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A.bSt I'aCt (long version)

Galaxies are observational probes to study the Large Scale Structure of the Universe. In the
standard cosmological paradigm, their gravitational motions are direct tracers of the total
(dark included) matter density and therefore of the Large Scale Structure. In this model,
of an isotropic and homogeneous on large enough scales Universe, structure formation is
the result of gravitational instabilities driven by primordial density perturbations generated
during the early inflationary epoch just after the Big Bang. Analytical treatments of struc-
ture formation and galaxy evolution are complex. Thus, their studies rely on numerical
cosmological simulations. Still, only one universe observable from a given position, in time
and space, is available for comparisons with simulations. The related cosmic variance affects
grandly our ability to interpret the results. Simulations constrained by observational data
are a perfect remedy to this problem. Achieving such simulations requires the full extent of
the international projects Cosmicflows and CLUES.

Cosmicflows aims at cartographying the matter in the Local Universe. In this regard, catalogs
of accurate distance measurements to map deviations, due to baryonic and dark matters, from
the overall Hubble expansion are built. These measures are mainly obtained with the galaxy
luminosity-rotation rate correlation or Tully-Fisher relation. We present the calibration of
that relation in the mid-infrared with observational data from Spitzer Space Telescope. The
greatest advantage is an all-sky consistency of the measures, removing any systematics, due
to the utilization of various observational instruments, which could create spurious cosmic
flows. In addition, the mid-infrared band permits to obtain motions of galaxies very close to
the obscured, by our galaxy disk, zone where major structures could be. From this calibration
combined with the surface photometry of numerous galaxies, accurate distance estimates are
derived. They will be included in the third catalog of the project. In the meantime, two
catalogs up to 30 and 150 h~' Mpc have been released.

We report improvements and applications of the CLUES’ method on these two catalogs.
The technique produces simulations, replicas of the Local Universe, constrained by observa-
tional data. It is based on the constrained realization algorithm. Beforehand, the cosmic
displacement field is computed with the Zel’dovich approximation. This latter is then re-
versed to relocate reconstructed three-dimensional constraints to their precursors’ positions
in the initial field. The size, never equalled before, of a peculiar velocity catalogs such as
cosmicflows-2, with 8000 galaxies within 150 h~! Mpec, highlighted the importance of min-
imizing the different observational biases. The Local Universe, being neither isotropic nor
homogeneous, developing a general corrective solution would be inadequate. By carrying out
tests on mock catalogs, built from cosmological simulations, a method to minimize observa-
tional bias can be derived. Finally, for the first time in the field, cosmological simulations
are constrained solely by peculiar velocities. The process is successful as the analysis of the
resulting simulations shows that they resemble the Local Universe. The major attractors and
voids are simulated at positions approaching observational positions by a few megaparsecs,
thus reaching the limit imposed by the linear theory.

keywords: spatial mid-infrared observations, distance estimates, peculiar velocities, con-
strained cosmological simulations, dark matter, Local Universe



A. b St r aCt (short version)

Galaxies are observational probes to study the Large Scale Structure. Their gravitational
motions are tracers of the total matter density and therefore of the Large Scale Structure.
Besides, studies of structure formation and galaxy evolution rely on numerical cosmological
simulations. Still, only one universe observable from a given position, in time and space, is
available for comparisons with simulations. The related cosmic variance affects our ability
to interpret the results. Simulations constrained by observational data are a perfect remedy
to this problem. Achieving such simulations requires the projects Cosmicflows and CLUES.
Cosmicflows builds catalogs of accurate distance measurements to map deviations from the
expansion. These measures are mainly obtained with the galaxy luminosity-rotation rate
correlation. We present the calibration of that relation in the mid-infrared with observational
data from Spitzer Space Telescope. Resulting accurate distance estimates will be included
in the third catalog of the project. In the meantime, two catalogs up to 30 and 150 h~!
Mpc have been released. We report improvements and applications of the CLUES’ method
on these two catalogs. The technique is based on the constrained realization algorithm. The
cosmic displacement field is computed with the Zel’dovich approximation. This latter is then
reversed to relocate reconstructed three-dimensional constraints to their precursors’ positions
in the initial field. The size of the second catalog (8000 galaxies within 150 h~! Mpc)
highlighted the importance of minimizing the observational biases. By carrying out tests
on mock catalogs, built from cosmological simulations, a method to minimize observational
bias can be derived. Finally, for the first time, cosmological simulations are constrained
solely by peculiar velocities. The process is successful as resulting simulations resemble the
Local Universe. The major attractors and voids are simulated at positions approaching
observational positions by a few megaparsecs, thus reaching the limit imposed by the linear
theory.



Ré SUu mé (version longue)

Les galaxies sont des sondes observationnelles pour 1’étude des structures de I’'Univers. Dans
le paradigme standard cosmologique, leur mouvement gravitationnel permet de tracer directe-
ment la densité totale de matiere (noire incluse). Dans ce modele, d'un univers isotropique
et homogene aux grandes échelles, la formation des structures est le fruit d’instabilités gravi-
tationnelles induites par des fluctuations de densité primordiales générées pendant la période
d’inflation suivant le Big Bang. Les traitements analytiques de formation des structures
et galaxies se révelent complexes. C’est pourquoi leur étude s’appuie sur les simulations
numériques cosmologiques. Cependant, un seul univers observable a partir d’une position
donnée, en temps et espace, est disponible pour comparaison avec les simulations. La variance
cosmique associée affecte fortement notre capacité a interpréter les résultats. Les simulations
contraintes par les données observationnelles constituent une solution optimale au probleme.

Réaliser de telles simulations requiert toute 'ampleur des projets internationaux Cosmicflows
et CLUES.

Cosmicflows a pour objectif de cartographier la matiere dans I'Univers Local. Pour cela,
des catalogues de mesures de distances précises, afin d’obtenir les déviations de I'expansion
globale dues aux matieres baryonique et noire, sont construits. Ces mesures sont principale-
ment obtenues avec la corrélation entre la luminosité des galaxies et la vitesse de rotation de
leur gaz, aussi appelée relation de Tully-Fisher. La calibration de cette relation est présentée
dans le mi-infrarouge avec les observations du télescope spatial Spitzer. L’avantage majeur
est une consistance des mesures dans tout le ciel, qui permet d’effacer les systématiques liées
a l'utilisation de différents télescopes, pouvant engendrer de faux courants cosmiques. La
bande mi-infrarouge permet également de sonder les mouvements des galaxies trés proches
de la zone obscurée, par le disque de notre galaxie, ou d’importantes structures peuvent
se trouver. Cette calibration, associée a la photométrie de surface de nombreuses galaxies,
fournit des estimations de distances précises qui seront intégrées au troisieme catalogue de
données du projet. En attendant, deux catalogues de mesures atteignant 30 et 150 h=! Mpc
ont été publiés.

Les améliorations et applications de la méthode du projet CLUES sur les deux catalogues
sont présentées. La technique permet d’obtenir des simulations, répliques de I’Univers Local,
contraintes par les données observationnelles. Elle est basée sur 'algorithme de réalisation
contrainte. Au préalable, I'approximation de Zel’dovich permet de calculer le champ de
déplacement cosmique. Son inversion repositionne les contraintes tridimensionnelles recon-
struites a ’emplacement de leur précurseur dans le champ initial. La taille, jamais égalée
auparavant, d’un catalogue de vitesses particulieres tel que cosmiflows-2, contenant 8000
galaxies jusqu’a une distance de 150 h™' Mpc, a permis de mettre en évidence I'importance
de minimiser les différents biais observationnels. L’Univers Local n’étant ni homogene, ni
isotropique, le développement d’une solution corrective générale ne serait pas approprié. En
réalisant des tests sur des catalogues de similis, issus des simulations cosmologiques, une
méthode de minimisation des biais observationnels peut étre dérivée. Finalement, pour la
premiere fois dans le domaine, des simulations cosmologiques sont contraintes uniquement
par des vitesses particulieres de galaxies. Le procédé est une réussite car 'analyse des simula-
tions obtenues montre leur grande ressemblance a I’Univers Local. Les principaux attracteurs
et vides sont simulés a des positions approchant de quelques mégaparsecs les positions ob-
servationnelles, atteignant ainsi la limite fixée par la théorie linéaire.

mots-clefs: observations spatiales dans le mi-infrarouge, estimations de distances, vitesses
particulieres, simulations cosmologiques contraintes, matiere noire, Univers Local



Ré SUu mé (version courte)

Les galaxies sont des sondes observationnelles pour l’étude des structures de 1’Univers.
Leur mouvement gravitationnel permet de tracer la densité totale de matiére. Par ailleurs,
I’étude de la formation des structures et galaxies s’appuie sur les simulations numériques
cosmologiques. Cependant, un seul univers observable a partir d’une position donnée, en
temps et espace, est disponible pour comparaison avec les simulations. La variance cos-
mique associée affecte notre capacité a interpréter les résultats. Les simulations contraintes
par les données observationnelles constituent une solution optimale au probleme. Réaliser
de telles simulations requiert les projets Cosmicflows et CLUES. Cosmicflows construit des
catalogues de mesures de distances précises afin d’obtenir les déviations de I’expansion. Ces
mesures sont principalement obtenues avec la corrélation entre la luminosité des galaxies
et la vitesse de rotation de leur gaz. La calibration de cette relation est présentée dans le
mi-infrarouge avec les observations du télescope spatial Spitzer. Les estimations de distances
résultantes seront intégrées au troisieme catalogue de données du projet. En attendant, deux
catalogues de mesures atteignant 30 et 150 h™! Mpc ont été publiés. Les améliorations et
applications de la méthode du projet CLUES sur les deux catalogues sont présentées. La
technique est basée sur ’algorithme de réalisation contrainte. L’approximation de Zel’dovich
permet de calculer le champ de déplacement cosmique. Son inversion repositionne les con-
traintes tridimensionnelles reconstruites a 'emplacement de leur précurseur dans le champ
initial. La taille inégalée, 8000 galaxies jusqu’a une distance de 150 h~! Mpc, du second
catalogue a mis en évidence I'importance de minimiser les biais observationnels. En réalisant
des tests sur des catalogues de similis, issus des simulations cosmologiques, une méthode de
minimisation des biais peut étre dérivée. Finalement, pour la premiere fois, des simulations
cosmologiques sont contraintes uniquement par des vitesses particulieres de galaxies. Le
procédé est une réussite car les simulations obtenues ressemblent a I’Univers Local. Les prin-
cipaux attracteurs et vides sont simulés a des positions approchant de quelques mégaparsecs
les positions observationnelles, atteignant ainsi la limite fixée par la théorie linéaire.



Zusammeﬂfassung (lange Version)

Die Verteilung der Galaxien liefert wertvolle Erkenntnisse tiber die grofirdumigen Strukturen
im Universum. Im kosmologischen Standardmodell ist ihre durch Gravitation verursachte
Bewegung ein direkter Tracer fiir die Dichteverteilung der gesamten Materie. In diesem Mod-
ell ist die Strukturentstehung die Folge von Gravitationsinstabilitaten, welche ihren Ursprung
in primordialen Dichtefluktuationen haben, die in der inflationdren Phase der kosmologis-
chen Expansion unmittelbar nach dem Big Bang entstanden sind. Die Strukturentstehung
und die Bildung von Galaxien ist auflerordentlich komplex und analytisch nicht behandel-
bar. Daher basiert ihre Erforschung auf kosmologischen numerischen Simulationen. Es gibt
jedoch von einem gegebenen Ort aus nur ein einziges beobachtbares Universum, welches mit
der Theorie und den Ergebnissen unterschiedlicher Simulationen verglichen werden muf}. Die
kosmische Varianz erschwert es, beobachtbare grofiriumige Strukturen mit Simulationen zu
reproduzieren. Simulationen, deren Anfangsbedingungen durch Beobachtungsdaten einge-
grenzt sind (“Constrained Simulations”) stellen eine geeignete Losung dieses Problems dar.
Die Durchfithrung solcher Simulationen ist das Ziel der internationalen Projekte Cosmicflows
und CLUES.

Die Zielsetzung von Cosmicflows ist eine Kartierung der Materieverteilung im lokalen Uni-
versum. Zu diesem Zweck werden Kataloge mit akkuraten Entfernungsbestimmungen er-
stellt, welche die durch das lokale Gravitationsfeld von baryonischer und dunkler Materie
verursachte Abweichung von der allgemeinen Hubble-Expansion des Universums abbilden.
Diese Messungen werden hauptséchlich aus der Korrelation zwischen Leuchtkraft und Ro-
tationsgeschwindigkeit von Spiralgalaxien, der Tully-Fisher-Beziehung, gewonnen. In dieser
Arbeit wird die Kalibrierung dieser Beziehung im mittleren Infrarot mithilfe von Daten vom
Spitzer Space Telescope vorgestellt. Der gréfite Vorteil gegeniiber anderen Datenséatzen ist
die Konsistenz der Messungen tiber den gesamten Himmel und damit eine wesentliche Ver-
ringerung systematischer Fehler durch die Verwendung unterschiedlicher Mefinstrumente.
Aulerdem ist es im mittleren Infrarot moglich, auch die Bewegung jener Galaxien zu messen,
die sehr nah an dem durch die galaktische Scheibe der Milchstrafle verdeckten Bereich
liegen, in welchem massereiche Strukturen vermutet werden. Wird diese Kalibrierung mit
Oberflachenphotometrie vieler Galaxien kombiniert, erhdlt man sehr genaue Entfernungsbes-
timmungen. Diese Entfernungsbestimmungen werden im dritten Katalog des Cosmicflows-
Projekts enthalten sein. Bisher wurden zwei Kataloge veroffentlicht, mit Entfernungen bis
zu 30 beziehungsweise 150 h~! Mpc.

In dieser Arbeit wird die CLUES-Methode auf diese zwei Kataloge angewendet und Verbes-
serungen werden vorgestellt und diskutiert. Mit der CLUES-Methode kann man auf der
Grundlage von Beobachtungsdaten des heutigen lokalen Universums seine Enstehung simu-
lieren. Die Grundlage dafiir bildet der Algorithmus der “Constrained Realizations”. Zunéchst
wird das kosmische Verschiebungsfeld mithilfe der Zeldovich-Naherung bestimmt. In umge-
kehrter Richtung kann man damit die aus heutigen Beobachtungsdaten rekonstruierten drei-
dimensionalen Constraints an ihren Ursprungsort im frithen Universum zuriickzuversetzen.
Der cosmicflows-2 Katalog, welcher die Pekuliargeschwindigkeiten von 8000 Galaxien bis zu
einer Entfernung von 150 A~ Mpc enthilt, bietet einen bisher unerreichten Datenumfang.
Es ist daher eine besondere Herausforderung, den Einfluss verschiedener Beobachtungsfehler
(Bias) zu minimieren. Da das lokale Universum weder homogen noch isotrop ist, reicht eine
allgemeine Korrektur nicht aus. Eine fiir das lokale Universum angepasste Korrekturmeth-
ode lasst sich durch die Untersuchung von Mock-Katalogen finden, welche aus kosmologis-
chen Simulationen gewonnen werden. Schliellich stellt diese Arbeit erstmals kosmologische
Simulationen vor, die ausschliefflich durch Pekuliargeschwindigkeiten eingegrenzt sind. Der
Erfolg dieser Methode wird dadurch bestéatigt, dass die daraus resultierenden Simulationen
dem beobachteten lokalen Universum sehr dhnlich sind. Die relevanten Attraktoren und
Voids liegen in den Simulationen an Positionen, welche bis auf wenige Megaparsec mit den
beobachteten Positionen iibereinstimmen. Die Simulationen erreichen damit die durch die
lineare Theorie gegebene Genauigkeitsgrenze.

