Anton Poluektov

TensorFlow as a compute engine in HEP analyses Experience with amplitude analyses at LHCb

Introduction

Different patterns of high-performance computing usage in HEP:

Filtering, histogramming, etc. of large datasets.

Machine learning tasks: jet, cluster reconstruction, particle identification, etc.

Heavy computations on relatively small datasets

Only covering the latter use case.

A typical pattern for many analyses in flavour physics.

Although relatively small dataset has rather broad meaning (10-100 of millions of events for charm datasets at LHCb, expect more after upgrade).

Example: pentaquark discovery: [PRL 115 (2015) 072001] ∼ 26000 events, 6D kinematic phase space, unbinned maximum likelihood fit Something else to take into account in addition to the theory model: Acceptance and backgrounds.

Parametrised multidim. density, ∼ easy.

Resolutions, partially reconstructed states.

Integration/convolution: expensive computations

Unbinned maximum likelihood fit.

-

ln L = - ln f (x data) -N data ln f (x norm)
Easily vectorised (compute PDF values for each data/normalisation point in parallel).

Typically need hundreds/thousands of fits for a single analysis:

Model building

Nominal data fit

Systematic variations

Toy MC studies The problem with frameworks is that they are not flexible enough.

Trying to do something not foreseen in the framework design becomes a pain.

Non-scalars in the initial/final states

Complicated relations between fit parameters

Fitting projections of the full phase space/partially-rec decays

At some point, it becomes easier to write an own framework (that's why there are so many?)

For the analyses that go beyond a readily available frameworks, need a more flexible solution:

Efficient from the computational point of view

Tradeoff between person×hours to implement the code vs. CPU×hours to do the actual fits. We can reuse the tools developed by a much broader ML community for our needs.

Anton TensorFlow: minimisation algorithms

TensorFlow has its own minimisation algorithms:

Placeholder for data y = tf.placeholder(tf.float32, shape = (None))

Define chi2 graph using previously defined function f chi2 = (f-y)**2 # TF optimiser is a graph operation as well train = tf.train.GradientDescentOptimizer(0.01).minimize(chi2)

Run 1000 steps of gradient descent inside TF session for i in range(1000) : sess.run(train, feed_dict = { x : [1., 2., 3., 4., 5.], # Feed data to fit to y : [3., 1., 5., 3., 2.] }) print(sess.run ([a,w,p])) # Watch how fit parameters evolve Built-in minimisation functions seem to be OK for ANN training, but not for physics (no uncertainties, likelihood scans, check for global minimum)

MINUIT seems more suitable. Use it instead, and run TF only for likelihood calculation (custom FCN in python, run Minuit using PyROOT).

Anton Poluektov

TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 13/30

Analytic gradient

Extremely useful feature of TF is automatic calculation of the graph for analytic gradient of any function (speed up convergence!) tfpars = tf.trainable_variables() # Get all TF variables grad = tf.gradients(chi2, tfpars) # Graph for analytic gradient This is called internally in the built-in optimizers, but can be called explicitly and passed to MINUIT.

Partial execution

In theory, TF should be able to identify which parts of the graph need to be recalculated (after, e.g. changing value of tf.Variable), and which can be taken from cache.

In practice, this does not work between sess.run calls, but there is a possibility to inject a value of a tensor in sess.run using feed_dict manually. def Wignerd(theta, j, m1, m2) : """ Calculate Wigner small-d function. Needs sympy. theta : angle j : spin m1 and m2 : spin projections """ from sympy.abc import x from sympy.utilities.lambdify import lambdify from sympy.physics.quantum.spin import Rotation as Wigner d = Wigner.d(j,m1,m2,x).doit().evalf() return lambdify(x, d, "tensorflow")(theta) TF can serve as a framework for maximum likelihood fits (and amplitude fits in particular). Missing features that need to be added:

ROOT interface to read/write ntuples (use root-numpy or uproot)

MINUIT interface for minimisation. Library of HEP-related functions.

Trying to be as much functional as possible: pure functions, stateless objects. where inner index corresponds to event/candidate, outer to the phase space variable. E.g. 10000 Dalitz plot points would be represented by a tensor of shape (10000, 2).

In the fitting script, you would start from the definitions of phase space, fit variables and fit model: Fit model f (x) enters likelihood via data and normalisation terms: Similarly, complex combinations of fit parameters are easily constructed, e.g. CP-violating amplitudes

-ln L = - ln f (x data) -N data ln f (x
a ± = (ρ CPC ± ρ CPV)e i(δ CPC ±δ CPV) Example: [Ξ - b → pK -K -CPV-enabled toy MC]
Anton Poluektov TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 27/30

Isobar models implemented with helicity formalism and "simple" line shapes (Breit-Wigner, Gounaris-Sakurai, Flatté, LASS, Dabba, etc.).

