

From public alerts to gravitational-wave candidates during the LIGO-Virgo third observation run O3

Nicolas Arnaud

► To cite this version:

Nicolas Arnaud. From public alerts to gravitational-wave candidates during the LIGO-Virgo third observation run O3. 40th International Conference on High Energy Physics - ICHEP 2020, Jul 2020, Prague (virtual), Czech Republic. in2p3-03999155

HAL Id: in2p3-03999155 https://hal.in2p3.fr/in2p3-03999155

Submitted on 21 Feb 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. From public alerts to gravitational-wave candidates during the LIGO-Virgo third observation run O3

Nicolas Arnaud (<u>narnaud@lal.in2p3.fr</u>)

Laboratoire de Physique des Deux Infinis Irène Joliot-Curie (Université Paris-Saclay & CNRS/IN2P3) European Gravitational Observatory (Consortium, CNRS & INFN)

On behalf of the Virgo Collaboration and the LIGO Scientific Collaboration VIR-0158A-20 DCC G2000184

LIGO Scientific Collaboration

ICHEP – July 29, 2020

IIII EGO GRAVITATIONAL OBSERVATORY

Outline

- Detecting gravitational waves with the global LIGO-Virgo network
- The LIGO-Virgo third Observing Run: O3
- Detector Characterization and Data Quality
- Public alerts
 - Dataflow and associated latency
 - Vetting alerts in real time with data quality reports
 - Statistics for O3
- Outlook
 - The path to the fourth Observing Run: O4

https://gwevents.ego-gw.it/counter

nos, etc.) expected

3

Gravitational waves (GW) in a nutshell

- One of the first predictions of general relativity (GR, 1916)
 - Accelerated masses induce perturbations of the fabric of the spacetime, propagating at the speed of light – 'speed of gravity'
- Traceless and transverse (tensor) waves
 - 2 polarizations in GR: «+» and «×»
 - Quadrupolar radiation
 - \rightarrow Deviation from axisymmetry to emit GW
- GW strain h
 - Dimensionless, scales like 1/distance
- Detectors directly sensitive to h
 - \rightarrow Small sensitivity gains can lead to large improvements in event rate
- Rough classification
 - Signal duration
 - Frequency range
 - Known/unknown waveform
 - Any/no counterpart (electromagnetic spectrum, neutrinos, etc.) expected

Detectable by the instruments

Example (*): the Advanced Virgo detector

- Suspended, power-recycled Michelson interferometer with 3-km long Fabry-Perot cavities in the arms
- Working point
 - Michelson on the dark fringe
 - All Fabry-Perot cavities resonant
 - → Feedback control systems acting on the mirror positions and on the laser
- GW passing through
 - Differential effect on the arm optical paths
 - → Change of interference condition at the detector output
 - \rightarrow Variation of the detected power
- Sensitivity limited by noises
 - Fundamental
 - Technical
 - Environmental

Continuous struggle: design, improvement,

noise hunting, mitigation

^(*) LIGO detectors are conceptually the same

4

The LIGO-Virgo global network

- A single interferometer is not enough to detect GW with certainty
 - Difficult to separate confidently a potential signal from noise
- \rightarrow Need to use a network of interferometers
 - 2nd generation: « Advanced »
 - LIGO Hanford: 2015
 - LIGO Livingston: 2015
 - Virgo: 2017
 - GEO-600: « Astrowatch » + R&D
 - KAGRA: 2020+
 - LIGO-India: coming decade

- Agreements (MOUs) between the different projects Virgo/LIGO: since 2007
 - Share data, common analysis, publish together

Virgo-LIGO/KAGRA: 2019

- Interferometers are non-directional detectors
 - Sensitive to a significant fraction of the sky but non-uniform response
 - Time delays for the signal arrival in the different instruments: O(few ms)
 - \rightarrow Threefold detection: reconstruct source location in the sky

The O3 schedule

- Early plan
 - 12 months of data taking: $2019/04 \rightarrow 2020/04$
 - 2 chunks of 6 months (O3a and O3b) + 1-month commissioning break (2019/10)
- Then came the pandemic...
 - O3 run globally suspended on March 27
 - Later decision not to start an « O3c » and to focus on the O3-O4 upgrades

O3 performance

• 3-Detector network duty cycle

- O2-O3 sensitivity improvement for Virgo
 - Significant progress for the LIGO detectors as well