Schliisselworter: Beobachtungen im mittleren Infrarot, Abstandsmessungen, Pekuliargeschwin-
digkeiten, kosmologische Simulationen, Dunkle Materie, Lokales Universum



Zusammenfassung e verson

Die Verteilung der Galaxien liefert wertvolle Erkenntnisse tiber die grofiraumigen Strukturen
im Universum. Ihre durch Gravitation verursachte Bewegung ist ein direkter Tracer fiir
die Dichteverteilung der gesamten Materie. Die Strukturentstehung und die Entwicklung
von Galaxien wird mithilfe von numerischen Simulationen untersucht. Es gibt jedoch nur
ein einziges beobachtbares Universum, welches mit der Theorie und den Ergebnissen un-
terschiedlicher Simulationen verglichen werden muf.. Die kosmische Varianz erschwert es,
das lokale Universum mit Simulationen zu reproduzieren. Simulationen, deren Anfangsbe-
dingungen durch Beobachtungsdaten eingegrenzt sind (“Constrained Simulations”) stellen
eine geeignete Losung dieses Problems dar. Die Durchfiihrung solcher Simulationen ist das
Ziel der Projekte Cosmicflows und CLUES. Im Cosmicflows-Projekt werden genaue Entfer-
nungsmessungen von Galaxien erstellt, welche die Abweichung von der allgemeinen Hubble-
Expansion abbilden. Diese Messungen werden hauptséchlich aus der Korrelation zwischen
Leuchtkraft und Rotationsgeschwindigkeit von Spiralgalaxien gewonnen. In dieser Arbeit
wird die Kalibrierung dieser Beziehung im mittleren Infrarot mithilfe von Daten vom Spitzer
Space Telescope vorgestellt. Diese neuen Entfernungsbestimmungen werden im dritten Kata-
log des Cosmicflows-Projekts enthalten sein. Bisher wurden zwei Kataloge verdffentlicht, mit
Entfernungen bis zu 30 beziehungsweise 150 ~~* Mpc. In dieser Arbeit wird die CLUES-
Methode auf diese zwei Kataloge angewendet und Verbesserungen werden vorgestellt und
diskutiert. Zunéchst wird das kosmische Verschiebungsfeld mithilfe der Zeldovich-Né&herung
bestimmt. In umgekehrter Richtung kann man damit die aus heutigen Beobachtungsdaten
rekonstruierten dreidimensionalen Constraints an ihren Ursprungsort im frithen Universum
zuriickzuversetzen. Durch den groen Datenumfang des cosmicflows-2 Katalogs (8000 Galax-
ien bis zu einer Entfernung von 150 h~! Mpc) ist es besonders wichtig, den Einfluss ver-
schiedener Beobachtungsfehler zu minimieren. Eine fiir das lokale Universum angepasste
Korrekturmethode lasst sich durch die Untersuchung von Mock-Katalogen finden, welche
aus kosmologischen Simulationen gewonnen werden. Schliellich stellt diese Arbeit erstmals
kosmologische Simulationen vor, die ausschliefllich durch Pekuliargeschwindigkeiten einge-
grenzt sind. Der Erfolg dieser Methode wird dadurch bestéatigt, dass die dadurch erzeugten
Simulationen dem beobachteten lokalen Universum sehr dhnlich sind. Die relevanten Attrak-
toren und Voids liegen in den Simulationen an Positionen, welche bis auf wenige Megaparsec
mit den beobachteten Positionen iibereinstimmen. Die Simulationen erreichen damit die
durch die lineare Theorie gegebene Genauigkeitsgrenze.
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”Nothing happens
until something moves.”

Albert Einstein

Chapter 1

Motivation

With the emergence of modern cosmology came the cosmological principle which relies on
the strong assumption that the distribution of matter, in the Universe, is homogeneous and
isotropic about all locations when viewed on a large enough scale. This last part of the
axiom is essential as observations soon revealed that nearby galaxies are distributed in an
inhomogeneous way (e.g. Bahcall, 1984; Longair and Einasto, 1978). As a matter of fact,
large scale structures which can extend up to 100 h=' Mpc (Bahcall, 1984; Oort, 1982) can
be observed in the whole observable Universe. Galaxies, which constitute themselves local
inhomogeneities, have a tendency to gather in groups or even clusters, which can regroup to
form superclusters, linked by filaments. The assumption of homogeneity on ”small scales”
had to be banished (Chincarini, 1981). Current maps of our neighborhood on Figures 1.1
and 1.2 show that indeed superclusters and clusters in the Universe are linked by filaments
constituted of galaxies. These filaments delimit nearly empty regions or voids as large as
300 h=! Mpc (e.g. Bahcall, 1984). The presence of such regions devoid of galaxies is strik-
ing. Mapping the Universe is essential to determine the limit of the cosmological principle.
Besides, observations also revealed that the Universe undergoes an accelerated (Perlmutter
et al., 1998; Riess et al., 1998) expansion (Hubble, 1929) suggesting the existence of a dark

energy.

Beyond the simple acknowledgement of the existence of the Large Scale Structure, in an
homogeneous and isotropic on a large enough scale Universe in accelerated expansion, is
implied the study of its formation and evolution. There is no doubt that this dynamics

of the Universe is gravitationally related (e.g. Peebles, 1980). Structures are the probable
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FIGURE 1.1: Schematic map of the nearest Superclusters centered on the Milky Way. Large
structures of the Local Universe are visible: wide regions devoid of galaxies or voids (names
written in red) are delimited by long filaments formed by galaxies (white dots). Super-
clusters (pale blue color) are at the nodes of these filaments. Their positions, with respect
to the supergalactic plane in dark blue, is defined by pale blue lines either solid if their
are above the plane or dotted if they are below it. The yellow color indicates walls (from
http://www.atlasoftheuniverse.com).

results of irregularities in the primordial (early after the Big Bang) density field which have
grown under the influence of gravity (e.g. Press and Schechter, 1974; Silk et al., 1983). In
that sense, the presence of a dipole in the Cosmic Microwave Background temperature map
(Fixsen et al., 1996) is a compelling evidence of the motion of our Galaxy at high speed (over
600 km s—1) because of gravity. However, the considerable majority (~ 70%) of this posited
motion is due to the gravitational influence of large scales with origins that have yet to be

understood.

Gravitational dynamics is too complex to be analytically studied in details. Thus, studies

rely on simulations based on numerical methods. The recent development of large parallel
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FIGURE 1.2: Supergalactic XY slice of 4000 km s~! thickness in Z showing five filaments
joining up in the Centaurus cluster. Red dots stand for the major clusters identified in red
and filament names are in grey oval shapes. The five filaments and galaxies belonging to
them are depicted with five different colors. Orphan galaxies are in grey (from Courtois
et al., 2013).

supercomputers and of highly efficient numerical codes (e.g. Kravtsov et al., 1997; Springel,
2005; Teyssier, 2002), to simulate the gravitational clustering of dark matter, led to a better
understanding of structure formation at all scales. Ordinary matter contributes to less than
20% of the total matter in the Universe, thus, accordingly, it can be neglected in simula-
tions in a first approximation. The resulting scheme is 1) cosmic structures grow via the
sole gravitational instabilities pre-existing in the initial density field in the form of Gaussian
fluctuations (Press and Schechter, 1974) ; 2) in a dissipationless gravitational collapse, dark

halos are shaped (Gunn and Gott, 1972) ; 3) and galaxies form with the halos following the
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radiative cooling of baryons! (e.g. Efstathiou, 2003). Two powerful concepts can describe the
formation of galaxies : 1- gasdynamical simulations (e.g. Scannapieco et al., 2005) ; 2- pop-
ulating dark matter halos with semi-analytical models (e.g. Cole et al., 2000) or abundance
matching techniques (e.g. Klypin et al., 2013). To summarize, to study a particular region
or object, one can consider extracting a part of the larger box, resimulate it using higher
resolution with or without adding baryonic particles. In this latter case, the simulation needs
to be populated. This numerical progress has been accompanied by a huge amount of new
observational data, which became available over the last decade. As a result, because on
short distances tiny dwarf galaxies can be detected as well as big galaxies, structure forma-
tion in the nearby Universe can be observed on all possible scales ensuring that observations

and simulations can be compared on every scale.

Resulting large simulations (e.g. Alimi et al., 2012; Angulo et al., 2012a; Fosalba et al.,
2013; Klypin et al., 2011; Springel et al., 2005) have already widely contributed to establish
the standard model of cosmology. Through comparisons with observations, it has become
possible to decide between models and numerical algorithms. For instance, Hot Dark Matter
was ruled out as the dominant matter component as it implies that large scale structures form
first, before fragmenting, recently, into small structures in contradiction with observations of
small scale structures at high redshifts (e.g. Petry et al., 1998; Rauch et al., 1999, 2001). Still,
while ensuing comparisons between (nearby) observations and simulations have revealed that
Large Scale Structure formation can be well described within the Cold Dark Matter (CDM)
scenario as a result of an accretion of small structures, there are several open problems related
to the formation of these small scale structures. These problems are due to differences in
the number of galaxy satellites (Klypin et al., 1999; Moore et al., 1999), the size of voids
(Tikhonov and Klypin, 2009) and the number of dwarfs between the observed and simulated
local universes (Zavala et al., 2009). To compare more precisely theoretical predictions
with observed nearby small scale structures, replicas of the Local Universe needs to be
simulated to remove the dependence on the specificity of the environment, namely to avoid
the cosmic variance contained in the random realizations. This can be done in the framework
of simulations whose Initial Conditions are constrained by nearby observational data. Such
constrained simulations are ideal laboratories to study the formation and evolution processes
of the Universe in general but also of its constituents such as galaxies. By their constrained
nature, they reduce effectively the cosmic variance related to the fact that as fixed observers

in the Universe we can observe only one angle of our Universe, at one time.

Accordingly, the CLUES project? (Constrained Local UniversE Simulations, Gottlober et al.,

!The goal of this work is to study scales large enough for the influence of baryons to be negligible. Conse-
quently, studies in this work are conducted in a dark matter only context.
http://www.clues-project.org/
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2010) developed the concept of constrained simulations. The first constrained Initial Condi-
tions were produced by Ganon and Hoffman (1993), using the Mark III catalog of peculiar
velocities (Willick et al., 1996). Kolatt et al. (1996) used these Initial Conditions to per-
form the first constrained simulations of the nearby Universe, more than ten years after the
first standard numerical simulation was run within a Cold Dark Matter cosmological context
(Davis et al., 1985). Later, Bistolas and Hoffman (1998) produced Initial Conditions con-
strained by redshift surveys. They were followed by Mathis et al. (2002) and Lavaux (2010)
and very recently by Hef} et al. (2013). There exists a real trade-off between the two sets of
observational data available: radial peculiar velocities and redshift surveys. While measuring
velocities is a tremendous challenge to the observers’ community, on the theoretical side these
velocities are unbiased tracers of the underlying gravitational field as they account for both
baryonic and dark matter. On the other hand, very large and deep surveys of galaxy red-
shifts are more easily produced but galaxies constitute biased markers of the underlying mass
distribution since they account only for the luminous matter. Moreover, the bias is poorly
known (e.g. Baugh, 2013). Thus, radial peculiar velocity catalogs have inevitably a great
potential and a promising future. The new project Cosmicflows® (e.g. Courtois and Tully,
2012a,b; Tully and Courtois, 2012) is an ideal constraints-supplier to perform constrained

simulations of the nearby Universe.

Cosmicflows is an international project, with as many arms as an octopus, whose goal is
to map the Local Universe. Within this context, the collaboration accumulates accurate
distances of thousands of galaxies via observations and distance indicators such as the
luminosity-linewidth rotation rate correlation or Tully-Fisher relation (Tully and Fisher,
1977), the Cepheid-period luminosity (Freedman et al., 2001), the Tip of the Red Giant
Branch (Lee et al., 1993) , the Surface Brightness Fluctuation (Tonry et al., 2001), the
Fundamental Plane (Colless et al., 2001) and the Supernovae of type Ia (Jha et al., 2007)
methods. A major part of the program involves exploitation of the Tully-Fisher relation.
Activities in this regard began with the gathering of HI profiles for the necessary kinematic
information using the Green Bank and Parkes Telescopes (Courtois et al., 2009, 2011b) and
the accumulation of optical photometry for the necessary magnitude and inclination informa-
tion using the University of Hawaii 2.24m telescope (Courtois et al., 2011a) and the available
literature. The project has already supplied the community with two catalogs of accurate
distances up to 30 h=! Mpc (Tully et al., 2008) and 150 h~! Mpc (Tully et al., 2013) respec-
tively. Both are downloadable at the Extragalactic Distance Database website? (Courtois
et al., 2009; Tully et al., 2009) of the project. This work presents an extension of the optical
part of the project with a shift to the mid-infrared wavelengths already partly published
in (Sorce et al., 2012a, 2013b, 2012b). Results from this work will become part of another

3http://www.ipnl.in2p3.fr/projet /cosmicflows/
“http://edd.ifa.hawaii.edu/



Chapter 1. Motivation 6

catalog of the project with a greater accuracy. This third catalog will extend the coverage
both in distances and close to the Zone of Avoidance (zone which looks devoid of data only
because of the extinction of our Galactic disk) where our knowledge is still very limited. The
holy grail of Cosmicflows is the use of these resulting distance estimates to determine radial

peculiar velocities to be combined with the CLUES project.

First of all, these catalogs can be used with the Wiener-Filter technique (e.g. Zaroubi et al.,
1995) to reconstruct the Local Universe. Still, if reconstructions of the velocity and den-
sity field of our neighborhood already enable the studies of the Bulk Flow and motions (e.g.
Courtois et al., 2012), it presents us only with the linear part of the theory (e.g. Nusser, 2008;
Zaroubi et al., 1999) and solely at redshift, z, null (namely the Universe today). Combined
with the Constrained Realizations technique (e.g. Hoffman and Ribak, 1991), the catalogs
can supply us with constrained Initial Conditions which, once run, can give insights into the
evolution and formation of the Large Scale Structure from high redshifts up to today includ-
ing non-linear events such as mergers. Studying the early history of our Universe will help
decide between theoretical models which are all built to reproduce the observed expansion
at late times (e.g. Xia et al., 2012). However, the first simulations output from the Con-
strained Realization method presented a shift in the position of structures of approximately
10 h™' Mpc at z = 0 with respect to the observed Universe today. Moreover, additional
density constraints were required to form the nearby clusters (Klypin et al., 2003). A new
methodology has been developed to improve the simulations by taking into account the cos-
mic displacement field of data-points from high redshifts to z = 0 at first order (Doumler
et al., 2013a,b,c). This methodology called the Reverse Zel’dovich Approximation, which
works well on simple mocks on Figure 1.3, reveals itself to be insufficient when applied to
observational data. This work presents tests on more realistic mocks to refine the process.
Re-establishing the 3 directions of peculiar velocities is proved to be a satisfactory refinement
for the process to work with observational datasets (work already published in Sorce et al.,
2014). The resulting constrained dark matter only simulations are excellent replicas of our
Universe, obtained for the first time solely with observational radial peculiar velocities from
the first catalog of the project Cosmicflows. The uncertainty in positions has been reduced
to ~ 3 h~! Mpc (the limit imposed by the linear theory) for the best realizations. This work
concludes with the application of the whole process on the second catalog of the project
Cosmicflows firstly analyzed to reduce bias effects which become more important with the
increasing spatial extent of the catalog. A method is actually proposed in this work to mini-
mize biases. The cosmological model considered in this work is the standard ACDM and the

simulations have been run with the Lagrangian GADGET code (Springel, 2005).

This work aims at studying several processes both observational and numerical in analytical

and quantitative ways in the loop defined by the combination of the Cosmicflows and CLUES
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FIGURE 1.3: Density and velocity fields in a 10 h™' Mpc thick slice of the original first
constrained simulation, named BOX160, of the CLUES project (top left quadrant) and the
averages of six constrained simulations obtained with mocks built out of BOX160. The
constrained Initial Conditions have been obtained without (top right) and with the Reverse
Zel’dovich Approximation applied to simple mocks mimicking the size and spatial extent of
Cosmicflows’ first (bottom left) and second catalogs (bottom right). Blue crosses show the
positions of three clusters in the original simulation while red dots locates the clusters in the
constrained simulations on average (adapted from Doumler et al., 2013b).

project. What is the quantitative quality of the observational data, of the measurements

of luminosities, of the Tully-Fisher relation in the mid-infrared at 3.6 pum? What is the

performance of the newest CLUES technique applied to realistic mock and observational

radial peculiar velocity catalogs? How can observations and simulations be intertwined to

allow refinements of each other? How well and to which extent the simulations constrained

by Cosmicflows’ catalogs reproduce the Large Scale Structure of the Universe?
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To answer these questions, this thesis manuscript is organized as follows. In Chapter 2, the
fundamental knowledge about our Universe and especially our neighborhood is described from
models to general methods and tools, through nearby observations, including: the standard
ACDM cosmological model, the linear theory of density perturbations and the numerical
cosmological simulation method. Chapter 3 presents the Observed Universe namely, the
contribution of the Cosmicflows project to the global scheme. This Chapter includes the
surface photometry of a large sample of galaxies up to the construction of a set of accurate
distance measurements (in view of a future catalog for the Cosmicflows project) through
the calibration of the Tully-Fisher relation and the determination of an Hubble Constant
estimate. In Chapter 4, simulations obtained with Cosmicflows’ catalogs in the context of
the CLUES project are presented. To this end, the method to build constrained Initial
Conditions is described and refined with tests on realistic mocks before being applied on the
two first catalogs of the Cosmicflows project. The spatial extent of the second catalog of the
Cosmicflows project leads us to analyze more thoroughly this catalog to propose a method
to minimize biases before building Initial Conditions constrained with it. The last and fifth
Chapter (5) summarizes the observational and numerical work accomplished before opening

onto new prospectives for both projects.



Chapter 2

Universe in Motion

Cosmology aims at understanding the formation and evolution of structures in the Universe.
For that purpose, galazies constitute one of the sources of observational probes. However,
they are only tips of the iceberg of a larger scheme involving more than 90 % of dark matter
and energy. These two exotic components are elegantly accounted for in the widely accepted
standard cosmological model, implying an homogeneous and isotropic on large enough scales
Universe. Structure formation is the result of gravitational instabilities driven by primordial
density perturbations. Their studies rely on numerical tools such as N-body methods. Accord-
ingly, this Chapter presents the standard cosmological model in the context of an observed
general expansion yet with visible local deviations from this widening. Then, these local vari-
ations are explained within the context of the linear theory of density perturbations. Finally,

the numerical models used to simulate our Universe are described.