Examples in [TensorFlowAnalysis/work]

Traditional Dalitz plot

D 0 → K 0 S π + π - Baryonic Λ 0 b → D 0 pπ - Anton Poluektov
TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 28/30

CPU profiling

Profiling feature allows to identify bottlenecks in execution speed.

Breakup of operations by CPU core (32-core Xeon).

 Fitting function: a coherent sum of ∼ 20 helicity amplitudes ← Decay density ← Amplitudes for intermediate resonances ← Complex couplings ← Dynamical term Angles entering the expressions are functions of 6D decay kinematics (Lorentz boosts, rotations). Anton Poluektov TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 4/30

"

 TensorFlow is an open source software library for numerical computation using data flow graphs." Released by Google in October 2015.Uses declarative programming paradigm: instead of actually running calculations, you describe what you want to calculate (computational graph) TF can then do various operations with your graph, such as:Optimisation (e.g. caching data, common subgraph elimination to avoid calculating same thing many times). Compilation for various architectures (multicore, multithreaded CPU, GPU, distributed clusters, mobile platforms). Analytic derivatives to speed up gradient descent.Front-ends for several languages. Python is the most natural. Faster development cycle, more compact and readable code. Anton Poluektov TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 9/30 What is said below is mostly applied to TensorFlow v1. I mostly have experience with TF v1, and the library I'm speaking about is made for this version. TF v2 is significantly different: The distinction between declaration and execution is less expressed ("Eager mode") Easier to debug (e.g. can print out intermediate results), but more difficult to figure out what happens under the hood. More about migration to v2 towards the end of the presentation. Anton Poluektov TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 10/30 TF represents calculations in the form of directional data flow graph. Nodes: operations Edges: data flow f = a*tf.sin(w*x + p) Data are represented by tensors (arrays of arbitrary dimensionality) Most of TF operations are vectorised, e.g. tf.sin(x) will calculate element-wise sin x i for each element x i of multidimensional tensor x. Useful for ML fits, need to calculate same function for each point of large dataset. Input structures are: Placeholders: abstract structure which is assigned a value only at execution time. Typically used to feed training data (ML) or data sample to fit to (our case). Variables: assigned an initial value, can change the value over time.Tunable parameters of the model.

 phsp = DalitzPhaseSpace(ma, mb, mc, md) # Phase space # Fit parameters mass = Const(0.770) width = FitParameter("width", 0.150, 0.1, 0.2, 0.001) a = Complex(FitParameter("Re(A)", ...), FitParameter("Im(A)", ...)) def model(x) : # Fit model as a function of 2D tensor of data m2ab = phsp.M2ab(x) # Phase space class provides access to individual m2bc = phsp.M2bc(x) # kinematic variables ampl = a*BreitWigner(mass, width, ...)*Zemach(...) + ... return Abs(ampl)**2 Anton Poluektov TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 25/30

 Writing an amplitude fitting code from scratch is painful and time consuming.

	Several frameworks are in use at LHCb:		
	Laura++		
	A powerful tool for traditional 2D Dalitz plot analyses (including	
	time-dependent)		
	Single-threaded, but many clever optimisations	
	MINT			
	Can do 3-body as well as 4-body final states	
	GooFit			
	GPU-based fitter		
	AmpGen		
	Amplitude analysis extension for GooFit (code generation, JIT).	
	Ipanema-β		
	GPU-based, python interface (pyCUDA)		
	qft++			
	Not a fitter itself, but a tool to operate with covariant tensors	
	... and a lot of private code in use (e.g. based on RooFit).	
	Anton Poluektov	TensorFlow as a compute engine in HEP analyses	HSF WLCG workshop, 11-13 May 2020	6/30

Anton Poluektov

TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 5/30

 To build a graph, you define inputs and TF operations acting on them:

	import tensorflow as tf	
	# define input data (x) and model parameters (w,p,a)	
	x = tf.placeholder(tf.float32, shape = (None))	
	w = tf.Variable(1.)	
	p = tf.Variable(0.)	
	a = tf.Variable(1.)	
	# Build calculation graph	
	f = a*tf.sin(w*x + p)	
	# Create TF session and initialise variables	
	init = tf.global_variables_initializer()	
	sess = tf.Session()	
	sess.run(init)		
	# Run calculation of y by feeding data to tensor x	
	f_data = sess.run(f, feed_dict = { x : [1., 2., 3., 4.] })
	print(y_data)	# [0.84147096 0.90929741 0.14112	-0.7568025]

Anton Poluektov

TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 11/30

TensorFlow: graph building and execution (note that calculation graph is described using TF building blocks. Can't use existing libraries directly)

Nothing is executed at this stage. The actual calculation runs in the TF session:

Input/output in sess.run is numpy arrays.

