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Abstract In case of rare decay events the lifetime or

the decay width is evaluated with low statistics. The un-

certainty has to be carefully evaluated. In this article,

we propose a Bayesian analysis of the lifetime and de-

cay width and derive simple formulas for their assigned

values and for the limits of the credible interval. The

results are applied to the decay of superheavy nuclei as

an illustration.
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1 Introduction

The heaviest elements produced so far were identified

by their alpha-decay chains. Since ambiguities in as-

signing decay properties of nuclei often arise from too

large uncertainties, these latter have to be carefully es-

timated. Among the experimental observables are the

time lapses between the implantation of the super-heavy

nucleus in the detector and the first alpha emission and

then the time lapses between two successive alpha emis-

sions. These time lapses are then used to calculate the

half-lives of various isotopes of the decay chain and the

dominant uncertainty in the case of few events arises

from the statistical distribution of the decay process.

Being {ti}, the time lapses associated to n events

of the decay of a given isotope, the half-life is simply

T1/2 = ln 2×τ . The lifetime τ is generally estimated by

the mean value of the observed decay times [1]

t̄ =
1

n

n∑
i=1

ti. (1)
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Given the lifetime τ , the probability to observe a

decay in the time interval [ti, ti + dti] is simply

p(ti|τ)dti with p(ti|τ) =
1

τ
e−ti/τ . (2)

And the probability density function to observe the de-

cay times {ti} associated with n independent events is

just the product of each individual probabilities:

p({ti}|τ) =

n∏
i=1

p(ti|τ) =
1

τn

n∏
i=1

e−ti/τ =
1

τn
e−nt̄/τ . (3)

It only depends on the mean value of the observed

events t̄ and their number n, which means that nt̄ is a

sufficient statistic, a concept introduced by Fisher [2].

Within the so-called frequentist statistics, we gen-

erally consider that the experiment is repeated a large

number of times to evaluate the uncertainty. We can
easily calculate the probability density function for the

mean value t̄ which takes into account all possible p({ti}|τ)

which conserve t̄. It is given by

p(t̄|τ, n) =

∫ ∞
0

. . .

∫ ∞
0

p({ti}|τ) δ

[
t̄− 1

n

n∑
i=1

ti

]
dt1 . . . dtn

=
nn+1

n!

t̄n−1

τn
e−nt̄/τ . (4)

This equation derived in Ref. [3] assumes that the num-

ber of events n is known. It gives statistical information

on the mean value of the decay times, t̄, not on the life-

time, τ which is a parameter. The latter is an estimator

of the former. To determine the uncertainty in the life-

time τ we should rather determine p(τ |t̄, n) which can

be deduced from p(t̄|τ, n) with the Bayes theorem [4].

With a large number of events, t̄ is a good estima-

tor of τ and the uncertainty in t̄ can be used as the

uncertainty in τ . But superheavy nuclei associated to

elements with an atomic number larger than 100 are
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produced in very small amounts. With low statistics,

we should definitively use p(τ |t̄, n) to estimate the life-

time τ and the uncertainty in τ . This is the purpose of

the present article.

2 Frequentist confidence interval

Characteristics of the probability density function p(t̄|τ, n)

given by Eq. (4), such as the standard deviation,

u(t̄) =
τ√
n
, (5)

depend on τ , the true value of the lifetime that is un-

known. However, this probability density function for t̄

or likelihood function for τ can give constrains on the

values that can be taken by τ .

The maximum likelihood estimation is generally used

to make inferences about the value of the parameter

that is most likely to have generated the sample. Here,

the maximum likelihood value of τ is t̄.

As for the confidence interval, it can be evaluated

with help of the cumulative probability function for the

dimensionless variable θ = t̄/τ ,

P (Θ) =

∫ Θ

0

nn+1

n!
θn−1e−nθ dθ, (6)

= 1− e−nΘ
n−1∑
k=0

(nΘ)k

k!
, (7)

which does not explicitly depend on τ . The confidence

interval is not unique on a probability density function.