2.1 The Standard Cosmological Model

The standard cosmological model asserts that during the inflation that followed the big bang,
the quantum fluctuations become classical such that particles and eventually nuclei were able
to condense. Continuing expanding and cooling, the Universe experienced a transition from
radiation-dominated era to a matter-dominated epoch. Baryons decoupled from radiations.
This corresponds to the last scattering of photons, in other words to the Cosmic Microwave
Background (CMB). Afterwards, structures began to form by collapse of small irregularities
in an overall close to a homogeneous density distribution. Stars were born and soon reionized
the Universe with their radiations while, larger scale structures, such as galaxies, clusters,
etc formed. For a more complete description of the concept, we refer the reader to the
wealth of the literature (e.g. Binney and Tremaine, 1987; Peacock, 1999; Peebles, 1993).

To summarize, the ACDM scenario implies a hierarchical structure formation from small to

9
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large scale structures, the latter forming by accretion of the former. This thesis work focus
on this matter-dominated era of the Universe in expansion. The next subsections aims at

establishing the theoretical framework of such an universe.

2.1.1 An Universe in Expansion
2.1.1.1 The Hubble Law

In 1929, Hubble observed that local galaxies are receding from us at a velocity proportional
to their distance. The Hubble Law was born. In other words, any local galaxy at a distance

D from us has a velocity v which follows:

v = H()D (21)

where Hy is the Hubble Constant usually expressed in km s~ Mpc~!.

To appreciate the importance of the adjective ”local”, let’s consider a galaxy at a distance
x with spatial coordinates fixed for simplicity. Because, photons travel along null geodesics,
it follows from the Friedmann-Lemaitre-Roberston-Walker metric (key to a solution of the
equations of General Relativity written for an homogeneous isotropic Universe, Friedmann,
1922; Lemaitre, 1931a,b; Robertson, 1933, 1935, 1936a,b) that:

dzx

ds> =0 = cdt — a(t)——— =0
()\/1—k:x2

(2.2)
where c is the vacuum velocity of light in km s™!, ds is the geodesic followed by the light in
a time dt, a(t) is the scale factor due to the expansion and k is the curvature of space. Let’s
assume that the galaxy emits photons with a period T' = t; — tg which propagates up to us
(located at the distance x). We observe a period T = ¢} — t,. Integrating over time and

space equation 2.2 gives:

¢ z dx’ hoc
g | [T Sy 9.3
/to Tl v / a(0) 23)

too th . . .
gt +M:l//dt+/ ot (2.4)
/to a(t) 7 a(t) 7 a(t) w o a(t)

which in turn gives:
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If we make the reasonable approximation that 7" and T” are very small with respect to the

expansion time, a(t) varies only slightly during both periods. Thus, from equation 2.4:

(2.5)

In addition, if the galaxy is close enough to us (namely "local”), the scale factor can be
assumed as unchanged between the emission and the reception of the signal and the curvature

is negligible!, then from the two first terms of equation 2.3:
D
ty —to ~ - (2.6)

where D = za(ty).

Since v = c% = cT,T_ L it results from the relations 2.5 and 2.6 that at first order:

) —a(th— L2 D a(th — 2 dl
= R
to—(to— %) aty—¢) alty— ) dt

The Hubble Law in equation 2.1, valid solely for local galaxies, derives from 2.7 relation with

7N

Hy = % 0= z—g. The subscript 0 stands for ”as measured today” and the notation is
the common writing for the derivative with respect to time. It results from this calculation
that the discrepancies from the Hubble Law for galaxies far away from us enable the study

of the scale factor history as a function of time.

In this respect, Edwin Hubble’s observations of the Hubble Law consolidate the cosmolog-
ical principle and the equations derived two years before by Lemaitre. Namely, under the
assumption that we are not privileged observers, the isotropy and homogeneity of the ex-
panding Universe about all locations is confirmed. The rest of this subsection will generalize
the Hubble Law in agreement with the cosmological principle and the observed expansion

before giving the equations of evolution of the scale factor with time.

2.1.1.2 Generalization

A generalized version of the Hubble Law can be derived with the consideration that distances
D(t) between galaxies are simply resized by the scale factor a(t) (the relative positioning is

unchanged because of the cosmological principle). Accordingly:

D(t) = a(t) Dy o(t) = D) = a(t) Dy = X peay (2.8)

Tn any case we will see later that our Universe is approximately flat.
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One can verify that this general case contains the Hubble Law given in equation 2.1 for times
t approximately equal to today time so that the corresponding scale factors a(t) are close to

ag.

2.1.1.3 Evolution of the Scale Factor

As a common consensus, the laws of gravity are described by the theory of General Rel-
ativity formulated by Einstein in 1915. This general formalism contains Newton’s theory
of gravity valid for gravitational fields on small scales solely. The Friedmann-Lemaitre-
Robertson-Walker metric can be shown to have a solution to Einstein’s field equations for
an homogeneous and isotropic Universe as a whole. However, such a derivation is beyond
the scope of this work? and we rely on simple thermodynamical considerations (basically
adiabatic processes) under the assumption of (relativistic) fluids to explain the equations

governing the evolution of the scale factor with time.

Relativity implies that mass m and energy FE are equivalent through the famous equation:
E =mc* (2.9)

where c is the vacuum velocity of light.

A direct consequence of relation 2.9 resides in the fact that matter, in the general sense
of the term, is not the sole actor of motions. Radiation fields, like the Cosmic Microwave
Background, are also responsible for motions. Radiations are then considered similar to a
matter with a density p and some pressure P which follow the first law of thermodynamics
dU = —PdV where dU and dV are the variations of energy and volume. More precisely, in

an expanding context with a scale factor a, the first law of thermodynamics can be written:

dv P da

dp+ (p+ §)7 =dp+3x(p+ g); =d[In(p)] + 3 x (1 + w)d[In(a)] =0 (2.10)

where the fact that U = pc?V (from relations 2.9 and m = pV), V oc a® (from relations 2.8
left and V oc D3) and P = wpc? (pressure related to thermal motion) have been used. w is

a constant depending on the object of study.

Let’s consider three cases:

e in classical matter, the pressure is sufficiently smaller than pc? for w to be considered
as null. Gravitational and inertial masses of classical matter are indistinguishable. As
a result and as expected from the conservation of mass, the density of classical matter

pm is proportional to =3 from equation 2.10,

2For a complete derivation of the equations of gravity, we refer the reader to the extensive literature on
the subject (e.g. Binney and Tremaine, 1987; Peacock, 1999; Peebles, 1993).
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e radiations are quite different since their pressure effect cannot be neglected. Hence, for
massless and highly relativistic particles, w equals % from the relation between kinetic
energy Ej and temperature T (typically Ej = %mv2 = %kBT where kp is the constant
of Boltzmann). From equation 2.10, p, o< a~* which is expected because not only p,
decreases because of the Universe expansion but also radiations are subject to a loss of

energy inversely proportional to a (increase of wavelength by a),

e considering w = —1, Carroll et al. (1992) defined the finite vacuum energy density
or more generally the dark energy with a negative pressure. As expected, this term
gathers the quality of a constant in space and time as it is independent of a from

equation 2.10.

In such a defined homogeneous isotropic expanding Universe, the Friedmann-Lemaitre-Robertson-

Walker model describes the Universe with two equations of the scale factor a:

i —4lG, 3P A

a, 8IG K& A
ayo _ A 2.12

where G is the universal gravitational constant, ¢ the vacuum velocity of light, P the pressure,
K the scalar curvature and A stands for the cosmological constant which reproduces the

expansion effect.

The first one of these two equations (2.11) is analogous to the classical equation of motion
(after divisions by the scale factor a and the original coordinate x) which stipulates that
the acceleration dx equals the sum of the gravitational forces. In the presently defined
Universe, the three types of components described above contribute to the gravitational

field. Accordingly the sum of the forces can be written:

Ta 3 Tra 3
—GL(;”“)S Pm —G%(Pr + 37123) —G%(—%)
(za)? (za)? (za)?

Ftotal =

With p = pp, + pr and A = 4HG(—§) the analogy is complete.

The second equation 2.12 governing the scale factor evolution is comparable to the conserva-
tion of energy. It can be directly retrieved from equation 2.11 by first multiplying this latter
by aa. Then, a few relations have to be noticed:

da? da? A=) a
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and completed with

3P

. . . a . .
= 2pad + a*p = —aa(p — 3p — ap) = —aa(p + ?) (2.15)

d(pa®)
dt

where the last equality derives directly from the first thermodynamical law 2.10. Finally, a
division by a? and an equalization of the constant of integration to —K¢? gives 2.12. From
the fact that K is the scalar curvature and the second equation of the standard cosmological
model is similar to the conservation of energy, one can catch a glimpse at a link between

energy density and geometry from the metric.

From relation 2.8, we have seen that H(t) = % The square of this ratio is given by equation
2.12. Setting today density parameters as follows:

_ 8UGpm, A K _ 8lGpr,

Q,, = SO = Q= = 2P 2.16
m 3H? A K= H? "7 3H? (2.16)

where the subscript 0 stands for today time, it is possible to give an expression of H(t) as a

function of the components in the Universe today:

Q Q. Q
H(t) :HO\/Q+—GK+QA (2.17)

where matter and radiation have once again been separated as the expansion does not affect
them in a similar way (density of radiation decreases faster than that of matter since p, =

a=4py, while pp, = a3 ppm, ).

Various observational programs over the past few years have contributed to the measurements
of the density parameters. Table 2.1 recapitulates the different estimates. In this table, for

conveniency, the Hubble Constant Hj is replaced by the parameter h defined such that:
Hy =100 h kms™ Mpc™! (2.18)

This parameter is convenient in the sense that, for example, any distance given in Megarpar-
sec per unit of this parameter h is valid in any cosmological model. One remarkable char-
acteristic of the ensemble of measures given in the table is that the sum of the matter and
dark energy density parameters is always close to 1 up to a few hundreds of percents. Since
today, H = Hp, Q, = 0 ( Q, << 1 since z became less than 3000, end of the radiation
dominated era, beginning of the matter dominated epoch) and the scale factor is the unity
by definition, Qr = Q,, + Qp — 1 = 0 from equation 2.17. Namely, our Universe is likely
to be flat. Accordingly, in the matter dominated era, the equation of evolution of the scale

factor can be written:

1 1
a=aH(t) = HO\/Qm(a — 1)+ Qa(a® = 1)+ 1~ Ho\ /Qma + Qpa? (2.19)
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Cosmological Parameters WMAP3 WMAP5 WMAP7 WMAP9 Planck

Qy, (matter density) 0.24 0.279 0.272 0.279 0.307

Q, (dark energy density) 0.76 0.721 0.728 0.721 0.693
ns (spectral index) 0.95 0.960 0.961 0.972 0.962

og (normalization parameter) 0.75 0.817 0.807 0.821 0.834
h (Hubble Constant / 100) 0.73 0.70 0.702 0.700 0.677

TABLE 2.1: Cosmological Parameters measured with the Wilkinson Microwave Anisotropy
Probe and Planck Observations: (1) Denomination of the cosmological parameters, (n, and
og are properties of the power spectrum, itself defined in section 2.2.3.2. The spectral index
ng is the relative distribution of power on large scales and the normalization parameter
og scales the power spectrum to its today value), (2) Three-year WMAP measurements
from Spergel et al. (2007), (3) Five-year WMAP measurements from Komatsu et al. (2009),
(4) Seven-year WMAP measurements from Komatsu et al. (2011), (5) Nine-year WMAP
measurements from Hinshaw et al. (2013), (6) First results obtained with Planck from Planck
Collaboration (2013).

To summarize this subsection, the equations governing the evolution of the scale factor
underlines the fact that space itself is in expansion. The apparent motion of galaxies receding
from each other is solely a consequence of this dilatation of space. Yet, conserving the analogy

with a Doppler effect is appropriate.

2.1.2 Variations from the Hubble Expansion

The cosmological principle implies that the Universe is homogeneous and isotropic about all
locations. In addition, the expansion implies that the proper physical distance between two
galaxies is bound to increase with time and does so at a velocity proportional to the distance.
Yet a various set of small scale structures from single galaxies to structures extending over
approximately 100 h~' Mpc can be observed in our neighborhood. Gravitationally bound
structures exist. Merging processes happen everywhere. These observations are corroborated

by the presence of significative outliers in local Hubble diagrams.

2.1.2.1 Bound Structures and Merging Processes

The terminology ”universal expansion” refers to the global motion of the cosmic matter,
”global” in the sense when analyzing a large volume. However, galaxies close to each others
tend to gather in structures possibly bound. Bound as they will not fall apart with increasing
time because of the expansion. The local gravity wins over the global expansion effect
preventing clusters of galaxies and even galaxies themselves to grow because of the universal

expansion. Figures 1.1 and 1.2 in Chapter 1 reflect the existence of such bound structures
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in the Local Universe. An extensive list of structures in the sole neighborhood of the Milky
Way can be established. Only a few of them of different typical extents are mentioned here as
examples: Virgo is the closest cluster of galaxies ; Coma, further away, is another bigger one.
Coma is actually part of a larger structure called the Great Wall which extends over 100 h™*
Mpec. Our Galaxy, the Milky Way, is itself part of a small structure called the Local Group.
The Shapley supercluster which extends at least over 30 h™! Mpc is considered currently as
the biggest bound structure in the Local Universe (Reisenegger et al., 2002). In definitive,
the presence of an incommensurable number of structures on various scales confirms the role

played by gravity.

Gravitational pulls inside and around structures shape motions. For instance, Karachentsev
et al. (2009) observe the modification of the Hubble flow around the Local Group because of
its mass. Galaxies of Coma I cloud move at large speed. Their motions are probably the result
of an infall onto an attractor (Karachentsev et al., 2011). Models of the dynamics inside the
Local Group show close passages between the Milky Way and M31 (Andromeda) suggesting
a future merging event (e.g. Peebles and Tully, 2013). Actually numerous simulations have
already found that the collision between our galaxy and M31 is likely to happen in a few
billion years (e.g. Cox and Loeb, 2008; Hoffman et al., 2007). Remnants of galaxy collisions
and actual collisions are observed continuously (e.g. Meyerdierks, 1991; Schweizer, 1996).
Although this short subsection did not aim at explaining in details such processes, these
latter are a proof of concept that the expansion is not the sole actor of observed motions in

the Universe. Galaxies have also peculiar motions due to gravitational effects.

2.1.2.2 Voids and Local Flows

Reference frames and systems of coordinates:

To study more thoroughly local motions in our neighborhood it is essential to define a
reference frame. Several reference frames exist such as heliocentric, galactocentric, Local
Group, Local Sheet, Local Supercluster and CMB reference frames. Conversions from one
reference frame to another are summarized in Tully et al. (2008). Their names are in general
quite explicit. Usually we place ourselves in the CMB reference frame which consists in
correcting for the dipole anisotropy in the Cosmic Microwave Background temperature map.
Since this paragraph is prone to study local motions, it is quite appropriate to point out
that the observed dipole anisotropy is a compelling evidence that our Galaxy has a peculiar
motion with respect to the overall cosmic expansion. The Milky Way is moving in a well
specified direction at approximately 630 km s~!. Still, to study local motions, in particular
our Galaxy’s motion, the Local Sheet reference frame (a slight variant of the Local Group

frame) can be more relevant.
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In addition, the most used coordinate system is called supergalactic. It is defined by the
supergalactic plane (e.g. Lahav et al., 2000), located at the null supergalactic latitude (SGB).
The null supergalactic longitude (SGL) is at the intersection of the SGB=0-plane with the
galactic plane. Assuming D the distance of an object from us, the object is located in

cartesian coordinates at:

SGX = D cos(SGB) cos(SGL)
SGY = D cos(SGB)sin(SGL) (2.20)
SGZ = Dsin(SGB)

where SGX, SGY and SGZ are in the same unit as D.
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FI1GURE 2.1: Motions around and within the Local Sheet. After accounting for a cosmic
expansion of 74 km s~ Mpc~!, yellow-orange-red dots indicate peculiar motions away from
us while green-blue-purple dots stand for peculiar motion towards us. The orange vector is
a motion with respect to the Local Supercluster reference frame at 320 km s~'. The blue
and red vectors are motions at 185 km s~! towards Virgo (cluster of blue dots on the right)
and at 260 km s~! away from the Local Void in the Local Sheet reference frame (from Tully
et al., 2008).

