

The MYRRHA Superconducting linac - Fault-tolerant design and developments

Frédéric Bouly

► To cite this version:

Frédéric Bouly. The MYRRHA Superconducting linac - Fault-tolerant design and developments. Technology and Components of Accelerator-Driven Systems (TCADS-4), Oct 2019, Antwerpen, Belgium. in2p3-03062188

HAL Id: in2p3-03062188 https://hal.in2p3.fr/in2p3-03062188

Submitted on 18 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The MYRRHA Superconducting linac Fault-tolerant design and developments

Technology and Components of Accelerator-Driven Systems (TCADS-4) Workshop

> Antwerpen, Belgium 14 October 2019

MYRRHA linac Goals

Design to follow the construction Phase approach :

- ♦ MINERVA (Phase 1) : 100 MeV
- MYRRHA: 600 MeV

High power proton beam (up to 2.4 MW)

	MYRRHA	MINERVA	
Proton energy	600 MeV	100 MeV	
Peak beam current	0.1 to 4.0 mA		
Repetition Rate	1 to 250 Hz		
Beam duty cycle	2.10 ⁻⁴ to 1	2.10 ⁻⁴ to 0.125 (on PTF) 2.10 ⁻⁴ to 0.875 (on FPBD)	
Beam power stability	< ± 2% on a time scale of 100 ms		
Beam current stability		< ± 2% over macropulse duration (To be confirmed)	
Beam footprint on reactor window / or PTF	Circular Ø 85 mm	To be specified	
Beam footprint stability	< ± 10% on a time scale of 1 s		
# of allowed beam trips on reactor longer than 3 sec	10 maximum per 3-month operation period		
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day		
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited		

MYRRHA and MINERVA main proton beam specifications

Extreme reliability

2012, New Orleans Louisiana, USA, 2012

D. Vandeplassche et al., "Accelerator Driven Systems", Proc. IPAC

A. Bargallo, "ESS reliability and availability approach", ARW 2015, Knoxville, Tennessee

Linac layout

- ♦ Reliability guidelines for the ADS accelerator design:
- Robust design i.e. robust optics, simplicity, low thermal stress, operation margins...
- Reparability (on-line where possible) and efficient maintenance schemes
- Redundancy (serial where possible, or parallel) to be able to tolerate/mitigate failures

MINERVA Start-to-End Design

14/10/2019

- ♦ Lesson learned from previous R&D (FP6, FP7) and improvements
 - Previous design : section #1: spoke- section #2: 5-cell elliptical (β 0.51) section #3: 5-cell elliptical (β 0.7)
 - 1. Increase the longitudinal acceptance, minimise longitudinal losses risks
 - → Decrease the RF synchronous phase of 1st cavity + minimize emittance growth in the MEBT particularly (New design)
 - 2. Section #2 : 5-Cell elliptical cavities too sensitive to mechanical perturbations for CW operation
 - \rightarrow Use double Spoke cavity : ESS design
 - 3. Improve longitudinal matching at the entrance of the high beta elliptic section
 - \rightarrow Ensure phase advance continuity

Enable Fault Compensation

♦ Independently-powered cavities w. moderate E_{acc} (<u>30% margins</u>) to ensure a fault-tolerant capability

Baseline (to be performed in less than 3sec):

1. The RF fault is detected (or anticipated) via suited dedicated diagnostics and interlocks, and a fast beam shut-down is triggered.

2. The new correcting field and phase set-points (calculated from model and Stored in a data base) are updated.

3. The failed cavity is quickly detuned to avoid the beam loading effect.

4. Once steady-state is reached, beam re-injection is triggered.

Cavity Accelerating Gradient

Architecture - Reference solution

Section #	#1	#2	#3
E _{input} (MeV)	16.6	101.4	172.3
E _{output} (MeV)	101.4	172.3	601.6
Focusing type	Normal conducting quadrupole doublets		
Cavity technology	Single Spoke	Double Spoke	Elliptical
Cavity frequency (MHz)	352.2		704.4
Cavity optimal β	0.375	0.495	0.705
Nb. of cav. / cryomodule	2	2	4
Total nb of cavity	60	18	72
Nb. of cells / cavity	2	3	5
B _{pk} /E _{acc} * (mT/MV/m)	7.3	8.75	4.6
E_{pk}/E_{acc}^{*}	4.3	4.4	2.5
R/Q** (ohms)	217	427	315
Nominal E _{acc} (MV/m) *	7.0	6.8	11.0
Max. E _{acc} (MV/m) *	9.1	9.0	14.3
Synchronous phase (deg)	-45 to -15		-35 to -15
4 mA beam load / cav (kW)	1.1 to 8.4	8.2 to 16.4	2.9 to 31.9
Q _L	1.5 10 ⁶	2.1 10 ⁶	6.9 10 ⁶
Nominal Qpole grad. (T/m)	5.1 to 7.9	3.8 to 4.3	4.4 to 6.0
Section length (m)	91.2	36.3	121.0

* E_{acc} is given at β_{opt} normalised to $L_{acc} = Ngap.\beta.\lambda/2$

**R/Q is given at $\dot{\beta}_{\textit{opt}}$ with the "linac" definition

Linac tuning

TraceWin - CEA/DRE/Info/DAC

Zero-current phase advance (per meter) law and tuning set-points in the Hofmann diagram (after section matching).

Longitudinal acceptance (white area of the plot) and considered 16.6 MeV input beam distribution.

Evolution of the RMS normalised emittances along the linac.

Fault recovery : beam dynamics feasibility

- Beam dynamics already studied with different scenarios and multiple failures
 - Example with multiple failures :
 - Section #1: 1 Spoke cavity
 - Section #2: 1 Cryomodule (i.e. 2 cavities)
 - Section #1: 1 elliptical cavity
- ♦ Feasibility of beam retuning have been assessed
- Losses (> 1W/m) can occur when tested on a non perfect machine (statistic errors analysis)
- Fault compensation may induce emittance growth and longitudinal acceptance decrease

Method development for retuning

Soal develop an algorithm to be able to quickly pre-calculate any cavity failure case and find optimisation to be less aggressive on the beam.

Second Example with the compensation of one failed cavity

Based on several criterions

• <u>1st criterion</u>: recover the same transfer matrix (longitudinal plane) of the retuned area than in nominal condition

- In this case 4 non-linear equations, 4 unknowns (k_i)
- > Find the best compromise on k_i : solve nonlinear least-squares problem.

$$\begin{bmatrix} \delta\phi\\ \delta\phi' \end{bmatrix}_{OUT} = \begin{bmatrix} \cos(k.L_c) & \frac{1}{k}\sin(k.L_c)\\ -k\sin(k.L_c) & \cos(k.L_c) \end{bmatrix}_{Cavity} \cdot \begin{bmatrix} \delta\phi\\ \delta\phi' \end{bmatrix}_{IN} \qquad k = \sqrt{\frac{\omega_{RF}}{m_0 \, c^3 \, \beta^3 \gamma^3} \, q \, Eacc \sin(\phi_S)}$$

In2p3

 $\Delta W_1 + \Delta W_2 + \Delta W_3 + \Delta W_4 + \Delta W_5 = \Delta W_{Tot} = \Delta W_1^R + \Delta W_2^R + \Delta W_3^R + \Delta W_4^R$

Energy gain per cavity: $\Delta W = q V_c Cos(\phi_s)$

• <u>3rd criterion</u>: the time of flight should remain the same than in the nominal case

> Assumption on the cavity time of flight:
$$T_{i} = \frac{L_{c}}{\frac{(\beta_{i-1} + \beta_{i}).c}{2}}$$
$$c. T_{Tot} = \frac{l}{\beta_{1}^{R}} + \frac{L}{\beta_{4}^{R}} + \frac{(L + L_{c} + l)}{\beta_{2}^{R}} + 2L_{c} \left[\frac{1}{\beta_{0} + \beta_{1}^{R}} + \frac{1}{\beta_{1}^{R} + \beta_{2}^{R}} + \frac{1}{\beta_{2}^{R} + \beta_{4}^{R}} + \frac{1}{\beta_{4}^{R} + \beta_{5}}\right]$$

• Problem can be solved by optimization of β_i and k_i

> (ΔW_i ,k_i) \rightarrow (E_{acc}, $φ_s$) \rightarrow (Amplitude increase, Δ $φ_{RF}$)

> The solution with the simplified model is injected into the TraceWin model (that includes field maps) for fine (adjustments) tuning of the solutions

Example : failure compensation of a Spoke

Grepsble

MYRRHA Superconducting linac - TCADS-4 Workshop, Antwerp, Belgium - F. Bouly

Cluites

Fast failure compensation feasibility

Technological feasibility of fast retuning to be assessed experimentally

Spoke cryomodule development

MYRRHA Superconducting linac - TCADS-4 Workshop, Antwerp, Belgium - F. Bouly

In2p3

Cavity and control loops model

A model to study the technological feasibility of retuning procedures and to set the requirements on the cavity control loops, the tuning systems.

Accuracy requirement for beam stability

■ I. Martin-Hoyo, F. Bouly et al., "Optimized Adaptive Control for the MYRRHA Linear Accelerator: Control System Design for a Superconducting Cavity in a Particle Accelerator", in IEEE Control Systems Magazine, vol. 38, no. 2, pp. 44-79, April 2018.

- F. Bouly, Phd Thesis, 2011
- M. Dominiczak et al., SRF'19, Dresden, Germany, paper TUP002.

Matlab Simulink Model

Parameters

Param.	value
r/Q (@ β _{opt})	217
QL	1.5 10 ⁶
E _{acc nomi}	7.0 MV/m
E _{acc retuning} (+30 %)	9.1 MV/m
P _{max} Ampli RF	18 kW
I _b	4 mA

In2p3

Failure compensation – Fast cavity retuning

♦ A failed cavity can perturb the beam : it has to be detune

Goal : 14 kHz detuning in 1 seconde Total detuning capacity : > 100 kHz

14/10/2019

♦ MINERVA linac design

♦ next steps :

- ♦ Detailed definition of beam modes (peak curent, duty cycle) : from commissioning to operation
- Detailed definition of required beam diagnostics
- ♦ Update with mechanical engineering design & construction
- ♦ Upgrade HEBT design according to target & dump buildings/ experiments needs.

♦ Fault recovery procedures

- ♦ Fast recovery procedures to be tested on Spoke cryomodule prototype
- Algorithm for cavity set point calculation under developments (machine learning technics to be explored)
- Study to be carried out in close relation with reliability model development : evaluate the number of failure to be expected

THANK YOU

Special Thanks to: Didier URIOT (CEA) Nicolas GANDOLFO, Christophe JOLY, Luc PERROT, Hervé SAUGNAC (IPNO, CNRS) Emil TRAYKOV, Elian BOUQUEREL (IPHC, CNRS) Dominique BONDOUX, Maud BAYLAC, Emmanuel FROIDEFOND (LPSC, CNRS) Angélique GATERA, Dirk VANDEPLASSCHE (SCK•CEN) Maguy DOMINICZAK (ACS)

♦ Work supported by the European Atomic Energy Community's (EURATOM) H2020 Programme under grant agreement n°662186: MYRTE project.

♦ Work supported through a Cooperation Agreement on ADS between SCK●CEN and CNRS/IN2P3