

Tritium speciation in environmental matrices by isotopic exchange

Anne-Laure Nivesse, Nicolas Baglan, Gilles F Montavon, Olivier Peron

▶ To cite this version:

Anne-Laure Nivesse, Nicolas Baglan, Gilles F Montavon, Olivier Peron. Tritium speciation in environmental matrices by isotopic exchange. MIGRATION 2019: 17th International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere, Sep 2019, Kyoto, Japan. in2p3-02291303

HAL Id: in2p3-02291303 https://hal.in2p3.fr/in2p3-02291303

Submitted on 8 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Tritium speciation in environmental matrices by isotopic exchange A-L. NIVESSE^{1,2*}, N. BAGLAN³, G. MONTAVON¹, O. PÉRON¹

¹ Laboratoire Subatech, Groupe Radiochimie, UMR 6457, IN2P3/CNRS/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP20722, 44307 Nantes Cedex 3, France (*<u>nivesse@subatech.in2p3.fr</u>)

² CEA, DAM, DIF, F-91297 Arpajon, France ³ CEA, DIF, DRF, JACOB, IRCM, SREIT, LRT, F-91297 Arpajon, France

Background

Tritium (³H) the radioactive isotope of hydrogen is a beta emitter with a half-life of 12.312 (25) years [1]. It can integrate organics molecules of living organisms by following the water cycle and form the organically bound tritium fraction (OBT). In 2017, the IRSN published a report on the update of knowledge on tritium in the environment [2], taking up some of the questions that have been waiting to be answered since the publication of the Livre Blanc du Tritium by ASN in 2010 [3]. Among these, those concerning the behavior, fate and speciation of this radionuclide in the environment are still relevant. The existence of two forms of OBT is commonly accepted: a non-exchangeable fraction (NE-OBT) and an exchangeable fraction (E-OBT) with the near environment. However, there is no consensus on their 9.000-980 definition, therefore several one can be found in the literature.

OBJECTIVE : The main goal is to improve the global understanding of tritium exchange mechanisms in environmental matrices, to validate the E-OBT and NE-OBT information and to develop the knowledge about tritium migration processes in the environment.

Experimental approach

Isotopic exchange « hard way »

In a tritium free water bath, tritium atoms in the exchangeable position are exchanged with the hydrogen atoms of the bath : E-OBT fraction is removed from the sample. E-OBT is measured in the exchange bath and NE-OBT remaining in the sample after combustion [4].

Isotopic exchange « soft way »

The samples are exposed to different tritiated atmospheres in order to set up a tritium vapor phase line, with controlled and stable temperature and relative humidity parameters. This method makes it possible to determine the fraction of exchangeable hydrogen (α_{iso}) in the sample [5].

The method leads to a potential solubilisation of a part of the sample. A proportion of the NE-OBT fraction may contribute to the E-OBT fraction measurement, which can induce an analytical bias. Solubilisation is currently estimated by elemental CHNS-O analysis of the sample before and after exchange.

Results and discussion

1. Humic substances :

Humic substances (HS) are part of the soil organic matter. Their molecular structures complexity favors the presence of BT [6].

HS functional groups characterizations

Stevenson (1982), α_{th} = 42 %

Chemosphere ELSEVIER Journal homepage: www.elsevier.com/locate/chemosphere Towards speciation of organically bound tritium and deuterium:	Chemosphere journal homepage: www.elsevier.com/locate/chemosphere Towards speciation of organically bound tritium and deuterium: Quantification of non-exchangeable forms in carbohydrate molecules 0. Péron ^{a.} , E. Fourré ^b , L. Pastor ^{c.1} , C. Gégout ^a , B. Reeves ^a , H.H. Lethi ^a , G. Rousseau ^a , N. Badan ^d , C. Londerman ^a , F. Sichet ^c , C. Montavan ^a		Contents lists available at ScienceDirect
ELSEVIER journal homepage: www.elsevier.com/locate/chemosphere Towards speciation of organically bound tritium and deuterium:	journal homepage: www.elsevier.com/locate/chemosphere Towards speciation of organically bound tritium and deuterium: Quantification of non-exchangeable forms in carbohydrate molecules O. Péron ^{a,*} , E. Fourré ^b , L. Pastor ^{c,1} , C. Gégout ^a , B. Reeves ^a , H.H. Lethi ^a , G. Rousseau ^a , N. Bardan ^d , C. Landersman ^d , E. Sickler ^{c, c} , Montavon ^a	6	Chemosphere
Towards speciation of organically bound tritium and deuterium:	Towards speciation of organically bound tritium and deuterium: Quantification of non-exchangeable forms in carbohydrate molecules O. Péron ^{a,*} , E. Fourré ^b , L. Pastor ^{c,1} , C. Gégout ^a , B. Reeves ^a , H.H. Lethi ^a , G. Rousseau ^a , N. Bardan ^d , C. Landerman ^a , E. Sicket ^{c,C} , C. Montyan ^a	ELSEVIER	journal homepage: www.elsevier.com/locate/chemosphere
Quantification of non-exchangeable forms in carbohydrate molecules	O. Péron ^{a,*} , E. Fourré ^b , L. Pastor ^{c, 1} , C. Gégout ^a , B. Reeves ^a , H.H. Lethi ^a , G. Rousseau ^a ,		