Observed peculiar motions:

Lynden-Bell et al. (1988a) were the first to discover that galaxies have peculiar motions
pointing in a very specified direction near Centaurus cluster. They evoke the existence
of a Great Attractor with probably an unusual large mass. This Great Attractor pull was
confirmed later on by da Costa et al. (1996). These latter also observed a large infall towards

the Perseus Pisces Supercluster located approximately across from us with respect to the
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Great Attractor region. Furthermore, they noticed that galaxies are organized in filaments
which delimit voids. Progress has been made over the past few years to better understand
the motion of our Galaxy in this context. Figures 2.1 to 2.3 are a summary of our current
knowledge. Our motion is the vector sum of gravitational pulls from many sources. The
current understanding is that there are four to six dominant components on well separated
spatial scales. The nearest of which are reasonably well understood probably because motion

vectors are almost orthogonal (Tully, 2007, 2008a; Tully et al., 2008):
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FIGURE 2.2: Region of the Local Void. The solid blue ellipse shows the Inner Local Void,
bounded on one edge by the Local Sheet. North and South extensions are identified by blue
and green dashed ellipses respectively. The red vector indicates the direction and amplitude
of our motion away from the void. A galaxy, ESO 461-36 (blue dot in the Inner Local Void),
is escaping from the void with a huge velocity of at least 350 km s~!(approximately the
sum of our motion away from the void and its motion towards us) (from Tully, 2008b; Tully
et al., 2008).

e at the smallest scale, the Milky Way is falling at 135 km s~! towards the galaxy M31,

e at slightly larger scales (= 7 Mpc), the Local Sheet, that contains our Galaxy, is part
of the wall delimitating a very large void (Local Void) which appears to expand at 260
km s~! (see Figure 2.2),

e a bit farther (=~ 17 Mpc), the Virgo Cluster, at the heart of the Local Supercluster, is
found to pull the Local Sheet at 185 km s—!,

e after subtracting all these pulls individually from the CMB dipole vector, it remains

to explain a motion of 445 km s~ 1.
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One could argue that the counterintuitive observed motions (galaxies drawing closer instead
of receding) visible on Figures 2.1 and 2.3 left are due to the Hubble constant choice when
decomposing total observed motions into cosmic expansion and peculiar motions. Selecting
a larger value for Hy would enhance a pattern of overall infalls after accounting for the
expansion. On the opposite selecting a smaller value would create a trend towards outflows.
Still, Figure 2.3 right confirms that overall patterns in peculiar motions are similar whatever

reasonable H( value is considered.
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FIGURE 2.3: Local motion patterns. Left: The circle gives the outer projection of a 7
Mpc sphere centered at our position. After accounting for a cosmic expansion of 74 km s~}
Mpc~!, yellow-orange-red dots indicate peculiar velocities away from us, green-blue-purple
dots indicate peculiar motion towards us. Virgo is the cluster of blue dots at the upper
left. The local region has an overall peculiar velocity towards Virgo of approximatively 200

km s~!. Right: Red dots represents galaxies going away from us. Blue dots are galaxies

coming towards us. Whatever value is adopted for Hy (top panel 70, middle panel 75 and
bottom panel 80 km s~! Mpc™!), the counterintuitive pattern of motions with respect to the
knowledge of cosmic expansion still appears (from Tully et al., 2008).

Figure 2.4 shows supergalactic XY and YZ planes of the repartition of masses and motions in
the Local Universe confirming the overall explanation for the motion of our Galaxy (Courtois
et al., 2013). Courtois et al. (2012) also established the predominance of the role played by
the Local Void over the Virgo cluster on the Local Flow.

Yet, in an era of ”precision cosmology”, only 30% of the motion of the Milky Way is un-
derstood exactly. In addition, peculiar motion estimates are not yet numerous or accurate
enough to demonstrate whether other filaments have similar bulk motions with respect to
voids. Moreover, bulk flow measurements are in apparent contradiction with each other.

Two schools actually confront their ideas on the end of the bulk flow.
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FI1GURE 2.4: Supergalactic XY and YZ planes of the reconstruction of the mass distribution
and motions in the Local Universe within 30 h™' Mpc. Warm colors show high mass
densities while cold colors stand for nearly empty regions or voids. White arrows represent
motions. White dots stand for galaxies from a redshift survey called V8k and available at
the Extragalactic Distance Database (http://edd.ifa.hawaii.edu) of the Cosmicflows project.
A few structures are identified. In the top panel, the motion of the Milky Way towards Virgo
itself falling onto the Great Attractor region is visible. In the bottom panel, the expulsion
from the Local Void is visible (from Courtois et al., 2013).
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The first school assumes the existence of a large bulk flow which extends up to distances
greater than 500 h=! Mpc, they call it the dark flow (Kashlinsky et al., 2012, 2010). Their
work relies on the measurement of the bulk flow of X-rays luminous clusters via the Sunyaev
Zel'dovich effect (e.g. Sunyaev and Zeldovich, 1980, 1970). On the opposite, the second
school does not envisioned the end of the bulk flow as far as 500 h=! Mpc. With supernovae
of type la studies (e.g. Feindt et al., 2013; Turnbull et al., 2012), they assert that, although
the Shapley supercluster is apparently not the end of the bulk flow, there is no such things
as a dark flow. This assertion seems confirmed by recent other measurements based on the
Sunyaev Zel’dovich effect (Lavaux et al., 2013). Regardless, these multiple facts highlight
a fundamental deficiency in our understanding of the Local Universe (composition) and

explains the wealth of the Cosmicflows project.

2.1.2.3 Effect on the Redshift

Observations prove that galaxies have deviating motions from the Hubble expansion. Thus,
their total velocities v, can be written as the sum of two terms, one due to the expansion
HD, from equation 2.8 right, with D their distances and the other one due to gravitational
effects, because of local variations of matter, called peculiar velocity vpe.. Accordingly,
deriving peculiar velocities of galaxies supposes distances and total velocities to be known.
Both can be estimated from observations. We will come back to the estimation of distances
in Chapter 3, the observational part of this thesis work. Concerning total velocities, as we
name them, close estimates can be obtained with the observational redshift. This redshift is
derived from the shift of emitted wavelengths towards higher value because of the expansion
or, more generally, because of the total motion (sum of the expansion and peculiar motion)
of the emitting galaxy. It can be expressed in terms of wavelengths emitted \. and received

At
)\7" - )\e

Ae

Zobs = (2.21)
Observers measure the redshifts of galaxies by identifying well defined series of lines in their
emission or absorption spectra. The advantage of these ensemble of lines is that their values
at rest are well known. Since these sequence of lines are unchanged but just shifted, redshifts
can be computed from their shifts. An example of such a series of line is the Balmer series.
This series consists in a set of spectral line emissions of the hydrogen atom due to transitions
from level n (principal quantum number of the electron) greater or equal to 3 to the second
level. These lines called H,, Hg, H,, Hs and H are normally part of the visible spectrum.
Their wavelength values can be computed with the formula A = %(i - %) where Ry is the

Rydberg constant associated with the hydrogen. Hydrogen can be pointed out as a useful

element in various fields of Astronomy because it is highly abundant in the Universe.
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Such redshift estimates account for the expansion and the peculiar motions of the galaxies.
To disentangle all these effects on the redshift, it is useful to introduce a cosmological redshift
Zeos defined by the hypothetical shift in wavelength if expansion really bears sole responsibility
for the shift:
App — A 1
Zcos = Th)\e = 5 -1 (222)

where we have used \,, = a). obtained with equation 2.8 left. ., is the hypothetical

Th

wavelength which would have been received by the observer in the case of pure expansion.

From the definitions of the observational and cosmological redshifts 2.21 and 2.22, an ”extra

redshift” ze.irq can be defined:

A A A
1+ zops = L= = (1 + Zcos)(l + Zextra) (2'23)
N e M,
Then:
Zobs — Zcos
= = 2.24
Zextra 1+ 2008 ( )

This ”extra redshift” is due to peculiar motions.Thus, non-relativistic peculiar velocity esti-

mates vpe. are directly obtained with:

Zobs — Zcos

2.25
1+ 2eos ( )

Upec = CZpec = C

where ¢ is the vacuum speed of light and zpec = Zegtra is the "peculiar redshift”. We will
come back to the estimation of the cosmological redshift in Chapter 3 as distance definitions

and estimates are required primarily.

It is pertinent to add that, as observers, only the line-of-sight of the coordinates is affected
by peculiar motions or, in other words, only the radial component of the distant galaxies’
peculiar velocities is accessible through redshift observations. This leads to distortions visible
in maps of redshift surveys. Namely, galaxies positioned with redshift measurements on a map
form ”Fingers-of-God”, as shown on Figure 2.5, resulting from the fact that while they are at
the same distance from us, because of their different (random) peculiar motions, they appear
to be located at different distances. The Kaiser effect (Kaiser, 1987) can also be mentioned
although this effect can be detected only on large scales. It differs from the Fingers-of-God in
the sense that it affects coordinates of galaxies which are coherently infalling onto a central

mass to which they are bound.

In any case, the observations of such patterns are a proof of concept that deviations from

the universal expansion, namely peculiar motions exist. These motions are due to local
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gravitational fields which are generated by local density fluctuations. The study of primor-
dial cosmological density inhomogeneities is required to understand the process that cause

departure from a uniform density.
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FIGURE 2.5: Supergalactic XY plane representing galaxies (black dots) of the Two-Micron

All Sky Survey (2MASS) redshift catalog (Huchra et al., 2012) in a 5 Mpc thick slice.
Numerous Fingers-of-God are visible, a few of them are pointed by red arrows.
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2.2 The Linear Theory of Density Perturbations

The anisotropies observed in the Cosmic Microwave Background Temperature maps are
witnesses of primordial density inhomogeneities. Our interest lies in the effect of these
fluctuations which generate weak gravitational fields in addition to the overall gravitational
potential. In this context, the overdensity ¢ defined as:

g=L""F (2.26)

p

where p is the mean density and p the local density, is useful. Because the relation be-
tween matter density and gravitational potential is linear (Poisson equation), homogeneous
matter distribution and density fluctuations can be considered separately. Thus, the total

gravitational field can be seen as the sum of the average matter distribution and density
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fluctuation effects. A simple explanation for the growth of structures because of these small
initial perturbations can be presented as follows (e.g. Einasto et al., 2011): in overdense
regions, meaning in regions where the overdensity is positive (density greater than the mean
density), the density decreases more slowly than on average because the expansion effect is
dimmed by the higher gravitational effect. Accordingly, the density contrast between these
regions and mean density regions increases. This increased overdensity in turn produces an
even stronger gravitational field and the process repeats itself. An opposite phenomenon
happens in underdense regions. The expansion is less affected in these regions than in mean
density regions by gravity, thus the density decreases faster. The gravitational effect is even
weaker and the process continues. Hence, the evolution of structures can be described by

the model of gravitational instability corresponding to an increase of density fluctuations.

2.2.1 Continuity, Euler and Poisson Equations

Because the growth of density perturbation length scales is substantially smaller than the
Hubble radius (HLO ~ 3000 h~! Mpc), working in the framework of Newtonian theory of
gravity is acceptable. Matter is assumed to be solely in the form of dust which is described

as a fluid. The equations of motions are then:

e the continuity or energy equation which states that the matter is conserved. The density
decreases only if the fluid has a divergent velocity field meaning that the particles are
moving away from each other, namely the total derivative of the density with respect

to time ¢ is null:

)r+ (V)r(p(r, )v(r,t)) =0 (2.27)

where p is the density and v the velocity. The r subscript signifies that derivatives are

with respect to the coordinate r fixed,

e the Euler equation which describes the conservation of momentum and the behavior
of the fluid under the influence of forces (pressure P and gravitational potential @),

analogous to Newton’s first law:

(88;,)7" + (V-VT)V = —m

-V, ®(r,t) (2.28)
where the gravitational potential follows the Poisson equation:

V20 = 4lIG)p (2.29)

Since we consider only dust the pressure term P is null in the rest of this work.
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Equations 2.27 and 2.28 are in general not solvable analytically. It is necessary to linearize
these self-gravitating fluid equations for |0| << 1 (valid at very high redshifts, such as z ~
1000 corresponding to the last time photons and matters interacted, it is the observed Cosmic
Microwave Background) to find approximate solutions. One can note that the generalized
Hubble law is a special exact solution of these equations for the homogeneous density field
p. Thus, we can expect that physically relevant solutions are slight deviations from the

homogeneous case comforting the prescribed linearization.

2.2.2 Comoving Equations
2.2.2.1 Comoving Coordinates: Definition

At this point, it is useful to introduce the comoving coordinates. These coordinates are a
perfect compromise between the Fulerian and Lagrangian coordinates. While an Eulerian
observer takes snapshots of the field at different times ¢, in other words he is more interested
in the global variation of the field (grid) in time than in particular objects, a Lagrangian
observer follows the chosen objects on the grid. Consequently, while the Eulerian observer
can give the velocity in any point of the grid, the Lagrangian observer can locate the particles
on the grid but not in time (the lagrangian coordinate is independent of time), thus, to him,
it seems particle are immobile (no velocity). A comoving observer is in between. While he
proceeds as the Eulerian observer, he forgets about the motion due to expansion. Namely,
assimilating the Universe to a growing grid, the comoving observer resizes constantly the
grid to its original size. As a result, he has (only) the peculiar velocity field in any point of

the resized grid. Figure 2.6 schematizes the concept.

However, the Universe is homogeneous and isotropic only when smoothing out small ir-
regularities. As a consequence, depending on the position of the observers, they are not
necessarily comoving. That is one of the difficulty of being part of the system under study.
A set of fundamental observers is considered comoving if observers are at rest with respect to
the matter surrounding them. Since random velocities of galaxies and stars composing them
are small (only a few hundreds of km s~!) in comparison with receding velocities between
galaxies separated by large distances (many thousands of km s™1), on large scales (typically
enough for the assumption of homogeneity to be accurate) any observer who moves with a
typical star in a galaxy is considered at rest with respect to his environment and, as a result,

is a fundamental observer. A cosmic time also needs to be defined (Gunn, 1978).
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FIGURE 2.6: Schematization of the Lagrangian, Eulerian and Comoving coordinate princi-
ples: the Lagrangian observer follows the particles (blue filled circles) on the grid but not
in time. Consequently, to him it looks like particles have no velocity. They do not move
in time; the Eulerian observer, interested in the global value of the grid at different times,
takes the snapshot of the global field at times ¢ and ¢', he can trace the velocity field (red
arrows) ; the comoving observer resizes the grid to remove the dependence on the expansion
thus, he can give (only) the peculiar velocity field (red arrows).

2.2.2.2 Comoving Coordinates: Equations

Before any linearization of the continuity and Euler equations, changing to comoving coor-

dinates is convenient. Let’s define the proper coordinate r at time ¢ by:
r =a(t)x (2.30)

where a is the scale factor and x the comoving coordinate. From this definition, a velocity
field v can be derived:

a r
= - -t 2.31
v="r+ult,y (2:31)

where u is the deviation from the Hubble expansion, itself given by the first term of the
formula by analogy with relation 2.8 right ; u is also called the peculiar velocity field since
it would be null in absence of peculiar motion (x would stay unchanged with time in which

_dr _
case u = aGy = 0).

Thus, in comoving coordinates using 2.30:

) 0 or . a
(5 = (Gp)e + (50)aVa = (5)e = —x Ve 5 Vi= Vo= -V, (2.32)

where the subscript x stands for derivative with respect to the comoving coordinate z fixed.
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From relations 2.30 to 2.32, the continuity and Euler equations 2.27 and 2.28 become:

dp 3a 1 B
ou 1 a 1
ot + 5(u.V)u + Ju= —EVQS (2.34)

where the pressure term has vanished, since we consider solely dust, and V,x = 3 was used.
For simplicity the x subscript is not written. In addition, both the definition 2.26 of the
density 0 and the equation of motion 2.11 in the Newtonian framework considering dust
(namely P and A are null) were used. ¢ is now defined has ® — %Gﬁ\r[? Since it is the
variation between the full gravitational potential ® and the Newtonian gravitational potential
%Gﬁ]ﬂz, it corresponds to the gravitational potential of the density inhomogeneities. It

satisfies the Poisson equation for the density inhomogeneities:

V2¢(x,t) = 4IIGa®(t)p(t)6(x, t) (2.35)
From equation 2.26 and p(t) oc a=3 (namely, % = —3%5), equation 2.33 can be written:
06 1
—+ -V.[(1+du]=0 2.36
% vi0 o (2.36)

2.2.3 Density Perturbation Field
2.2.3.1 Linearization

The linearization of equations 2.34 and 2.36 consists in rejecting all terms other than the

first order in ¢ and u. Accordingly, these equations become:

25 1 ou a 1

Derivating the first of one of the two equations 2.37 with respect to the time and the second
one with respect to x, subtracting them after division of the second by a, using the Schwarz
theorem, the Poisson equation 2.35 and the left equation in 2.37, we obtain the second-order
differential equation for the density perturbation field o:

%5 2a 06

o T gy = ANGH (2.38)

Since only ¢ depends on z in this second-order differential equation, it is possible to find a
solution of the form 6(x,t) = D4 (t)d(x). From equation 2.38, after division by 6(x), D+

is solution of a second order differential equation with two linearly independent solutions.
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While one of this solution decreases with time, the other one increases. It is logical to
assume that at some later time, the increasing solution will dominate while the other one
will have become irrelevant. Considering solely the increasing solution, hereafter Dy, and
normalizing it to unity today, d(x,t) = Dy (t)dp(x) where oy would be the distribution of
density fluctuations at present if the evolution was linear until today. This is the linearly
extrapolated density fluctuation field which approximation breaks down as soon as |J] is not
a lot smaller than the unity anymore. In comoving coordinates, this approximation implies
that the spatial shape of the density fluctuations is frozen, only its amplitude can vary (e.g.

Heath, 1977). The (linear) growth factor D can be shown to be equal to:

1 a [*da

1 1 da

where D+0 = o, Jo &3

This linear theory of density perturbations explain the observed structures in the Universe.
Galaxies, clusters, etc result from the gravitational collapse of high peaks in the primordial
density field. Current galaxy peculiar motions are proofs of concept that structures are
continuously forming and evolving in the Universe. Studying analytically, in details, these
motions via the perturbation density field appears to be a complex task. Statistical and

numerical methods become resourceful.

2.2.3.2 Fourier Analyses

Before any comment on how to perform statistical measurements on the perturbation field,

let’s define its Fourier expansions:

) 1 .
_ —ik.x . _ —1k.x
where k is the Fourier mode or wavevector.

Because in an homogeneous and isotropic universe the variance of the perturbation density
field has to be the same from about all locations, statistical measurements can be performed.
Namely, the gravitational instability yields patterns of inhomogeneities depending on the
scale and on the precise matter content of the Universe. To define more precisely the scale-
pattern or the variance in amplitude of the perturbation field at all scales, called the power
spectrum, it is necessary to go back to the theory of inflation which predicts that the primor-
dial fluctuations can be described by a Gaussian random field (Kolb et al., 1990). Because
this field is not only Gaussian but also homogeneous from the cosmological principle, Fourier
modes of the perturbation field are uncorrelated (Bardeen et al., 1986). Consequently, it is

possible to define the variance in amplitude of the perturbation field at all scales, or power
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spectrum P, as a function of the Fourier modes, or wavevectors, k such that the power spec-
trum is the ensemble of P(k) = (|6|?) = |0x|> where the angle brackets stand for the average
over the volume. From this definition, it appears that the amplitude of the power spectrum
increases with time t. At ¢, the power spectrum is D% (¢)Py (from 6(x,t) = Dy (t)do(x))
where Py is the power spectrum today, normalized by og as given in Table 2.1. Figure 2.7

shows the three power spectra, i.e. cosmological models, which are used in Chapter 4 of this

work.
| T T T T T
T WMAP3
T WMAP7 — - — -
104 B .»,‘f:?:/ \5:\‘ Planck — - —— H
5 N
/// .‘.\4\ |
P ,/ '-_\
.\\
2
107 s i
N
“v L \ |
oL Y ]
7 1 Y
N
& i \ _
A~ , 3 Y
102} l
kY
.Y
L s |
4 kN
10_ I~ l‘ -
Y
| | | | | A )\

10* 10° 102 10! 10° 10' 10* 10°
k (h™ Mpc)

FIGURE 2.7: WMAP3, WMAP7 and Planck Power Spectra (linear part) in logarithmic
scales.

Because of all the properties of homogeneity and isotropy from which is also derived the
ergodicity (averages over several different random realizations and over a large volume of
one realization are equivalent, Adler, 1981) and randomness of the perturbation field, the
statistical properties of this latter are fully determined by the power spectrum. For instance,

the autocorrelation function of the perturbation density field is defined by:

£(r) = (5(x)8(x + x')) = (2%1)3 /0 ~ P(k)e ™ dk (2.41)

The remarkable fact that the perturbation density field is fully determined by the power

spectrum, in other words by the Universe content, is at the basis of every simulation.
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2.3 N-Body Simulations

All the equations of motions presented in the two first sections of this Chapter are non
linear. A solution is given only in the limit of linear perturbations with the linearization.
The evolution of the non linear density field can be obtained with N-body simulations of the

density field represented by a set of particles.

2.3.1 Dark Matter

Zwicky (1933) noticed that the mass of the Coma cluster obtained with velocity dispersions is
a lot greater than the total visible mass (light-emitting mass). Even the addition of the mass
of X-ray emissive gases could not account for more than 20% of the total mass of the cluster
obtained with gravitation. Most of the mass in the Universe is invisible. Fundamental laws
of physics are affected when this invisible mass is not accounted for. For instance, rotation
curve of galaxies fail to follow the Newtonian law of gravitation which predicts a decrease
in rotational velocity beyond the disk of matter. As a matter of fact, observations at 21 cm
(emission line due to the transition between the two hyperfine levels of the ground state of
hydrogen, with different energies because of parallel and antiparallel spins) of the hydrogen
disk reveal that galaxy masses are not concentrated within regions extending up to the
hydrogen disk. If it was the case, from the first law of gravitation (here, % = Ci—g”), the
rotational velocity v of a galaxy beyond the hydrogen disk would decreased as # where r is
the distance from the galaxy center. However, the rotational velocity beyond the hydrogen
disk is a constant up to large galactocentric distances. The fact that the rotational velocity
is a constant implies that the gravitational potential has to be inversely proportional to the
distance. Namely, in a sphere of radius r, the mass m is proportional to r and the density
is inversely proportional to r2. As a result, the invisible component of the Universe, called

dark matter, is not a uniform mass in which ordinary matter is embedded. Its density is

largely function of the galactocentric distance.

Still, the question of what englobes the terminology ”dark matter” is not totally answered.
The nature of the dark matter is only partly known. Going back to the linear theory of
density perturbations, the relativistic hot dark matter particles can be ruled out at least if
considered alone®. These relativistic particles are not gravitationally bound in the potential
wells of density concentrations. Consequently, small scale density perturbations cannot form.
This implies that large scale structures have to form first before fragmenting into smaller
scale structures. This scenario contradicts observations of small scale structures at high red-
shifts (e.g. Petry et al., 1998; Rauch et al., 1999, 2001). Still, with the hot characteristic

3For more details on an extra hot dark matter component in addition to the dominant cold/warm dark
matter component see e.g. Hamann and Hasenkamp (2013); Jeong et al. (2014) for the most recent progress.
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dismissed, distinguishing warm from cold dark matter is yet to be done. While the adjective
"warm” implies that particles decoupled while relativistic so that today velocities, densities
and temperature relative to photons are reduced, the adjective ”cold” suggests particle relics
which decoupled while classical. The number density can be suppressed and the mass can
be as large as desired, the thermal velocities being effectively zero. If decoupling happened
at sufficiently high redshifts then the horizon scale was small at that time and free stream-
ing had a negligible impact. As a result, structure formation is a hierarchical process in
which large structures grow via the merging of smaller scale structures. In a warm dark
matter dominated Universe, if particles decoupled at sufficiently early time (sufficient mass),
small scale structures at high redshifts can also be found. The critical mass is around 1-10
keV. Regarding the baryonic characteristic of dark matter particles, from the primordial
nucleosynthesis, the baryonic density parameter cannot exceed 0.07 for reasonable Hubble
Constant value (e.g. Krauss, 1995). However, the estimate of the total matter density pa-
rameter (), is at least 0.2 in Table 2.1. There is a necessity for dark matter to be (mostly) a
non baryonic gravitationally dominant component of the Universe (e.g. Hattori, 1994). This
work relies on the standard ACDM model, thus, cold dark matter is assumed to be the grav-
itationally dominant component of the Universe without any precision as to the nature of
such particles. They could be Weakly Interacting Massive Particles (WIMPs, e.g. Bertone,
2010; Tocco, 2010) to give an example of current theories about dark matter particle nature.

In any case, particles composing this dark matter dynamics can be studied with simulations.

2.3.2 N-Body Codes

2.3.2.1 The Modeling

The first problem encountered in the numerical cosmological field of research arises just by
the complexity of simulating the entire Universe (probably infinite). We are constrained
to simulate only a part of it. For the simulation to be statistically fair, the length L of
the chosen cube, which will have to be resized permanently (comoving cube) because of the
expansion particularity of the Universe, has to be large enough for the effect of the Large
Scale Structure not to be neglected (e.g. Power and Knebe, 2006). The larger the box, the
better it probably is, but, with it, comes the implication of a decrease in the mass and length
scale resolutions. Because the total mass in the numerical volume is proportional to the cube
of the length L times the matter density parameter, the minimum mass resolution which can

be obtained for a number of particles n can be derived and a compromise can be achieved.

Still, a particle at the edge of the box has to feel gravitational forces beyond this edge. The
box cannot be assumed to be embedded in nothing. From the assumption of the homogeneity

of the Universe at scales larger than L, the cube is extended periodically. Thus, a particle
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leaving from a boundary will re-enter the box from the opposite side and feel the gravitational
effect of particles on the other side. Therefore, the mass distribution has a periodicity of L

and quantitative analysis of the results have to be confined to approximately %

Regarding matter modeling, since dark matter dominates the matter in the Universe, it is of-
ten sufficient to compute the behavior of this dark matter and to consider solely gravitational
interactions at least as a first approximation. Baryonic physics can eventually intervene (e.g.
Scannapieco et al., 2005) or dark matter only simulations can directly be galaxy populated
(e.g. Cole et al., 2000; Klypin et al., 2013). The complete scheme is 1) structures grow via the
sole gravitational instabilities pre-existing in the initial density field in the form of Gaussian
fluctuations (Press and Schechter, 1974) ; 2) in a dissipationless gravitational collapse, dark
halos are shaped (Gunn and Gott, 1972) ; 3) galaxies form with the halos following the radia-
tive cooling of baryons. In this work, dark matter only simulations will be presented, namely,
the third step is neglected which is a reasonable assumption on the scales of interests for the
conducted studies (baryons have a negligible impact on such scales). Then dark matter halos
will be assumed to represent galaxies or at least ensembles of galaxies such as clusters or
groups. With this context established, particles of dark matter are represented by bodies
of mass m. These macroscopic bodies are assumed to behave like microscopic dark matter
particles in a volume % where p is the density of bodies. N-body codes follow the motion of
this large number of bodies of mass m under their mutual gravitational attraction. However,
equations 2.33 to 2.35 are insufficient to solve properly the behavior of dark matter particles
which is multi-streamed in any fixed discretization of the three-dimensional Euclidean space.
To obtain a complete description of the behavior of dark matter, the whole phase space has
to be considered. Usually, these systems are described with collisionless equations since the

time coverage of simulations is much shorter than the relaxation time of these systems.

2.3.2.2 Colisionless Boltzmann and Poisson Equations

In an attempt to mimic the evolution of these systems with an infinite number of particles,
the distribution can be seen as a continuum. Then, the gravitational field is not the result
of a collection of mass points but that of a smooth mass distribution. Interactions between
individual particles are indeed negligible in this large spatial extent context. This smooth
mass distribution of non-interacting dark matter particles can be described by the colisionless
Boltzmann and Poisson equations in an expanding Universe. The collisionless Boltzmann

equation can be applied to the probability distribution function f of a particle to be at a

given position. The conservation of this function in phase space implies %{ ag—ww = 0 where
w = (x,Vv) with x the position and v the velocity. Using Hamilton’s equations (x = %—Ij and
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V= —%—5) and Schwarz’s theorem, the Boltzmann equation can be written:
of  .of  .of af df
— = 2.42
or TFax TVav 0= o T A= G (242)

where the bracket notation denotes the Poisson Bracket (formulation from Leeuwin et al.,
1993) and H is the Hamiltonian. In words, the flow of the probability fluid through phase
space is incompressible which means that at any time even if the spatial extent increases
(expansion) the probability distribution in phase space stays the same. An analogy would
be an ideal set of runners who travel at different but constant speeds. Because of the variety
of speeds some would recede faster than others from the departure point and the ensemble
of runners will cover a larger area. Still because each one of the runners conserves it original
speed, the spatial distribution of velocities and comoving positions stays unchanged. This
means that sampling the density and velocity field at a time ¢, the resulting set of discrete
particles will always be a uniform sample of the probability distribution function f. As a

result, it is enough to solve the equations of motions for each one of these discrete particles.

The N-body method is based on this principle. In Cartesian comoving coordinates, the

Hamiltonian H can be written:

=% 2"“ +3° 9% — X5) (2.43)

where z; and v; (i stands for a or ) are the position and velocity of the particle i. Thus, for
a discretized system, according to Hamilton’s equations and because the gravitational field

is conservative (this is usually written in the form of the Poisson equation):

d:lz'a 1 dlUOz _ 1 — Fa
W = E/Ua ) E - av¢(xa) where VCZ)(XQ) - mia (244)

where G is the universal gravitational constant and Fy, is the force applied to the « particle

by all the other particles of mass mg defined by:

For a=1ton, Fo=3 Gmgmg o2 (2.45)

As a result, the only major requirement is the derivation of the gravitational force exerted on
each body « at their current positions by all the other bodies 8. Bodies are moved accordingly
to the application of the force after a short time and they are assigned the corresponding
velocities (e.g. Zemp et al., 2007). To compute efficiently all these forces, Poisson solvers are
used. The principle is to used the fact that each computed distance can be used twice in the
set of forces 2.45. Thus, for n bodies, instead of n? operations, only %n(n — 1) are required.

This number of operations can be reduced some more.
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2.3.2.3 GADGET: a TreeSPH Code

Heitmann et al. (2008, 2005) studied the differences between various N-body codes such as
RawMmSES (Teyssier, 2002), ART (Kravtsov et al., 1997) and GADGET (Springel, 2005). They
did not find any substantial variations between the Large Scale Structure obtained from the
various codes down to the resolution limit. Because the CLUES collaboration uses widely
the GADGET code, this work relies on the same code to facilitate comparisons with, and
interactions between, present and future work. GADGET is capable of following a collissionless
fluid with the N-body method and an ideal gas with smoothed particle hydrodynamics. For
dark matter only simulations, only the N-body part of the code is of interest. (GADGET
combines different methods depending on the scale of computations to maximize the efficiency
of the code. Hence, following Xu (1995), the "Tree method” is used at short range while

Fourier techniques (”particle-mesh”) are used at long-range.

The tree code method (e.g. Appel, 1985; Barnes and Hut, 1986; Dehnen, 2000) consists
in dividing the cube in eight equal subcubes and each subcube containing more than one
particle is in turn divided in eight. The process is repeated until each little cube hosts at
most one particle. Then, the center of mass of the particles in each size cube is computed.
Eventually, multipoles are evaluated so that forces acting on each one of the particles can
be easily obtained. With only nlnn operations against %n(n — 1), this method effectively
increases the performance of the code. Without any intrinsic resolution limit, the technique
seems ideal but it is considerably slower than the particle-mesh technique. On the opposite,
the particle-mesh relies on fastest computational schemes to obtain the gravitational field
(e.g. Klypin and Shandarin, 1983; White et al., 1983). However, because forces at small
scales are largely suppressed, the resolution is limited, hence the importance of combining
the two techniques. The particle-mesh process consists in estimating the density for a set of
points regularly spaced on the grid. The ”mass assignment” method is used to allocate the
mass of a particle to one or more grid nodes close to it. Several mass assignment schemes
exist: 1) the NGP, for "nearest grid point”, technique gives the mass of the particle to its
closest node. This scheme is rarely used because assigned nodes changed discontinuously as
particles move through the grid. 2) the CIC or ”cloud-in-cell” method splits each mass into
a homogeneous cube with side length equal to the grid spacing. 3) the TSC or ”triangular
shaped cloud” process splits the mass over more nodes than the CIC technique. CIC is

usually a good compromise between the smoother T'SC results and the noisier NGP results.
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2.3.3 Building Initial Conditions

2.3.3.1 The Zel’dovich Approximation

With a large number of fundamental theoretical and numerical tools in hand to model our
Universe, it is worth recalling and reminding the goal of this work: the production of simu-
lations of our Universe. Initial Conditions for the GADGET code are required. These Initial
Conditions are constituted of an ensemble of particles with given positions and velocities
representing the primordial fields (discretization scheme, e.g. Efstathiou et al., 1985). Pri-
mordial and today fields are linked by the Zel’dovich approximation (Zel’dovich, 1970) which
stays qualitatively valid even when the perturbations are large. Let’s consider a particle at
Lagrangian coordinates x; and the coordinates of the grid point occupied by the particle
at a time ¢ = 0, xg or Eulerian coordinates. At a later time ¢, the particle is located on
the grid at xg(t) = x1(xg) + ¥ (xg,t) where ¥(xg,t) is the displacement field from the
initial position. The Zel’dovich approximation stipulates that this displacement field can be

approximated by:
¥(xg,t) = Dy (t)o(xE) (2.46)

where 1(xp) is the initial displacement field. In other words, the displacement field behaves
similarly to the perturbation density field. Its direction is frozen and it grows with time.
This approximation is the first-order solution of the Lagrangian perturbation theory often
referred to as LPT. Positions of particles at a time ¢ can then be derived. This ensemble
of particles approximates the primordial density perturbation field provided that the chosen

time is small enough (or equivalently z is high enough).

Because the peculiar velocity field u is the time derivative of the Eulerian coordinates minus

expansion:
Y(x,t)dDy dt . .
u(X7 ) a X D+(t) dt X daa’ a/fw(x7 ) ( )
where f = % is the growth rate, the displacement field can be reached through the

peculiar velocity field.

Continuing our quest, the peculiar velocity field needs to be determined. From the conti-
nuity equation 2.37 left, the (linear) peculiar velocity field u is directly available from the

perturbation density field § = 5D+ provided that this latter is known:

Vu=-—a——"" = q—52 "0 = —afs (2.48)

where f is still the growth rate.
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Both redshift surveys and peculiar velocity estimates can give access to the perturbation
density field with reconstruction techniques such as the Wiener-Filter method (e.g. Zaroubi
et al., 1999, 1995). This technique of reconstruction based on correlation functions will be
described in more details in Chapter 4. Regardless, to measure the perturbation density field,
there are thus two solutions. Either redshift surveys are directly used or they are combined

with direct distance measurements to produce radial peculiar velocity measurements.

2.3.3.2 Redshift Surveys or Direct Distance Estimates?

Obtaining radial peculiar velocity measurements is clearly more demanding and one could
argue that although it works it is not worth the effort. Still, since galaxies account only
for the luminous matter while radial peculiar velocities from direct distance measurements
account for both baryonic and dark matter, the trade-off between the two possible sets of
observational data to produce constrained simulations is undeniable. Surely, the density field
obtained from redshift surveys may be corrected for the bias. Comparisons between density
perturbation fields obtained from large deep redshifts surveys and from independent peculiar
velocities measurements have resulted in an estimate of this bias (e.g. da Costa et al., 1998)
and methods based on redshift surveys flourished to produce constrained Initial Conditions
(HeB et al., 2013; Lavaux, 2010; Mathis et al., 2002). However the bias is still poorly known
(e.g. Baugh, 2013). Then, relying on direct, unbiased tracers of the underlying gravitational
field (peculiar velocities) to derive the perturbation density field is highly relevant. The

wealth of the Cosmicflows project is based on this last affirmation.



Chapter 3

Observed Universe

Peculiar velocities are departures from the cosmic mean Hubble expansion due to primordial
density inhomogeneities. The overarching goal of the Cosmicflows project is to measure dis-
tances, to estimate such variations from the expansion, out to redshift z ~ 0.05 (~ 150 h=!
Mpc). Distance measurements are gathered from a multitude of methods. Of particular im-
portance to the project are distances accrued from the correlation between the rotation rate of
a galaxy and its luminosity or the Tully-Fisher Relation. There are methodologies that pro-
vide distance estimates that are individually more accurate but an abiding advantage of this
relation is applicability to a large fraction of all galaxies over a wide range of environments
and distances. Distances measured on a coherent scale around the sky are required to address
properly the cosmological problems of the Hubble Constant and of departures from the mean
cosmic flow. Mid-infrared (3.6 um) photometry with the Spitzer Space Telescope is partic-
ularly valuable as the source of luminosities because it provides products of uniform quality
across the sky. Accordingly, this Chapter presents observational data of the Cosmicflows
projects, in particular surface photometry of Spitzer mid-infrared data. Subsequently, these
data are used to calibrate the Tully-Fisher relation at 3.6 um and to give an estimate of
the Hubble constant. Finally, the accurate distance measurement catalogs of the project are

presented.

3.1 Distances

Distances in the Universe are not accessible with everyday tools. Indicators like luminosity
or size in the sky are required to estimate distances. Because distances are obtained through
variables and methodological tools affected by the dynamics, geometry and compositions of
the Universe, several definitions and explanations regarding fundamental bases of the tools

are requested.

37
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3.1.1 Luminosity Distance

Comoving Radial Distance:

From the definitions of the comoving coordinates 2.30 and cosmological redshift 2.22, the
comoving radial distance x of a source with a cosmological redshift z.,s in our most likely

flat Universe, today is:

1 —cdt —cda Zeos cdz Zcos cdz
a a a?H 0 H 0 Ho\/(1+z)3Qm+QA

where equation 2.19 and the metric 2.2 were used.

Luminosity Distance:

Among the variety of distances which can be measured, this work relies on the luminosity

distance Dy. This latter is obtained measuring the flux F of celestial objects with the

Dy = ,/ﬁ (3.2)

assuming the total intrinsic luminosity L of the object is known.

relation:

The flux received from a galaxy at a comoving distance x today (a = ap=1) is proportional to
its luminosity distributed on a sphere of radius . However, emitted particles such as photons
are not received as such. They are affected by a double diminution of their frequency due to

both the expansion and a loss of energy. Then the flux measured is:

L 1
F = .
(1 4+ 2cps)? 41122 (3.3)

From relations 3.2 and 3.3, the luminosity distance Dy can be expressed very simply in

function of the comoving distance x as:

Dp = (1 + zeos)x (3.4)

It is remarkable that because our Universe is most likely flat, the Friedmann-Lemaitre-
Robertson-Walker metric 2.2 is considerably simplified. When the relation between the
measured and comoving distances could have involved (hyperbolic) sinus functions for a
(negative) positive curvature of space, they are simply proportional in the case of a flat

Universe.

Our final interest is in the estimation of peculiar velocities. In Chapter 2, the formula 2.25
enables the computation of non-relativistic radial peculiar velocities. However, equations to

derive estimates of the cosmological redshift have yet to be discussed.
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Relation 3.4 implies that the cosmological redshift can be estimated provided that the integral
3.1 can be calculated. Unfortunately, because of the presence of the cosmological constant,
there is no simple solution. An approximation of the generalized Hubble constant is required.
For small redshift, the development of H to the second-order in z is satisfactory. After a

calculation, that we do not report here, Chiba and Nakamura (1998) give:

H(z 1.
) 0+ (e + gL+ 300+ 2) — 2+ 300+ ) (35
~ ) — S(1— a0 — 362 4+ i0)22
Dp(z) = i [1+0.5(1—gqo)z 6(1 qo — 3q5 + jo)z7] (3.6)
where jo = "ig? lo is the jerk parameter and gy = —Z—g\o = 0.5(Qy, — 20 is the deceleration

parameter obtained with equations 2.11, 2.12 and 2.16. Usually, we take the jerk parameter
to be the unity.

Eventually, the cosmological redshift is solution of equation 3.6 where Dy (z) is the measured

luminosity distance. It leads to an estimate of the peculiar velocity with 2.25.

Very often, observers work with velocities from the start rather than redshifts. However, one
has to be careful when working with velocities as the commonly seen relation vipr = czpps
is inaccurate. From equations 2.23, 2.25, the generalized Hubble Law modified by peculiar
motion 2.31 and the relation between cosmological redshift and distance luminosity 3.6,
neglecting supplementary relativistic effects, if any, affecting the observational redshift, one
finds:

1 .
Viot = HoDyp, + Upec =~ czcos[1 + 05(1 - q0)zcos - 6(1 —qo — SQS +JO)2’303] + CZpec (3 7)

F CZobs = C(Zpec + Zcos Zpeczcos)

With these definitions settled, in the rest of this Chapter, distance stands for luminosity

distance.

3.1.2 Magnitudes

Observations of brightnesses of stars and galaxies go back as far as the ancient world when
lists of celestial objects and their magnitudes were compiled. Since the human eye relates
magnitude and flux roughly logarithmically in base ten (denoted log in this whole work),
the logarithm scale has been kept over the years although, the relation is now much better

defined. The apparent magnitude m of an object is given by:

m = —2.5logF + cst (3.8)
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where F' is the flux and cst is a constant which depends on the chosen system. Multiple

systems exist, two are used in this work:

e the Vega system which is built for the Vega star to have a zero magnitude in all filters.
At only ~ 7-8 parsecs from Earth, Vega, also called Alpha Lyrae, is the brightest star
in the constellation Lyra. From the fifth brightest star in the night sky, it comes only
second in the sole northern hemisphere after the Arcturus star. From the definition
3.8 of the apparent magnitude, the constant is 2.5log(Fy¢gq) plus an additional term

depending on the observing telescope,

e the AB system which relies on the principle that an object with a constant flux (flat
energy distribution) has the same magnitude in all bands. In that case, the constant
in equation 3.8 is -48.6 to which the value corresponding to the response of the obser-

vational instrument has to be added.

Because objects are all at different distances (the desired variable), comparing their intrinsic
luminosities with apparent magnitudes is not direct. Thus, the absolute magnitude M of an
object is defined as the apparent magnitude which would be measured for the object if this

latter was at 10 parsecs from us without any source of obscuration:
M = —2.5logL + cst’ (3.9)

where L is the luminosity of the object and cst’ a constant.

From the definitions 3.8 and 3.9 of the magnitudes and F' = ﬁ of the flux, apparent m

and absolute M magnitudes of an object can be related to its distance D:

ATT x 102

—m— M = —25log(——
p=m e T Do

) = blog[D(pc)] — 5 = blog[D(Mpc)] +25  (3.10)
where p is called the distance modulus and (pc) and (Mpc) mean that the distance has to

be converted either in parsecs or megaparsecs.

In 1934, relation 3.8 between the flux F' = ﬁ and the apparent magnitude m enabled
Hubble to confirm the homogeneity of the Universe. For a homogeneous Universe, the number

of galaxies with a flux greater than F' in a steradian of the sky should follow the relation:

nrs n, L

N(>F)=nV == g(m)?‘/2 ox F3/% o (10704m)=3/2 = 19~ 0.6m (3.11)

Hubble counted and retrieved the proper relation. Note that in reality the homogeneity is
confirmed only for the younger Universe as light received today has been emitted some time

in the earlier history of the Universe. In addition, this relation is valid only nearby unless
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some correction for the selection bias which affects it farther away is made (see section 4.4

in Chapter 4 for an explanation of the bias).

From this subsection, we learnt that measuring distances relies on obtaining distance modulus

estimates, more precisely apparent and absolute magnitudes. The next subsection enlightens

us on some of the methodological tools available to obtain such distance modulus measure-

ments.

3.1.3 Distance Indicators

' Scale of the Observable Universe

' Scale of the Local Supercluster of Galaxies >
Scale of the Local Group of Galaxies >
' Scale of the Milky Way >

Supernovae of Type la

undamental Plane.)

+__Tully-Fisher '
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Cepheid Variables N

i S

. Parallax N
“ v

LMC M31 Virgo Coma

10% 105 10% 103 102 101 1 10 102
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FI1GURE 3.1: The cosmic distance ladder or extragalactic distance scale principle is presented
here. Each technique from parallax to Supernovae of Type Ia through Cepheids, Tully-
Fisher relation, etc is relevant to determine distances on varied scales. The most accurate
ones, which can be used close to us, serves as scaler for the other ones. They are called
primary distance indicators while the others are named secondary. The double head arrows
underlying techniques’ names show the range of distances on which methods are relevant.
Their colors (except for the orange one) indicate the objects of study: purple for the stars, red
for elliptical galaxies, green for spiral galaxies. The parallax is a geometrical method which
applies to various but very close objects. A few object are identified in blue: the Large
Magellanic Cloud (LMC), the galaxy M31 or Andromeda, the Virgo and Coma clusters.
Their horizontal position in the diagram specifies their approximate distance. (This figure
heavily borrows from one of Pr. Whittle’s lessons, www.astro.virginia.edu).

The cosmic distance ladder or extragalactic distance scale is the ensemble of methods used by

observers to determine distances in the Universe. The notion of ladder arises because none
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of the techniques used to estimate distances can cover by itself the whole range of values.
Distance indicators, as are called these methods, are separated into two groups: the primary
distance estimators which are very accurate but can be used only locally and the secondary
distance estimators which are less accurate but can provide distances much farther away.
Figure 3.1 gives a non extensive list of distance estimators which are briefly described in
the next paragraphs (see Jacoby et al., 1992; Rowan-Robinson, 1985, for a more complete

review).

3.1.3.1 Primary Distance Estimators

Two primary distance estimators are of particular interests to the Cosmicflows project:

e the Cepheid Period Luminosity relation which is a very accurate method based on the
relation between the distance modulus p of the variable stars or Cepheids and their
period P (amount of time necessary for their magnitude to be back to the initial value

before repeating the same flux variation pattern again):
= aflog(P) — 1] (3.12)

where a is a constant. Freedman et al. (2001) improved the calibration of this relation
by taking into account the Cepheid-metallicity dependence of the relation. Distances

are directly obtained from this relation and equation 3.10,

e the Tip of the Red Giant Branch (TRGB) method which relies on the fact that the
red giant branch is well developed in stellar populations older than two gigayears.
Stars at the tip of the branch are easily resolved if their distance is less than 10 Mpc.
This method uses equation 3.13, a correlation between TRGB magnitudes and distance

moduli:

pw=mrree + BC — MpoTrGE (3.13)

where BC' is the bolometric correction (conversion from apparent to bolometric mag-
nitudes where the bolometric magnitude is the magnitude that would be measured if
all the wavelengths were observed simultaneously), Mp, rrgp the bolometric lumi-
nosity function of metallicity and color and, mrrgp the magnitude for which there is
a discontinuity in the Color-Magnitude Diagram of the observed star population. At
the core of low-mass star helium flashes, Mp, Trap varies only by approximately 0.1
magnitude. Thus, in a Color-Magnitude Diagram, which preserves a record of star
formation history rich in details, low-mass stars accumulate along the red giant branch

up to the tip as they evolve. The sudden discontinuity in the diagram indicates that
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the tip is reached. Relation 3.13 and equation 3.10 enable a direct derivation of the

distance.

These two primary distance indicators enable to set the zeropoint of the secondary distance

estimators.

3.1.3.2 Secondary Distance Estimators

After observations revealed that kinematic properties and luminosities of galaxies are closely
linked, relations have developed. A relation often applies to a particular type of galaxies.

Let’s first distinguish between the different galaxy types:

e the elliptical galaxies are smooth, featureless stellar systems containing little or no cool
interstellar gas or dust and small or no stellar disk. Ten percents of these galaxies can
be found in low density regions to over forty percent in dense clusters’ centers. In the
Hubble sequence, they are named E0 to E7 where the number 0 to 7 are related to
a measure of the axial ratio at the effective radius or radius of the isophote (line of

constant luminosity) delimiting half the total luminosity,

e the spiral galaxies, like the Milky-Way or M31, have prominent disks containing stars,
gas and dust. Disks have spiral arms which are star forming filaments. These spiral
arms are also visible in the old stars in disks. Arms are very variable in shape from one
spiral galaxy to the other. About sixty percent of these galaxies can be found in low
density regions while their number drops to ten percent in dense regions such as the
core of clusters. Most spiral galaxies, like the Milky-Way, have also a bulge or central
smooth and amorphous concentration of stars. In the Hubble sequence, spirals are
called Sa to Sd. From a to d, the luminosity of their bulge decreases, their arms are
less wound and show more individual clumps of young stars, their gas content increases.
Spiral galaxies can also be barred like the Milky-Way. The bar is a long smooth stellar
structure relic of a rigid system at the center of the disk. To distinguish normal from
barred spirals, a "B” is added after the S (SBa,b,c,d),

e the lenticular galaxies (SO, SOT, SO™) are galaxies in between ellipticals and spirals.
Like ellipticals they do not have arms (so gas and young stars) and, they have a smooth
appearance yet they have all the other characteristics of spirals. Found mostly at the
center of clusters, they could be old spiral galaxies which interstellar gas has been

streamed through different processes (e.g. Rawle et al., 2013),

e the irregular galaxies (Sm, Im), such as the two Magellanic clouds, are kind of spirals
but with less sharply defined arms. They are rich in gas and could be the results of

merging processes or could have been deformed by close encountering.
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An old relic of the Hubble sequence, which was primarily assumed to be an evolutionary
sequence of galaxies, left the denomination of early types for elliptical and lenticular galaxies
and late types for spirals and irregular galaxies. These two different types of galaxies, mainly

ellipticals and spirals, follow different relationships.

Relations for Elliptical Galaxies:

e Relations for elliptical galaxies are usually refinements of the Faber-Jackson relation (Faber
and Jackson, 1976) which relies on the fact that on average the velocity dispersion oy mea-
sured in the center of ellipticals is proportional to their luminosity L but with a large scatter.
The Fundamental plane (Colless et al., 2001) is one of these refinements which supports the
fact that not only luminosity and velocity dispersion are related but also the effective radius
is proportional to the luminosity. As a result, the effective radius r. is also proportional
to the average effective surface brightness (u.) defined as the brightness in magnitude per
square arcsecond measured for the surface within the isophote of effective radius. As a mat-

—¢t namely the more luminous the galaxy is, the smaller the

ter of fact L oc 72{pe) oc (jue)
effective surface brightness. Then, in a (r¢,(te),00) plane, hence the Fundamental Plane

name, ellipticals are close to forming a plane:
log re = a{pe) + b log og + ¢ (3.14)

where a, b and c are constants. The radial stellar velocity dispersion is determined with spec-
troscopy measurements where absorption lines are broadened by internal motions of stars.
Thus, the velocity dispersion is related to the Gaussian function necessary to match an as-
sumed galaxy spectrum, with all stars at rest with respect to each other, to the observational

galaxy spectrum.

The Fundamental Plane can be explained with the virial theorem which states:

2 Gm? G
2E,€+Ep:0(withEk:%andEp:_ M e 2=

g : (3.15)

Setting 7. = k,r, 08 = ky0? and L = kr{pe)r2, where k, (z = r,vand L) parameters reflect

density, kinematic and luminosity structures of a given galaxy, the virial theorem 3.15 gives:
m._ _
Te = kS(f) 103<Ne> ! (3.16)

where ks = (GkLk‘rkv)_l. This relation is analogous to the relation 3.14, if the mass-to-light
ratio is assumed to be constant (we will come back to this assumption at the end of this

subsection).
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e D, — o (Dressler, 1987) is another variant of the Faber-Jackson relation which considering
D,, as a function of (u.) and r. finds a relation with o¢. D,, is the diameter of the isophote

encompassing 20.75 magnitude per square arcsecond.

e A quite different method is the Surface Brightness Fluctuations (Tonry et al., 2001) which
measures the fluctuation of the number of bright stars per area element in a galaxy. This
fluctuation can be described by a Poisson noise. Accordingly the farther away is the galaxy,
the more stars there is in the observed areas, the smaller the relative fluctuation is. This
measurement enables the definition of the fluctuation star counts N = m — m with m
the apparent magnitude and m the fluctuation magnitude obtained with the flux of the
fluctuation signal. Combining the correlation between absolute magnitude M and color
(difference between magnitudes of two different Bands, or observational wavelength ranges,
for a given galaxy) and the relation between that same color and the fluctuation star counts

N obtained with the observations of a larger number of galaxies, it is possible to write:
M =a+bN (3.17)

where a and b are again constants.

Relations for Spiral Galaxies:
e This work mainly relies on the Tully-Fisher relation (TFR, Tully and Fisher, 1977). In
1977, the virial theorem 3.15 had been the distance estimator up to the early 70s with what

was usually called the ”indicative mass” method. It was written, assuming a relation between
mass and light, L o v?r where v is the rotational velocity of the galaxy. Tully and Fisher
(1977) suggested two alternatives: L oc v® (a ranges from 3 to 4) and L o< . They reduced
the number of variables from 3 to 2 and departed from the virial theorem. Equation 3.18 is

the resulting TFR as written nowadays:
M = a + bllog(W) — 2.5] (3.18)

with a and b constants, W is the linewidth of the 21-cm line which corresponds to twice the

rotation rate of the galaxy.

This relation implies that more massive galaxies are both more luminous and rotate faster.
It holds for galaxies with disks stabilized by rotation basically, spiral galaxies. There is
no proper mathematical derivation for this relation, but an explanation can help make it
plausible even to the cautious reader which remembers that flat ends of galaxy rotation curves

imply the most probable existence of a dark matter. Because of this flat end, at a distance r

sufficiently large from the center of the galaxy, the mass m can be written m = vfnaz%. Since
the mean surface brightness (u) is T%, the luminosity becomes L = (%)QGQIW> vh .. This

last equation is analogous to 3.18 assuming the mass-to-light ratio (the same assumption
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was made for ellipticals) and the mean surface brightness to be identical for every spiral.
Because of the existence of dark matter, this also implies that the ratio of luminous to dark
matter is quite similar among spirals. The similarity between different rotational curves
and the fact that the mass-to-light ratio of a stellar population should not depend strongly
on its age (at least in the red and infrared wavelength) seem in agreement with this last
implication. Another variation called the baryonic Tully-Fisher relation (McGaugh et al.,
2000) exists which, instead of accounting only for the luminous mass, takes into account the
total baryonic (stellar and gas) mass. We will come back to it in the prospectives (Chapter
5).

We close this section with the supernovae of type Ia (SNIa) which have remarkable properties
such as their high luminosities (10 L) and their apparent homogeneous nature (Riess et al.,
1995). Kowal (1968) established the first Hubble diagram that suggested SNIa could be used
as extragalactic distance indicators. Two decades later, Phillips (1993) demonstrated the
existence of a decline rate-absolute magnitude dependence for SNIa, validating that type Ia
supernovae can act as standard candles. Namely the luminosity or absolute magnitude of
these objects is always nearly the same. Work in subsequent years (Amanullah et al., 2010;
Hamuy et al., 1995; Hicken et al., 2009; Jha et al., 2007) has produced alternate descriptions of
the correlations between the intrinsic luminosities of SNTa and the shapes of their light curves.
The properties of SNIa can be used to determine distances to galaxies at many hundreds
of Megaparsecs. At such distances, objects are expected to have recessional velocities that
individually differ from the mean by at most a few percent and collectively should define the
cosmic expansion. Thanks to the great precision of SNIa distance estimates, high redshift
SNIa revealed that the expansion of the universe is currently accelerating (Perlmutter et al.,
1999; Riess et al., 1998). The SNIa method can provide the best estimate of the Hubble
parameter once the zeropoint scale is set. Independent distances are needed to the hosts of
low redshift SNIa (Folatelli et al., 2010; Riess et al., 2011, 2009) to establish the absolute
scale. Then, measuring the apparent magnitude m and using the definition of the distance

modulus 3.10, a distance estimate can be provided.

Actually, except for the Fundamental plane which provides the angular distance, all the
above mentioned relations are based on this principle. They supply the absolute magnitude
M which when combined with the measured apparent magnitude m enable the determination
of the distance modulus p, an estimate of the distance D with equation 3.10 closely follows.
Still, measurements of apparent magnitudes are required and above all constants in all these
relations need to be determined for each observational bands as they vary with it. Namely
relations need to be calibrated. The constant which gives the zeropoint can only be obtained
with primary distance indicators, hence the name of secondary distance indicators given to
the estimators in this subsection. Because the interest of the Cosmicflows project goes mainly

to the Tully-Fisher relation, the next two sections focus on the two types of observations and
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on the surface photometry, performed to acquire apparent magnitudes, required to calibrate

the Tully-Fisher relation and to compile an extensive list of accurate distances.

3.2 Observations

As theories can only be tested when directly confronted with observations or indirectly via
simulations which are in turn compared with observations, these latter are essential to un-
derstand our Universe. To acquire optimal observational datasets, instruments need to be
designed with care. Instruments are selected on their sensitivity which determines how dim
a source can be and still be observable. This sensitivity depends on intrinsic properties of
the telescope (aperture, sensitivity of the detectors, efficiency) but also on extrinsic param-
eters such as light or radio (depending on the wavelength of observations) pollution and
atmospheric turbulences which decrease the angular resolution (minimal angular separation
that can have two sources in the sky to be separately detected). The spectral resolution
(capabilities to separate the different wavelengths) and the efficiency in terms of number of
observations requested to observe a region (the larger the field-of-view, the less observations
are required) are also of interests to the observers. For the Tully-Fisher relation, two kind
of observations are needed: optical or infrared photometry and radio, precisely HI, observa-
tions. As a result two types of instruments are requested and described below along with

observations.

3.2.1 RadioAstronomy: HI Observations

With the large number of radiotelescopes available (to date, Arecibo is the largest single dish
and has the highest sensitivity, Greenbank is the largest fully steerable radio-instrument,
Parkes has the advantage of being in the southern hemisphere unlike the two first mentioned
telescopes), the Cosmicflows project has now analyzed HI profiles for over 14,000 galaxies in a
consistent way, deriving a linewidth parameter W5 with suitable precision (error estimate
< 20 km s71) for over 11,000 galaxies (Courtois et al., 2009, 2011b). These observations
are mainly part of the Cosmicflows Large Program on the 100m Green Bank Telescope and
complementary southern observations on the Parkes Telescope and the merging of various
previous observations re-measured for consistency (Courtois et al., 2009, 2011b). The pa-
rameter W50 is a measure of the HI profile width at 50% of the mean flux within the
velocity range encompassing 90% of the total HI flux. It gives measures: 1) at a level low
enough to capture the range of rotation motions while high enough to be above the noise,
2) with wings in profiles adequately observed, and 3) not sensitive to details of the profile
shape (single or double peaked profiles, asymmetric peaks). All these new measurements are

available for public use at the Extragalactic Distance Database (EDD, Tully et al., 2009)
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website! of the Cosmicflows project alongside HI profiles. This observed parameter W50 is
transformed into the more physically motivated parameter W7, through three steps that are
justified in Courtois et al. (2009, 2011b); Tully and Fouque (1985). These transformations
remove a slight relativistic broadening and a broadening due to finite spectral resolution, ad-
just to twice the projected maximum rotation velocity and de-project to edge-on orientation.

Appropriate formulations of the adjustments of W,,50 are given by:

W

50
&50 = m — QAI/)\
_ Wi 50 \2 _ Wins50¢ \2
W2, = W2 + W2 o1 — 26 Wemso) ) = 2W,50e Wi mso (1 — ¢ Wemso) ) (3.19)
, w,
WZ — mx
mE o sing

with z the redshift, Av the spectral resolution after smoothing, A determined empirically
(broadening is statistically described for A = 0.25), W} .50 the turbulent broadening, W 50
the transition from boxcar to Gaussian intrinsic profiles (W ;50 = 100 km s~ and Wiims0 =
9 km s~ !give the best fit), i the inclination from face-on. The final W} , parameter statis-
tically approximates twice the maximum rotation velocity of a galaxy. The inclination from
face-on is defined by (Holmberg, 1958):

(£)2 - ¢3

CcoSt = 5
l—q0

(3.20)
where 2 is the axial ratio and g, chosen to be 0.20, is the statistical axial ratio of a galaxy
viewed edge-on. Arguments can be made for a more complex dependence of ¢g. Fortunately,
the choice of gy has a negligible effect on distance measurements if one is consistent between
calibrators (galaxies used to calibrate the relation) and targets (galaxies to which the relation
is applied) (Tully and Pierce, 2000). A ¢ value of 0.13 (0.20) yields an inclination of 81°
(90°) for g = 0.20. This gives a ﬁ difference on the corrected linewidth of only 1.2%. As
one progresses toward larger axial ratio, the difference in assigned inclination is reduced but
the ﬁ correction is growing. The product of the two is a roughly constant shift of 1.2%
in the corrected linewidth at all inclination ¢ > 45°. Still, the problem of de-projection is
recurrent in observations. Accordingly within the Cosmicflows project, we have initiated a
Citizen Science Project which should be opened soon to the public. It consists in sorting
galaxies by their orientation from face-on to determine statistically and more precisely their

inclination.

Linewidth error estimates are based on the level of the signal, .S, at 50% of mean flux divided

by the noise, IV, measured beyond the extremities of the signal. Profiles with error estimates

1

smaller than 20 km s™" are retained. These profiles meet a minimum flux per channel

"http://edd.ifa.hawaii.edu; catalog ‘All Digital HI’
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requirement of signal-to-noise S/N > 2 and acceptance after visual inspection. Figure 3.2
shows two of such profiles. Errors in the logarithmic linewidth parameter tend to be larger

I causes a larger

for slow rotators since a typical measurement uncertainty of 10 — 20 km s™
fractional uncertainty with a narrow profile. The largest uncertainties are associated with
more face-on galaxies, those toward the 45° cutoff. At this limit, a 5° error in inclination
results in an 8% error in linewidth.
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FIGURE 3.2: Suitable HI profiles of two galaxies obtained with the Green Bank (left) and
Parkes (right) telescopes. The rotational velocities of these galaxies are half the given
”Width” once corrected. ”Width” corresponds to the linewidth parameter W,,59: a measure
of the HI profile width at 50% of the mean flux within the velocity range encompassing 90%
of the total HI flux (from Courtois et al., 2011Db).

3.2.2 Photometry: Observational Band

Photometry raises the issue not only of the instrument choice but also of the wavelength
of observation. Table 3.1 recapitulates the photometric letters usually attributed to each
observational wavelength from the ultraviolet up to the limit with the mid-infrared. Nu-
merous observations are already available in several bands from blue to red (B to R Bands)
in the optical up to the near-infrared (e.g. I Band) through various observational surveys
(e.g. the Sloan Digital Sky Survey, SDSS, Abazajian et al., 2003). The near-infrared up
to its limit with the mid-infrared has even been explored with, for example, the J, H, K
Bands of the Two Micron All Sky Survey (2MASS, Huchra et al., 2012). Yet, until recently,
although it has long been appreciated that photometry in the infrared may offer advantages
because of reduced extinctions, mid-infrared observations were mostly on hold. The diffi-
culty arises from the fact that observations in the infrared from the ground are affected by
high and variable sky foreground and by thermal radiations. As a result, much of the flux
from galaxies, which lies in extended components with surface brightnesses that are well
below the ground based sky level, is lost and very low surface brightness galaxies are not
even seen. Observations from space remove the problem of the high contamination by Earth

atmosphere. From a perch above the atmosphere, essentially the total magnitude of targets
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can be recorded in exposures of a few minutes. Accordingly, the optimal instrument for our
work is a spatial telescope observing in the mid-infrared. In addition, and a very important
point, the photometry from such a telescope has consistent properties in all directions on
the sky. Thus, acquisition of mid-infrared data from a spatial telescope contributes to great
advances in photometry which were lacking to the Cosmicflows project to match the large

progress achieved with HI observations.

Ultraviolet Near-infrared
U ~ 300 u I ~ 800 Ic, i
Z ~ 900 z
Visible Y ~ 1020
B (blue) ~ 400 J ~ 1200
V (violet) ~ 500 H ~ 1600
G (green) ~ 600 g K ~ 2200 Ks, K
R (red) ~ 700 Re, 1 beyond: Mid-infrared

TABLE 3.1: Photometric observational bands: (1) and (4) photometric letter, (2) and (5)
approximate observational wavelength (depends on the filter), nm, (3) and (6) examples of
specific filter-bands mentioned throughout this work.

3.3 Surface Photometry

Obscurations within the galaxies and due to the Milky Way which are minimized in the
mid-infrared are not the sole advantage of infrared observations. Infrared flux arises in large
measure from old stars that should optimally represent the baryonic mass that presumably
couples to the rotation rate to give the TFR. Accordingly, it was suggested (Aaronson et al.,
1979) that the TF methodology might be improved by moving to infrared bands, particularly
when it is used to measure distances. Thus, although progress with infrared observations
of galaxies was difficult because of the high and variable sky foreground at near-infrared
wavelengths and overwhelming thermal emission at mid-infrared wavelengths with ground-
based observations, several attempts to derive the TFR in the close to the mid-infrared band
were made. The most modern serious attempt has drawn on the K magnitudes of 2MASS
(Karachentsev et al., 2002). However, this shallow survey, like with the earlier work in the
infrared, only registers the high surface brightness components of light from galaxies and can

actually miss low surface brightness galaxies entirely.

3.3.1 Spitzer: an Instrument of Choice

The situation dramatically changed with the launch of Spitzer Space Telescope (Werner
et al., 2004). With observations using the InfraRed Array Camera (IRAC, Fazio et al.,
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2004) onboard Spitzer Space Telescope, the "sky” is far reduced from observations on the
ground, now dominated by diffuse zodiacal light and the stochastic distribution of background
high redshift galaxies. For example, integrating about four minutes in IRAC channel 1
permits area photometry at levels that can compete with ground-based optical imaging with
comparable exposures, i.e. to levels that include all but a few percent of the total light of a

galaxy.

3.3.1.1 The InfraRed Array Camera Channel 1

The Cosmicflows with Spitzer program concentrates on IRAC channel 1 observations in
the 3.6 pm window that give magnitudes [3.6] in the AB system. This window provides
observations with minimal dust extinction (Draine and Lee, 1984). It lies at a minimum of

the zodiacal background radiation (Ootsubo et al., 1998).

Figure 3.3 provides examples of the spectral energy distribution of spiral galaxies (Silva et al.,
1998). The Spitzer [3.6] band lies on the Rayleigh-Jeans tail of the spectral energy distribu-
tion of normal populations of stars, not yet strongly affected by flux from warm dust that
starts to become a factor at longer wavelengths than 4 ym. The discrete spectral features seen
in the spectral energy distribution arise from Polycyclic Aromatic Hydrocarbon molecules
(Tielens, 2008). The highest frequency Polycyclic Aromatic Hydrocarbon, at 3.3 um is con-
tained within the [3.6] bandpass. Meidt et al. (2012) have investigated the impact of various
contributors to flux in the 3.6 um window with six representative spiral galaxies observed
with the Spitzer Survey of Stellar Structure in Galaxies (S*G, Sheth et al., 2010) program.
They find contributions from 1) hot dust and Polycyclic Aromatic Hydrocarbons together at
the level of 9+4% of the global flux in the 3.6 ym band, 2) intermediate age asymptotic giant
branch and red supergiant branch stars at the level of 3 + 2% of the global flux, and 3) old
stars, predominantly K and M giants for the rest, i.e. the great majority. These non-stellar
and young stellar contributions should only slightly degrade the correlation between old stars

and mass in normal spirals.