Detector characterization and data quality

- « DetChar » groups
 - Experiment-specific but collaborating closely
 - Same goals, similar issues, tools sharing
- \rightarrow Interacting with many groups, on different critical paths at various stages / latencies

Dataflow: from raw data to detections

• Three main pillars

Global data quality for offline analysis

Plus monitoring: online & offline products

- More information: <u>https://emfollow.docs.ligo.org/userguide</u>
- LIGO-Virgo data are jointly analyzed in real-time
 - Modelled searches: compact binary coalescences
 - Unmodelled searches: « bursts » (Type-II supernovae, etc.)
 - Coincidence with external triggers (γ ray bursts)
 - \rightarrow Twofold goal

 - DetectLocalize
- potential transient GW signals
- Arrival time delays in the different detectors
- Waveform distorsions

- When a significant-enough candidate is found
 - False-alarm rate lower than 1 / O(few months)
- \rightarrow Alert sent to astronomers in order to search for counterparts
 - Through NASA's Gamma-ray Coordinates Network (GCN)

• Alert flow

- Human vetting for all alerts during O3
 - On-call experts (run coordinators, pipelines, DetChar, offline, etc.) notified

O3 median values

- \rightarrow Rapid response team meeting convoked right away
- Public alerts can be retracted
- Actual latencies:
 - ~few minutes for preliminary
 - ~few tens of minutes for alerts
 - Quicker decision in average to retract an alert

- Gravitational-Wave Candidate Event Database: « GraceDB »
 - https://gracedb.ligo.org/superevents/public/O3
 - \rightarrow Online classification + skymap

			GraceDE	6 — Gravitat	ional-Way	e Candidate Event Database
HOME	PUBLIC ALERTS	SEARCH LATES	ST DOCUME	NTATION		
LIGO/V	rirgo O3 Pu ndidates: 56	ıblic Alerts				
SORT: EVENT ID	(A-Z) *					
Event ID	Possible Source (Probability)	UTC	GCN	Location	FAR	Comments
<u>5200316bj</u>	MassGap (>99%)	March 16, 2020 21:57:56 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 446.44 years	
<u>5200311bg</u>	BBH (>99%)	March 11, 2020 11:58:53 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 3.5448e+17 years	
<u>5200308e</u>	NSBH (83%), Terrestrial (17%)	March 8, 2020 01:19:27 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 8.757 years	RETRACTED
<u>5200303ba</u>	BBH (86%), Terrestrial (14%)	March 3, 2020 12:15:48 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 2.4086 years	RETRACTED
<u>5200302c</u>	BBH (89%), Terrestrial (11%)	March 2, 2020 01:58:11 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 3.3894 years	

Data quality reports: vetting the alerts

- Triggers produced by online pipelines create new entries in GraceDB
- These triggers generate alerts that are received at the sites
- Alerts significant enough trigger a Data Quality Report (DQR)
 - Generation
 - Configuration
 - Running on EGO HTCondor farm
- Results of the checks are
 - stored locally for expert vetting and
 - sent back to GraceDB, in order to be associated with the original trigger

- At the end of O3: 34 checks, 99 jobs in total
 - Configuration) / Running / Postprocessing / Upload back to GraceDB
- Key checks
 - Virgo detector configuration
 - Time-frequency spectrograms of the GW strain channel
 - Superimpose trigger template track when possible
 - Scan of the main online data quality flags
- Virgo noise characterization
 - Noise transients
 - Look for noise correlations (time)
 - Browse noise coherences (frequency)
 - Noise Gaussianity and stationary
- Virgo status
 - Complete data quality flags scan
 - Browse online process logfiles to search for errors
 - Snapshot of the global monitoring system displaying alarms and warnings
 - Data/reference comparison plots

- Environment status
 - Local earthquakes
 - Weather, sea activity

- Misc.
 - Check of the event GPS time

- O(15,000) DQRs generated during O3 to respond to all GraceDB alerts
 - ~10% had false alarm rate low enough (still much higher than public alert threshold) to have their DQR fully processed automatically
 - → Overall: extremely reliable framework
 - Continuous development during O3
 - Bug fixes, code improvement, feedback from user, additional features
 - New checks added
- Each DQR has its own summary webpage allowing to browse results
 - Color code
 - Hierarchical structure
 - Buttons leading to more information and some documentation
- → Original framework
 developed in LIGO
 Reused on Virgo

Data Event: GPS = 1249852257.012957 (;	a Quality F 2019-08-14 21:10:39.0125	Report for S1908 957+00:00 UTC) - DQR generation sta	814bv arting at 2019-08-14 21:17:39+00:00 UTC
Clickable buttons:	GraceDB event	GraceDB joint LIGO-Virgo DQR	Condor monitoring
Color caption: [Data OK]	fail human_inp not OK] [No automate	error or bad_state [Code crash or processing problem]	missing [Check still running] higher latency tier
Virgo DQR documentation:	Checks FAQ	Instructions for shifters and RRT	LIGO DQR documentation: Introduction
THE MOST IMPOR Brute-force coherence reports (bruco) Is the c Virgo data quality antiflags Virgo data quality (What was the Virgo noise stationarity while the candida	RTANT CHECKS: TO BE (candidate GPS time in Virg flags Virgo glitch (ate signal was observed?	CHECKED FIRST	go systems UPV on last 24 hours
What was the status of the environment around Virgo a Virgo status (process: virgo_status) (V1)	at the time of the candidate	??	

• Virgo detector status

UTC date

• Time-frequency spectrograms

- Detector monitoring system
 - Snapshot recorded every 10 seconds
 - \rightarrow Full tree / hierarchical structure

# DMS					ITF	Mode: Scienc	00 (Od ih i3m 14s)	ITF Stat	e: LOW_NO	ISE_3_SQZ	(0d 6h 40m 49s)		
		SIB1_B	ENCH		1_BR	SIB1		SI		SI			
Toda attac		MC_I	PAY			MC_		N		M			
Injection		Laser LaserAn		pli LaserChil		SL_TempController		RFC			LNFS		
	MC_Power	PST	AB	IMC	C_AA	IMC_AA	GALVO	м	C_F0_z		BPC		BPC_Electr
	PD	QPD_	B1p	QPI	D_B2	QPE	D_85		омс	Pic	oDisable		Shutter
Detection	SDB1_IP	SDB1	_LC	SDB	1_BR	SDB1	_Vert	SC	DB1_TE	SDI	31_Guard		SDB1_Electr
E	B2_8MHz_DPHI B4_	56MHz_DPHI	DARM_UGF	UNLC	оск :	SSFS_UGF	FmodEr	г	Etalon	GIPC	D	ARM_Corr	EQ_Mode
ISC	B1p_DC E	4_112MHz_MAG	B7_D	с	B8_DC	LSC	_rms	ASC_rm	s	DIFFp_AA	50F	lz_FF	ViolinModes
	BS_IP	BS_F7		BS_PAY	E	IS_BR	BS_V	'ert	BS_T	E	BS_Gua	rd	BS_Electr
	NI_IP	NI_F7		NI_PAY	1	NI_BR	NI_V	ert	NI_T	E	NI_Gua	rd	NI_Electr
	NE_IP	NE_F7		NE_PAY	N	IE_BR	NE_V	'ert	NE_T	E	NE_Gua	rd	NE_Electr
Suspensions	PR_IP	PR_F7		PR_PAY	F	PR_BR	PR_V	ert	PR_T	E	PR_Gua	rd	PR_Electr
	SR_IP	SR_F7		SR_PAY	9	SR_BR	SR_V	'ert	SR_T	E	SR_Gua	rd	SR_Electr
	WI_IP	WI_F7		WI_PAY	V	VI_BR	WI_V	/ert	wI_T	E	WI_Gua	rd	WI_Electr
	WE_IP	WE_F7		WE_PAY	v	/E_BR	WE_V	/ert	WE_1	TE	WE_Gua	ırd	WE_Electr
	CB_Hall	MC_Hall	Т	CS_zones	N	E_Hall	WE_H	Hall	WindAct	tivity	Seismo	n	BRMSMon
Environment	INJ_Area	DET_Area	EE_Roo	om	DAQ_Room	Exte	ernal	DeadChan	inel	Lights	Sea/	Activity	WAB
	ACS_CB_Hall ACS	TCS_CHILRO	ACS_TB	ACS_DAC	2_Room AC	S_EE_Room	ACS_M	C 4	ACS_INJ	ACS_DE	T .	ACS_NE	ACS_WAB
Infrastructures	UPS_TB	UPS_CB	UPS_MC	UPS_	_NE	UPS_WE	FlatChanr	nel Exi	istChannel	ACS_W	E AC	CS_CB_CR	ACS_COB
SBE	EIB_SBE	SDB2_SBE	SDB2_	LC	SNEB_SBE	SNE	B_LC	SWEB_SE	3E	SWEB_LC	SPR	B_SBE	SPRB_LC
TCS	NE_RH		WE_RH		NI_CO2_	Laser	wi_o	CO2_Laser		Chillers			TCS_Electr
sqz	PLL	Sque	ezer	SQ:	Z_AA	sqz_s	Shutter	Cot	he_CTRL	9	iQZ_Inj		Rack_TE
	LargeValves	Clean_Air	Tu	beStations	Tub	ePumps	MiniTo	wers	TurboLi	nks	RemDryP	MP	VAC_SERVOS
Vacuum	Pressure	Compressed	Air To	werServers	Tow	erPumps	CryoT	rap	O2_Sen	sors	Tank		HLS
De	etectorSEnvironme	ControlRoom	Minitow	ers	ISC	Inje	ction	TCS	s	uspension	Va	cuum	Metatron
VPM	DetectorMonitori	ng D	ataCollection		Stora	ge	Dai	taAccess		Automati	on		DetChar
VPM_LL_Transfer		LowLatencyD	ataTransfer-R	ealLiveData	1				Broa	dcastOnlineD	ataForCWB		
	Latency	Disk		Timing	Tim	ing_rtpc	Timing	_dsp	Fast_C	AC	ADCs_T	E	Daq_Boxes_TE
DAQ-Computing	Domains	DMS_machines	DetOp_ma	chines	olservers	rtı	ocs	CoilSwitchBo	oxes II	NF_devices	ENV_	devices	VAC_devices
Calib_Hrec	CalNE	CalWE	CalINJ	Call	BS	CalPR	PCalNE		PCalWE	HOFT		NCAL	NoiseInjection
												1	
ITFOnCall		Te					1			Generato			TcsAl

- Environment
 - Wind and seismic motion

	Event	Reference
Band RMS: 0.0 Hz -> 5000.0 Hz	7.516e-07 au	6.465e-07 au

- Control signal spectra
 - Comparison to reference

[au/vHz]

SD

- 80 public alerts in O3
 - 24 retracted
 - Most of them are due to noise transient / unusual data quality condition that a single pipeline was not read to deal with
 - → Fixed quickly and not recurring again
 - 56 not retracted

- Comparison O2-O3
 - Good agreement between O3a and O3b

First published detections from O3

- GW190425
 - Likely the second binary neutron star merger detected but no counterpart
 - Total mass larger than any known neutron star
- GW190412
 - Asymmetric binary black hole merger: 30 vs. 8 solar masses
 - First observation of GW higher multipoles beyond the leading quadrupolar order
- GW190814
 - System more asymetric than GW190412 9:1 mass ratio
 - Uncertain nature of the secondary component
 - \rightarrow Heaviest neutron star in a binary system or lighter black hole
- More to come
 - Individual events if separate analysis warranted
 - New issue of the GW transient catalog
 - Many searches ongoing on the full O3 dataset
- → Open data: Gravitational Wave Open Science Center(GWOSC)
 - <u>https://www.gw-openscience.org</u>

The path to O4: the « Advanced Plus » detectors

- Shutdown period post-O3 to prepare the 4th Observation Run O4
 - New series of upgrades: « Advanced detectors » → « Advanced Plus detectors »
- Early, pre-pandemic, planning

"2021/2022 – 2022/2023: 4-detector network with the two LIGO instruments at 160–190 Mpc; Phase 1 of AdV+ at 90–120 Mpc and KAGRA at 25–130 Mpc. The projected sensitivities and precise dates of this run are now being actively planned and remain fluid."

- Impact of the COVID-19 pandemic on the schedule is being actively studied
 - \rightarrow Stay tuned by subscribing to the OpenLVEM forum
 - <u>https://wiki.gw-astronomy.org/OpenLVEM</u>

Outlook

- Successful O3 run for the LIGO-Virgo network
 - In spite of the premature end due to the covid-19 pandemic
- Collaborations now focused towards O4
 - Upgrade plans
 - Updated schedules being worked on
 - → OpenLVEM forum: <u>https://wiki.gw-astronomy.org/OpenLVEM</u>
- O4 run
 - At least as long as O3
 - Goal: improved sensitivity (and duty cycle)
 - KAGRA joining the network
- \rightarrow More events / alerts expected
 - Decisions more automated
 - Lower latencies expected
 - Additional tools / developments needed to help separating signals from noise