Here we shall choose the equal-tailed interval where the

probability of being below the interval is as likely as

being above it. Such an interval is also called prob-

abilistically symmetric confidence interval. The lower

and upper limits of the confidence interval associated

to the confidence level α, Θ<α and Θ>α respectively, are

determined by inverting the equations

P (Θ<α ) =
1− α

2
and P (Θ>α ) =

1 + α

2
. (8)

The values of Θ<α and Θ>α have to be determined numer-

ically. Eventually, the confidence interval associated to

the confidence level α for the true value of the lifetime,

τ , is [t̄/Θ>α , t̄/Θ
<
α ].

The limits of the confidence interval in most pub-

lications reporting results on superheavy nuclei decay

are determined with approximate formulas given in Ref.

[3] which are reproduced from an earlier edition of the

textbook [5]:[
t̄

1 + kα√
n

,
t̄

1− kα√
n

]
, (9)

where kα is the coverage factor associated to the con-

fidence level α for a Gaussian density function. This

approximate upper limit formula diverges for kα = 1

and n = 1. Thus, Ref. [3] recommends to only apply

these approximate formulas for n ≥ 2 when kα = 1.

Note that a higher number of events is necessary for

larger values of the coverage factor.

3 Bayesian evaluation of the uncertainties in

the lifetime

3.1 Bayes theorem

Bayes theorem [6], first applied to physics by Laplace

who independently rediscovered it [7,8], relates the two

inverse probability density functions p(τ |t̄, n) and p(t̄|τ, n):

p(τ |t̄, n) =
p(τ)p(t̄|τ, n)∫∞

0
p(τ)p(t̄|τ, n)dτ

, (10)

where the prior probability p(τ) includes all available

information on τ before the measurement.

The main difference with the frequentist framework

comes from the way the concept of probability itself is

interpreted. According to the frequentist definition of

probability, only repeatable random events have prob-

abilities that are equal to the long-term frequency of

occurrence of the events in question. In contrast, the

Bayesian framework views probabilities as degrees of

belief. The posterior probability density function p(τ |t̄, n)

obtained by applying Bayes theorem, Eq. (10), gives

access to the plausibility of having a given value for

the lifetime τ , considering information brought by the

prior probability, by the experimental results and by

the model.

For a pioneering measurement, the prior should be

non informative. The choice of a prior distribution in

the absence of any information about the system is a

delicate task and there are several possibilities [9]. We

shall consider two priors that are common in a physi-

cal context. Other priors, such as conjugate priors that

are an algebraic convenience, are not relevant for the

present study.

3.2 Prior

3.2.1 Uniform prior

The simplest choice for the prior is to select an equiprob-

able probability density function for positive values of

τ : p(τ) = Cθ(τ), where θ is the Heaviside step function.

Such a prior comes from the direct application of the

principle of indifference, which assigns equal probabili-

ties to all possibilities. Then, it is easy to calculate Eq.

(10) analytically.
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However, we could also have chosen the decay width

λ = 1/τ as a parameter to be estimated. Since

p(τ)dτ = − 1

λ2
p(λ)dλ, (11)

a uniform probability density function for τ does not

correspond to a uniform probability density function for

λ. Thus, choosing λ as a parameter to be constrained

with a uniform prior leads to different results.

In Ref. [10], for example, it is suggested to retain the

modes (most probable values) for both posterior proba-

bility density functions, p(τ |t̄, n) and p(λ|t̄, n), because

they are consistent: τm = 1/λm = t̄. However, charac-

teristics of the two probability distributions such as the

variances from the mode differ. Then, a uniform prior

for τ or λ is not suitable. We should find another prior

that is invariant with the change of parameter.

3.2.2 Jeffreys’ prior

Jeffreys’ prior [11] is a uninformative prior that is in-

variant by the change of parameter. Considering the

required invariance by changing τ into λ, we easily get

that

p(τ) ∝ θ(τ)

τ
and p(λ) ∝ θ(λ)

λ
. (12)

Applying Bayes theorem with such priors leads to

p(τ |t̄, n) =
(nt̄)n

(n− 1)!

1

τn+1
e−nt̄/τ (13)

p(λ|t̄, n) =
(nt̄)n

(n− 1)!
λn−1e−λnt̄. (14)

These posterior density functions are also invariant by

changing τ into λ. In the following we adopt Jeffreys’

prior because it takes into account both our indetermi-

nacy on the choice of the parameter and on the values it

can take, thus, being the least informative prior about

τ .

Note that p(τ |t̄, n) expressed just above differs from

p(t̄|τ, n) expressed by Eq. (4). Thus, the Bayesian pos-

terior probability density function is expected to lead

to results that differ from the frequentist ones.

3.2.3 Another approach

Experimental results give access to the complete set

of decay times {ti} that carries more information than

the mean value t̄ and the number of events n. Instead

of inverting p(t̄|τ, n) we could have directly inverted

p({ti}|τ) given by Eq. (3). Using Jeffreys’ prior, Bayes

theorem leads to

p(τ |{ti}) =
(nt̄)n

(n− 1)!

1

τn+1
e−nt̄/τ . (15)

Interestingly, this is exactly the same expression as for

p(τ |t̄, n). This is not a surprise: as already mentioned

in the introduction, nt̄ is a sufficient statistic, which

means that this quantity carries as much information

as all the results {ti} to determine the lifetime τ . Actu-

ally, the exponential probability density function that

characterises the decay of radioactive nuclei in Eq. (3) is

a typical example of the reduction to a sufficient statis-

tic in textbooks. See e.g. Ref. [5].

3.3 Lifetime and uncertainty

In Bayesian statistics, the posterior distribution con-

tains all the available information. It is depicted in Fig.

1 for n = 3 events.

This distribution should be used for any statisti-

cal inferences such as hypothesis testing, for example.

However, a point estimate is necessary when reporting

experimental results.

3.3.1 Lifetime

When estimating the expected value of an observable,

international standards [12] usually recommend to re-

tain the mean value because it encompasses all values.

Thus, the estimated value of the lifetime could be cho-

sen as the mean value τ̄ weighted by the posterior prob-

ability density function,

τ̄ =

∫ ∞
0

τp(τ |t̄) dτ =
n

n− 1
t̄. (16)

As we are considering a model parameter here, we

can also choose the mode or most probable value τm,

dp(τ |t̄)
dτ

∣∣∣∣
τ=τm

= 0, τm =
n

n+ 1
t̄. (17)

This is consistent with the choice of maximum likeli-

hood estimate in the frequentist approach. The mode

differs from the mean value.

Note that both points differ from the frequentist

estimator t̄. Of course, these differences vanish when the

number of events n is large. However, the ratio between

these two quantities,

τ̄

τm
=
n+ 1

n− 1
, (18)

is large when n is small: it is equal to 3 when n = 2

and to 2 when n = 3. Even with n = 10 the ratio is still

equal to 1.22.
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Fig. 1 Bayesian posterior probability density function p(τ |t̄, n) for n = 3 events in a dimensionless scale. The equal-tailed
credible interval is indicated in the top panel and the narrowest credible interval is indicated in the bottom panel. Both intervals
correspond to a confidence level α = 0.682 7.

3.3.2 Standard uncertainty

The standard deviation that gives an estimate of the

uncertainty can easily be calculated

u(τ) =
τ̄√
n− 2

, (19)

which means that at least 3 events are necessary.

As the probability density function is not symmet-

ric, the standard deviation is not sufficient to charac-

terise the posterior probability density function and we

cannot simply multiply the standard uncertainty by a

coverage factor to get a coverage interval associated to

a given confidence probability.

3.3.3 Credible intervals

Credible intervals in Bayesian statistics are analogous

to confidence intervals in frequentist statistics, although

they differ on a philosophical basis. In frequentist statis-

tics τ is fixed and cannot be considered to have a dis-

tribution of possible values. A frequentist confidence

interval with a confidence level α means that with a

large number of repeated samples, α100% of such calcu-

lated confidence intervals would include the true value

of the parameter. In Bayesian statistics, τ is a random

variable and the credible interval is an interval in the

domain of a posterior probability distribution that in-

cludes α100% of the values.

Credible intervals are not unique on a posterior dis-

tribution. We shall consider here two possibilities: the

equal-tailed interval and the narrowest interval which is

also sometimes called the highest posterior density in-

terval. Fig. 1 shows both possibilities for n = 3 events

and a confidence level α = 0.682 7. The shortest interval

differs appreciably from the equal-tailed credible inter-

val. It appears that highly probable values are excluded

from the latter. Consequently, the Guide to uncertainty

in measurements says that the shortest interval may be

more appropriate even if its determination is not simple

[12].

For both cases, we use the cumulative probability

function

P (τc) =

∫ τc

0

p(τ |t̄, n) dτ = e−nt̄/τc
n−1∑
k=0

1

k!

(
nt̄

τc

)k
, (20)
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to estimate numerically the limits of the credible inter-

vals associated to a given level of confidence.

Interestingly, we can easily show that the Bayesian

and the frequentist equal-tailed intervals coincide: With

a simple change of variable into θ = t̄/τ in the above

equation, we can show that∫ τ<α

0

p(τ |t̄, n) dτ =
1− α

2
(21)

is equivalent to∫ t̄/τ<α

0

nn+1

n!
θn−1e−nθ dθ =

1 + α

2
, (22)

which gives access to frequentist limit. Similarly for the

other limit.

3.4 Application to the alpha decay of 278Nh

As an example, we consider the three events of alpha-

decay of the 278Nh for which three times were measured:

t1 = 0.344 ms, t2 = 4.93 ms and t3 = 0.667 ms [13].

The mean value is t̄ = 1.98 ms and corresponds to the

frequentist estimate of the lifetime. The Bayesian pos-

terior probability density function p(τ |t̄, n) for n = 3

events is depicted in Fig. 1 in a dimensionless scale.

The most probable value for the lifetime of 278Nh is

τm = 1.49 ms and the mean value of posterior proba-

bility density function is τ̄ = 2.97 ms.

The approximate frequentist confidence interval given

by Eq. (9), with a coverage factor kα = 1, is [1.3; 4.7]

ms. However, with n = 3, these approximate formu-

las are not accurate. The exact equal-tailed frequen-

tist interval deduced from Eq. (8) for a confidence level

α = 0.682 7 is [1.28; 4.34] ms. As a comparison, we shall

consider the Bayesian credible intervals with the same

confidence level α = 0.682 7 depicted in Fig. 1. Applied

to the three decay events of 278Nh, the equal-tailed in-

terval [1.28; 4.34] ms and coincides with the frequentist

one. The narrowest credible interval is [0.81; 3.14] ms.

We shall first join the mean value and the equal-

tailed interval to compare the results to the frequentist

approach: with such a choice, the alpha decay of 278Nh

has a lifetime equal to

τ̄ = 3.0+1.4
−1.7 ms, with α = 0.682 7, (23)

which differs with the frequentist result published in

Ref. [13], 2.0+2.7
−0.7, with approximate values for the limit

of the confidence interval. We rather recommend the

choice of the mode with the shortest credible interval.

A Bayesian analysis with Jeffreys’ prior would finally

give for the alpha decay of 278Nh, a lifetime equal to

τm = 1.5+1.7
−0.7 ms, with α = 0.682 7. (24)

Note that we could have also combined the mean value

with the shortest interval as it is done in the examples

of the Guide to uncertainty in measurement [12],

We can also consider the case of 262Db, one of the

decay products of the 278Nh that was used for identifica-

tion in Ref. [13]. Two spontaneous fission events where

observed with decay times t1 = 40.9 s and t2 = 0.787

s and an alpha emission with a decay time t3 = 126 s.

Selecting the mode and the shortest credible interval,

these three events lead to a Bayesian lifetime equal to

τm = 42+47
−19 s with a confidence level α = 0.682 7. This

also differs from the frequentist result published in Ref.

[13]. But, this representation of the results also leads to

a compatibility with the reference value given in Ref.

[14]: τr = (49 ± 6) s. The conclusion would have been

the same with the equal-tailed credible interval.

4 Adding new data

If new data become available, it is easy to include them

by applying once again Bayes theorem. The posterior

obtained so far becomes the new prior. Denoting {t′j}
the set of n′ new results with a mean value t̄′, the up-

dated posterior,

p(τ |{ti, t′j}) =
(nt̄+ n′t̄′)n+n′

(n+ n′ − 1)!

1

τn+n′+1
e−(nt̄+n′ t̄′)/τ , (25)

is identical to the one obtained with a single set of n+n′

decay times.

5 Summary

Bayesian analysis is preferred when we have to rely on a

very small number of events to estimate the values that

can be taken by an observable. The posterior probabil-

ity density function, which combines the prior informa-

tion with the information provided by the experiment,

contains all available information on these values. In

the case of the lifetime of a radioactive nucleus, the

posterior probability density function can be calculated

analytically and it is given by Eq. (15). It provides the

plausibility of having a given value for the lifetime. As

nt̄ is a sufficient statistic, n and t̄ are the only quanti-

ties that need to be reported to determine the posterior

probability density function that should be used for any

evaluation.

Traditionally, experimental reports are reduced to

an expected value and a coverage interval or an uncer-

tainty. A simple formula is available for the mean poste-

rior value, Eq. (16), and the mode, Eq. (17). The limits

of the credible intervals have to be determined numer-

ically. Fig 2 shows the evolution of the shortest and
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Fig. 2 Narrowest and equal tailed Bayesian credible intervals
as a function of the number of events n for the dimensionless
variable τ/t̄. the approximate frequentist interval from Eq.
(9) is also represented, as well as the mean value and the
mode. The top panel corresponds to the level of confidence
α = 0.682 7 and the coverage factor kα = 1. The bottom
panel corresponds to the level of confidence α = 0.954 5 and
the coverage factor kα = 2.

equal-tailed credible intervals as a function of the num-

ber of events n for two confidence levels, α = 0.682 7

and α = 0.954 5. Mean posterior values and most prob-

able posterior values are also plotted.

When the number of events is large enough both

credible intervals coincide. However, they differ in an

appreciate manner for low statistics. Note that for n =

2, the 0.682 7 shortest interval does not include the

mean posterior value! And the mode is very close to the

lower limit of the equal-tailed credible interval, which

means that the latter does not include highly probable

values. Thus, the mode associated to the shortest credi-

ble interval should be selected. Whatever the choice, the

report should clearly indicate which value and which in-

terval have been selected because a reader interested in

Table 1 Limits of equal tailed credible interval as a function
of the number of events n for two confidence levels α = 0.682 7
and α = 0.954 5.

n τ<0.682 7/t̄ τ>0.682 7/t̄ τ<0.954 5/t̄ τ>0.954 5/t̄

2 0.606 1 2.824 0.351 9 8.690

3 0.646 8 2.194 0.408 2 5.031

4 0.675 9 1.918 0.449 4 3.781

5 0.698 0 1.760 0.481 4 3.159

6 0.715 8 1.657 0.507 6 2.787

7 0.730 4 1.584 0.529 5 2.538

8 0.742 8 1.529 0.548 3 2.359

9 0.753 4 1.486 0.564 7 2.225

10 0.762 8 1.451 0.579 2 2.119

10 0.762 8 1.451 0.579 2 2.119

11 0.771 0 1.422 0.592 1 2.034

12 0.778 4 1.398 0.603 8 1.963

13 0.785 0 1.377 0.614 4 1.903

14 0.791 1 1.359 0.632 9 1.853

15 0.796 6 1.343 0.641 2 1.809

16 0.801 6 1.329 0.641 2 1.771

17 0.806 3 1.316 0.648 8 1.737

18 0.810 7 1.305 0.655 9 1.706

19 0.814 7 1.294 0.662 6 1.679

20 0.818 5 1.285 0.668 8 1.654

the results for statistical inferences would need n and

t̄ to characterise the posterior probability density func-

tion.

The equal-tailed frequentist confidence interval co-

incides with the Bayesian equal-tailed credible inter-

val. The approximate frequentist interval limits given

by Eq. (9) are also represented in Fig. 2. It appears

that the simple approximate formulas can be used to

estimate the limits of the Bayesian equal-tailed cred-

ible interval when the number of events n ≥ 10 and

α = 0.682 7. However, these approximate limits only

join the limits of the shortest interval when n ≥ 40.

When the approximate formulas cannot be used, the

lower and upper limits of the credible interval for the

first values of the number of events n have to be tab-

ulated. Table 1 provides the limits of the equal tailed

credible interval for two confidence levels, α = 0.682 7

and α = 0.954 5 up to n = 20. And Table 2 provides

the limits of the narrowest credible interval for the same

confidence levels up to n = 50.

Since the change of variables from the tabulated val-

ues to real values of the limits of the credible interval

is linear, the interval remains the narrowest.
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Table 2 Limits of narrowest credible interval as a function of
the number of events n for two confidence levels α = 0.682 7
and α = 0.954 5.

n τ<0.682 7/t̄ τ>0.682 7/t̄ τ<0.954 5/t̄ τ>0.954 5/t̄

2 0.315 6 1.803 0.186 4 5.954

3 0.411 6 1.588 0.259 5 3.841

4 0.478 7 1.486 0.316 3 3.053

5 0.528 5 1.425 0.361 7 2.643

6 0.567 0 1.384 0.398 9 2.389

7 0.597 9 1.353 0.430 1 2.216

8 0.623 3 1.329 0.456 8 2.090

9 0.644 6 1.310 0.479 9 1.993

10 0.662 8 1.294 0.500 2 1.916

11 0.678 6 1.280 0.518 2 1.853

12 0.692 4 1.269 0.534 3 1.801

13 0.704 7 1.258 0.548 8 1.757

14 0.715 6 1.249 0.562 0 1.718

15 0.725 5 1.241 0.574 0 1.685

16 0.734 4 1.233 0.585 0 1.656

17 0.742 6 1.227 0.595 2 1.630

18 0.750 0 1.220 0.604 7 1.606

19 0.756 9 1.215 0.613 5 1.585

20 0.763 2 1.210 0.621 7 1.566

21 0.769 1 1.205 0.629 4 1.548

22 0.774 6 1.200 0.636 6 1.532

23 0.779 7 1.196 0.643 4 1.517

24 0.784 5 1.192 0.649 8 1.504

25 0.789 0 1.188 0.655 8 1.491

26 0.793 2 1.185 0.661 6 1.479

27 0.797 2 1.182 0.667 0 1.468

28 0.801 0 1.178 0.672 2 1.457

29 0.804 6 1.175 0.677 1 1.448

30 0.808 0 1.173 0.681 9 1.438

31 0.811 2 1.170 0.686 4 1.430

32 0.814 3 1.167 0.690 7 1.422

33 0.817 2 1.165 0.694 8 1.414

34 0.820 0 1.163 0.698 8 1.406

35 0.822 7 1.160 0.702 6 1.399

36 0.825 2 1.158 0.706 2 1.393

37 0.827 7 1.156 0.709 8 1.386

38 0.830 1 1.154 0.713 2 1.380

39 0.832 3 1.152 0.716 4 1.375

40 0.834 5 1.150 0.719 6 1.369

41 0.836 6 1.149 0.722 6 1.364

42 0.838 6 1.147 0.725 6 1.358

43 0.840 6 1.145 0.728 5 1.354

44 0.842 5 1.144 0.731 2 1.349

45 0.844 3 1.142 0.733 9 1.344

46 0.846 1 1.141 0.736 5 1.340

47 0.847 8 1.139 0.739 0 1.336

48 0.849 4 1.138 0.741 5 1.332

49 0.851 0 1.136 0.743 8 1.328

50 0.852 5 1.135 0.746 2 1.324
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