 \rightarrow The (α_{iso}) parameter determination highlights the BT form in a matrix by confrontation with the $(\alpha_{theoretical})$ parameter obtained from molecular models of the matrix constituents.

2. Myriophyllum Spicatum (La Loire, France) and wheat carbohydrates (OBT WG) :

	Previous works [5]		This work	
	Wheat grains (OBT WG)	Alpha and microcristalline cellulose	Carbohydrates* (wheat grains OBT WG)	<i>Myriophyllum Spicatum (</i> La Loire, France)
(α_{th})	30 %	30 %	31.6 %	30 %
$(\boldsymbol{\alpha}_{iso})$	31 ± 1 %	21 ± 1 % and 13 ± 1 %	31.1 ± 1.0 %	26.4 ± 0.5 %
$(\pmb{lpha_{th}})$ vs $(\pmb{lpha_{iso}})$		#		#

bohydrates :
bohydrates :

- 85 % of starch (α_{th} = 30 %)
- 15 % of maltose (α_{th} = 36.4 %)

Molecular model of cellulose

- Exchangeable capacity model based on major constituent is validated for cereals matrices type.

Method

	1 / 6	р <u>Г</u>
	0-	соон

Andreux et al. (1994), $\alpha_{th} = 22-30 \%$

α _{depro}	Calculated	15 ± 11 %	16 ± 7 %
$\alpha_{total OH}$	ISO14900:2017 method	15 ± 7 %	15 ± 6 %
$\alpha_{carboxyl}$	Ca(OAc) ₂ method	0.14 ± 0.07 %	0.56 ± 0.03 %
$\alpha_{total \ acidity}$	Ba(OH) ₂ method	14.3 ± 2.0 %	14.5 ± 1.3 %

HS-Li

Richard (2002), $\alpha_{th} = 19 \%$

<u>Conclusion</u>: Humic substances (HS) isotopic exchange demonstrates a higher exchangeable capacity than characterizations of functional groups, pointing out the limitations of the standard methods in evaluating accessibility, reactivity and migration of the hydrogen element in soils.

HS-Le

- Molecular structure and conformation are responsible for the buried tritium (BT) form.

	Wheat grains (OBT WG)	Alpha and microcristalline cellulose	Carbohydrates* (wheat grains OBT WG)	<i>Myriophyllum Spicatum</i> (La Loire, France)
NE-OBT (Bq.L ⁻¹) « soft way »	30.3 ± 2.6	_	24.3 ± 2.1	26.5 ± 2.3
NE-OBT (Bq.L ⁻¹) « hard way »	33.1 ± 2.6	_	32.7 ± 2.5	33.7 ± 3.1
NE-OBT deviation	8.5 ± 1.0 %	-	25.8 ± 2.9 %	21.3 ± 2.7 %

<u>Conclusion</u>: Analytical bias leaded by « hard way » isotopic exchange is verified according to the solubility properties of the studied matrix.

— Perspectives	References
Analytical concerns: Apple and simple carbohydrates (OBT WG)	 [1] LNHB, Mini Table de Radionucléides 2015, EDP Sciences, Les Ulis, 2015. [2] IRSN, 2017, Actualisation des connaissances acquises sur le tritium dans l'environnement. IRSN/PRP-ENV/SERIS 2017-00004 [3] ASN, 2010, Livre Blanc du Tritium.
Speciation concerns: Evolution of the (α_{iso}) parameter depending on the degree of crystallinity of cellulose and environmental matrices applications.	 [4] Baglan, N., et al. (2010). Métrologie du tritium dans différentes matrices: cas du tritium organiquement lié (TOL). Radioprotection, 45(3), 369-390. [5] Péron, O., et al. (2018). Towards speciation of organically bound tritium and deuterium: Quantification of non-exchangeable forms in carbohydrate molecules. Chemosphere 196 120-128. [6] Pansu, M., & Gautheyrou, J. (2007). Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer Science & Business Media.

Conclusions: