̄αΞ̄β
)

. (C.4)

It is linear in ξ, ξ̄, but the result of the action of (C.3) on (C.4) gives a constant not depending
on the imaginary parts of vmα entering ξ, ξ̄.

We generalize now (C.4) by introducing the following term in the prepotential

∆L = −1
2

[

Fαβ(Z)ZαΞβ + F̄αβ(Z̄) Z̄αΞ̄β
]

. (C.5)

It is not difficult to observe that only the mixed terms in (C.3) involving both z and ξ derivatives
give a nonzero result when acting on (C.5). The result does not depend on ξ, ξ̄ and is expressed
in the form (4.30). Q.E.D.
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