Anton Poluektov TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 12/30

 Experimental data are represented in TensorFlowAnalysis as a 2D tensor

	data[candidate][variable]
	def RelativisticBreitWigner(m2, mres, wres) :
	return 1./Complex(mres**2-m2, -mres*wres)
	def UnbinnedLogLikelihood(pdf, data_sample, integ_sample) :
	norm = tf.reduce_sum(pdf(integ_sample))
	return -tf.reduce_sum(tf.log(pdf(data_sample)/norm))
	Avoid complicated structure of classes:
	Primitives are standalone and can be reused in e.g. other libraries
	Easier for external developers to contribute
	Primitives are glued together in TF itself.

Anton Poluektov

TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 16/30

 Benchmark runs (fit time only), compare 2 machines.CPU1: Intel Core i5-3570 (4 cores @ 3.4GHz, 16Gb RAM) GPU1: NVidia GeForce 750Ti (640 CUDA cores @ 1020MHz, 2Gb VRAM, 88Gb/s, 40 Gflops DP) CPU2: Intel Xeon E5-2620 (32 cores @ 2.1GHz, 64Gb RAM) GPU2: NVidia Quadro p5000 (2560 cores @ 1600MHz, 16Gb VRAM, 320Gb/s BW, 280 Gflops DP) GPU3: NVidia K20X (2688 cores @ 732MHz, 6Gb VRAM, 250Gb/s BW, 1300 Gflops DP) → K 0 S π + π -, 100k events, 500 × 500 norm.

				Time, sec	
		Iterations CPU1 GPU1 CPU2 GPU2 GPU3
	D 0 Numerical grad.	2731	488	250	113	59
	Analytic grad.	297	68	36	18	12
	D 0 → K 0 S π + π -, 1M events, 1000 × 1000 norm.		
	Numerical grad.	2571	3393	1351	937	306
	Analytic grad.	1149	1587	633	440	148
	Λ 0 b → D 0 pπ -, 10k events, 400 × 400 norm.		
	Numerical grad.	9283	434	280	162	157
	Analytic grad.	425	33	23	18	21
	Λ 0 b → D 0 pπ -, 100k events, 800 × 800 norm.		
	Numerical grad.	6179	910	632	435	266
	Analytic grad.	390	133	62	126	32

Anton Poluektov

TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 29/30

TensorFlowAnalysis: benchmarks

D 0 → K 0 S π + π

-amplitude: isobar model, 18 resonances, 36 free parameters Λ 0 b → D 0 pπ -amplitude: 3 resonances, 4 nonres amplitudes, 28 free parameters Anton Poluektov TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 30/30

Components of the library:

Phase space classes (Dalitz plot, four-body, baryonic 3-body, angular etc.): provide functions to check if variable is inside the phase space, to generate uniform distributions etc.

Fit parameter class: derived from tf.Variable, adds range, step size etc. for MINUIT Interface for MINUIT, integration, unbinned log. likelihood Functions for toy MC generation, calculation of fit fractions. Collection of functions for amplitude description: TensorFlow: issues TF is heavy (distribution size, loading time) E.g. impacts performance if the large number of quick and simple fits has to be done.

Memory usage: can easily exceed a few Gb of RAM for large datasets (charm) or complicated models.

Especially with analytic gradient Limiting factor with consumer-level GPU. Tesla V100 works great, but $8000...

Double precision performance is essential

Single precision not sufficient except for simplest models, poor convergence. Again, look for high-end GPU cards for performance.

Results are not 100% reproducible between different GPUs and CPU

Further developments

It is clear that TF v1 support should be dropped. Can make some changes at the same time.

New library that is a successor of TensorFlowAnalysis, but based on TF v2: AmpliTF As any generic solution, possibly not as optimal as specially designed tool. But taking development time into account, very competitive. Establishing communication between TFA/AmpliTF, zfit and ComPWA/tensorwaves.

Other TF-based packages I became aware of: VegasFlow (Monte-Carlo techniques), internal BESIII/LHCb library by UCAS (Beijing). Should we organise under the Scikit-HEP umbrella?

Anton Poluektov TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11-13 May 2020 23/30