Using Spitzer IRAC channel 1, a point spread function with mean FWHM 1.66” is sampled
with 1.2” pixels. The field of view is 5.2/, adequate to encompass most galaxies to beyond
twice das, the diameter at a B isophote of 25 magnitude per square arcsecond. Larger galaxies
require mosaics. Integrations with the Cosmicflows with Spitzer (CFS) program involve the
combination of 8 x 30 seconds slightly dithered exposures for a total of four minutes per field.
As will be discussed, these integrations provide images that probe somewhat fainter limits
than most ground-based optical photometry programs and much fainter limits than ground-
based infrared photometry programs. Spitzer surface brightness levels reach ten magnitudes

below typical ground-based infrared sky levels. No existing near-infrared ground survey
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achieves the accuracy obtained with Spitzer Space Telescope. The outstanding advantages of

space observations are background stability and all-sky consistency (Fazio et al., 2004).

1.0 T
- —-—-- Sa
05H T 2

0.0

-0.5

-1.0

|
&

LA L L L L L L L LA L

(total luminosity (relative))

g
|
N
o

Lo

1 10
wavelength in micron

|
N
&)

FIGURE 3.3: Comparative SED for spirals of types Sa (red, dashed), Sb (black, solid),
and Sc (blue, dotted). The Spitzer [3.6] passband is illustrated along with the wavelengths
associated with B, R, I, K bands. The relative scales of the SED are offset to match at 0.8
pm. Features at 3.3 um arise from Polycyclic Aromatic Hydrocarbon molecules.

3.3.1.2 The Observational Sample

The cycle 8 post-cryogenic program Cosmicflows with Spitzer avoids repetition of earlier
Spitzer observations. Archival information is used where available. Major contributions from
earlier programs come from SINGS, the Spitzer Infrared Nearby Galaxies Survey (Dale et al.,
2005, 2007) and LVL, the Local Volume Legacy survey (Dale et al., 2009) carried out during
the cryogenic phase, then S*G, the Spitzer Survey of Stellar Structure in Galaxies (Sheth
et al., 2010), and CHP, the Carnegie Hubble Program (Freedman et al., 2011), subsequently
carried out during the post cryogenic phase. Smaller programs supply us with a few more
fields. These data are available for public use at the Spitzer Heritage Archive website?. The
variety of source programs introduces variations in the details of the acquisition, particularly
affecting total integrations, dithering procedures, and the extent of fields referenced to dos.
However, with all the data that will be considered the fields are large enough and the exposure

times are long enough that at most only a few percent of the light from a target is lost.

In subsection 3.3.5, a comparison between 241 magnitudes from S*G-pipeline (Mufios-Mateos
et al. in prep.) and from the Spitzer-adapted version of ARCHANGEL used in this work reveals

the very good agreement between both magnitudes. As a result, S*G-magnitudes are directly

*http://irsa.ipac.caltech.edu/data/SPITZER,/docs/spitzerdataarchives/



Chapter 3. Observed Universe 53

used to derive distances for all the other, relevant to the Cosmicflows project, galaxies of the

large S*G program.
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FIGURE 3.4: Histogram of the number of galaxies per subsamples in CFS and diverse pro-
grams, mostly S*G (65%). Calib is constituted of Tully-Fisher calibrators, SNIa-H contains
hosts of Supernovae of Type Ia, V3k is built of galaxies with vy, < 3000 km s~! , PSCz
is derived from the Infrared Astronomical Satellite point-source Redshift Survey and FG is
a catalog of flat galaxies. ”Others” stands for galaxies of interests which do not fall into
one of the previously cited categories. The gradient of colors shows the proportion of each
morphological type from the HyperLeda Database in each sample.
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FIGURE 3.5: Histograms of the morphological type (left) from HyperLeda and of the he-
liocentric velocity (right) from EDD for the whole compilation of galaxies. The gradient of
colors gives in which proportion each subsample contribute to a given type (left) and range
of heliocentric velocities (right).

In Figure 3.4, galaxies which surface photometry has either been measured for the Cos-
micflows project or that comes from S*G are distinguished by their occurrence in five sub-
samples: 1. the Tully-Fisher calibrators (Calib), 2. the hosts of Supernovae of Type Ia
(SNIa-H), 3. the V3k, 3000 km s~! sample (V3k), 4. the Infrared Astronomical Satellite
point source Redshift Survey sample (PSCz) and 5. the flat galaxy sample (FG). These sub-
samples are completed with galaxies from various surveys. If a galaxy lies within multiple
samples, in the following the galaxy is assigned to the sample that includes it that is discussed
first. Galaxies of interest of to the project but which do not fall into one of the previous

categories constitute the sixth subsample. All these supplementary galaxies are mostly from
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S*G (65%). Among the galaxies left, the majority has been observed by SINGS (2%), LVL
(3%) and CHP (16%) programs.

e The first two of these subsamples have been already widely described (Courtois and
Tully, 2012b; Tully and Courtois, 2012; Tully and Pierce, 2000). The first subsample
constitutes a template for the calibration of the Tully-Fisher relation: galaxies in 13
clusters for the slope and galaxies with cepheids or Tip of the Red Giant Branch
distances for the zeropoint. The second subsample is constituted of galaxies to set
the zeropoint scale of the Supernovae of Type Ia method. The two subsamples will
be discussed more precisely in subsections 3.4.1 and 3.4.3 when used at 3.6 microns.
Approximately one third of the first subsample is constituted of galaxies observed for
CFS with Spitzer. Others have been observed by previous Spitzer programs, mostly
CHP and S*G. Half of the SNIa-H subsample is made of CFS observations while the

other half contains mostly CHP observations.

e The third subsample is a catalog developed over the years called V3k (Tully et al., 2008)
with the magnitude cutoff Mg < -21 mag. It extends up to the velocity limit, 3000 km
s~! | imposed by the capabilities of early-generation radio telescopes to obtain useable
HI profiles and gives coverage of the traditional Local Supercluster (de Vaucouleurs,
1953). Figures 3.4 and 3.5 left shows that these galaxies are in majority of type later
than Sa. Types come from the HyperLeda database (Paturel et al., 2003). Figure
3.5 right confirms that the heliocentric velocities, vy from EDD, of these galaxies

are mostly less than 3300 km s~!.

Among the 683 galaxies available for this third
subsample about a quarter comes from the CFS survey. This sample provides a high

density and precision map of the Local Supercluster centered on Virgo.

e The next subsample is based on the redshift survey PSCz (Saunders et al., 2000)
of sources drawn from a flux-limited sample at 100 pym obtained with the InfraRed
Astronomical Satellite. This point source-redshift sample is constituted of galaxies
with far infrared - 60-100 um - colors such that their flux arises predominantly from
cirrus. The sample is dominated by normal spirals distributed around the Sc type as
Figures 3.4 and 3.5 show. The heliocentric velocity limit is 6000 km s~! to obtain
reasonable HI lines with current radio telescopes. This subsample includes the Norma-
Hydra-Centaurus and the Perseus-Pisces superclusters in opposite directions and many
low latitude galaxies b - offering good coverage above |b| = 5°. The bifurcation between
our flow direction and a motion towards Perseus-Pisces, highlighted by Erdogdu et al.
(2006), will be located thanks to this subsample. The PSCz sample will also strongly
constrain the CMB dipole component within 6000 km s~!. CFS contains the majority
(445) of these galaxies.
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e The last subsample is constituted of flat galaxies from the catalog of Karachentsev et al.
(1999). These edge-on systems have a major to minor axis ratio greater than 7 implying
minimal de-projection of their HI linewidths. The flat galaxies are principally of type
Scd, as shown in Figures 3.4 and 3.5 left. They constitute a homogeneous class of HI rich
systems but they have a low space density because of the strong inclination constraint.
Extinction problems existing at optical bands and for ground-based telescopes are
practically removed with IRAC channel 1. The whole flat galaxy subsample comes

from CFS observations.
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FIGURE 3.6: In the XY supergalactic plane (no restriction on Z), galaxies of the CFS survey
(red dots) are superimposed to the 2MASS redshift catalog (tiny black dots) available at
EDD. Blue dots stand for galaxies of interests to the Cosmic Flows project but observed by
different programs, mostly S*G. A few superclusters are identified by violet arrows. CFS
gives special attention to galaxies at low galactic latitudes. Green dots represent the second
catalog of the Cosmicflows project. Future catalogs of the Cosmicflows project will have a
better coverage near the Zone Of Avoidance, reconstructions of the Local Universe will be
more accurate in that region.

Figure 3.6 illustrates the combined coverage of CFS and other relevant surveys with Spitzer

Space Telescope. CFS complements previous surveys with galaxies at low galactic latitudes
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for two reasons. First, CFS complements the important S*G survey that has a |b| = 30° lower
limit. Second, we recognize that photometry from WISE, the Wide-Field Infrared Survey
Explorer (Wright, 2008), will be useful but be at a competitive disadvantage to Spitzer in
the crowded star fields at lower galactic latitudes because of resolution issues. With Spitzer
observations, future catalogs of the Cosmicflows project will contain more data close to the
Zone Of Avoidance than the second catalog of the project. This catalog will be discussed at
the end of this Chapter but is already superimposed on the same figure.

3.3.2 Spitzer-Adapted ARCHANGEL: a Tool for Surface Photometry
3.3.2.1 Surface Photometry: Definition

Large numbers of pixels complicate simple parameter extractions. A galaxy is spread over
a large area of the sky. At some point outer pixels have more sky luminosity (zodiacal
light and background contaminants) than galaxy luminosity. Then determining the ”sky”
level dominates the total magnitude error budget. An analysis of a large galaxy (extending
across many pixels) requires surface photometry involving fits of isophotes, lines of constant
luminosity. Isophotes are often set to be ellipses (Milvang-Jensen and Jorgensen, 1999). Our
interest is with spiral galaxies with types typically between Sa and Scd. A well behaved
spiral is approximated by an oblate spheroid that appears circular when viewed face-on
and projects to an ellipse when viewed toward edge-on. Galaxy 2D images described by
elliptical isophotes can be summed in annuli to reduce to a 1D description. Then, the
1D profiles are fitted by various functions in order to extract the radial surface brightness
(SB) distribution, global structure or geometrical characteristics, spatial orientation, stellar
populations, characteristics of dust, etc. To obtain apparent magnitudes, de Vaucouleurs
(1977) introduced the growth curve, a plot of magnitude within a radius as a function of
radius. With an adequate signal to noise ratio, it could be enough to place large apertures
around galaxies and sum the total amount of light, minus the sky contribution. In practice, a
galaxy luminosity distribution decreases towards larger radii so larger apertures catch more
galaxy light but also introduce more sky noise. Some light is inevitably lost below the sky
level. Isophotal intensities associated with the galaxy light at large radii are sensitive to
the sky setting. Restriction to a smaller radius leads to underestimates of total light. The

problem is that galaxies do not have discrete edges.

It is never possible to measure 100% of the light of a galaxy. Measurements are made to
an isophotal level dictated by telescope optics, detector, exposure times, and sky brightness.
Different authors measure magnitudes to different isophotal levels then often extrapolate to
total magnitudes. Our interest is with spiral galaxies for TF use. These galaxies characteris-

tically decay exponentially in luminosity with radius. In an ideal case, light contained within
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a specified isophotal level is a simple function of the disk central surface brightness and of
the exponential decay scale length. To extrapolate in such a case one can assume that the
light at large radii falls off like an exponential disk with a central surface brightness and scale
length characterized by a fit to the main body of the galaxy. The estimated contribution
lost below the sky level can be added to what is observed to give an extrapolated magnitude
(Tully et al., 1996).

The total luminosity in some passband A is given by:

lim

b o0 r

Ly =1L} + 2H,u0/ re” adr (3.21)
a Tlim

where Ly;,, is the observed luminosity within a limiting isophote, g is the isophote axial ratio,

1o is the exponential disk central surface brightness, « is the disk scale length, and r is the

radius from the center. Performing the integration by parts gives:

r

b r
Ly =1L}, — 21'[5;40@2[(1 +=)em el (3.22)

lim Tlim

Relation 3.22 can be transformed to logarithmic units. From definition 3.8, the total magni-

tude my (no limit) is:

b
my = py — 2.5log2I1— — 5logar (3.23)
a
where ,u()\ = —2.5logpy. Then, the magnitude within an isophote corresponding to the radius
T is:
m} =m) — 2.5log[l — (1 + —)e 4] (3.24)
@

At n scale lengths, = = n, the surface brightness drops by —2.5log(e™") = 1.086 n. The

Hrpim —

Ho o
imo=—. This gives the ex-

trapolation Am.,; beyond the observed m;\ that has to be added to the measured magnitude
A

r.

number of scale lengths observed between jio and p,,  is An =

m
Az = 2.5l0g[1 — (1 4+ An)e 2" (3.25)

The fraction of the total light above or below a given isophote depends only on An. There is
no dependency on « or g. This exponential fitting model might give an overestimate because:
1) of an additional bulge component so additions to the disk contribute fractionally less to
the total light, in that case, profiles deviate at small radii and 2) the disk may truncate at
large radii, in that case growth curves deviate from the exponential relation at large radii.
These situations are well known (e.g. De Vaucouleurs 1959, Kent 1985). Fortunately, given
that Spitzer photometry is already fairly deep, profile extrapolations add only a few percent
of the total light. The only extrapolations significant are either for galaxies that extend
beyond the field of the instrument or for extremely low surface brightness galaxies which is

overall not the case in this work.
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3.3.2.2 ARCHANGEL

Schombert (2007); Schombert and Smith (2012) developed ARCHANGEL, a flexible tool
for galaxy surface photometry built of a combination of FORTRAN and Python routines.
ARCHANGEL performs procedures such as: 1) masking of stars and flaws, 2) ellipse fitting at
expanding radii from the galaxy center, 3) compression of 2D information into 1D surface
brightness and magnitude growth curves as a function of radius, and 4) extrapolation via fits
to the magnitude growth curve at large radii involving rational functions. Position angles
and ellipticities are freely determined at each radial step in the development of the growth
curve. At large radii noise dominates and position angle and ellipticity are frozen for the
remaining outward steps in radius. An interesting feature was implemented in ARCHANGEL
in this work concerning the flexibility in where these parameters become frozen so that they
may be frozen at all radii. Total magnitudes, the most important product of this analysis,
are found to be negligibly affected by position angle and ellipticity details at intermediate
radii. Still, an added feature enables to give, directly from the start of the process, position
angle and/or ellipticity, would ARCHANGEL not succeed in fitting the galaxy properly other-
wise. Comparisons with alternative photometry are discussed in subsection 3.3.5. Figure 3.7
provides an example of masking and ellipse fitting with the Spitzer-adapted ARCHANGEL.
Not to underestimate the total luminosity, masked pixels are then filled with the isophote

mean luminosity to which they belong.

A significant source of uncertainty arises from the setting of the sky level and will be discussed
thoroughly in subsection 3.3.4. In ARCHANGEL the sky is taken as the median of sky boxes
placed around the galaxy. This method gives realistic initial sky background estimates (Hall
et al., 2012). If targets are modest in size there is reasonable control of the sky level. If
the sky is set properly then the magnitude growth curve should go asymptotically flat at
large radii. One can also evaluate the sky setting by looking at the Surface Brightness as a
function of radius. Surface Brightnesses are not expected to flare or drop precipitously at
the sky level, although such occurrences are not phenomenologically excluded (Erwin et al.,
2008; MacArthur et al., 2003). Visual inspections of the magnitude growth curve and Surface
Brightness dependence with radius ensure an optimal sky setting. Fortunately, sky values
are low in Spitzer data, even if we will show in the last section that this problem remains

our major source of uncertainty.

An issue related to the sky problem is the matter of the terminal radius of an analysis. A
limit to the fitting process can be imposed by signal-to-noise considerations. Integration
times permit us to reliably reach a radius asgs at the isophotal level 26.5 mag arcsec™2 in
the [3.6] band. We try to extend the ellipse fitting to 1.5 ag 5 in the [3.6] band. A goal of
the program is to assure that the ellipse fitting extends to at least 1.5 agg.5, with mosaics if

necessary. This [3.6] band dimension is not available before the observation so we rely on a
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substitution found to be comparable based on the B band diameter ds5, requiring that the
observed area extend to a radius 1.5 dos (Sheth et al., 2010). ARCHANGEL is then run twice
on each galaxy, at first with 1.5 dos to obtain a first estimate of agg.5 and then again but with
the first estimate of asg.5. We found the process to be robust as first and second estimates
of agg5 are very similar (so are other parameters) except in a few cases (mostly low surface

brightness galaxies).
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F1cURE 3.7: Output of the ARCHANGEL software showing the axial ratio g and the position
angle in the two top panels and the fitted ellipses and the masking in the two bottom panels
for PGC41729 or NGC4522.

The mean Surface Brightness in magnitudes per square arcsecond in an annulus at radius r

depends on the mean flux in a pixel at that radius F(r) and the mean sky flux in a pixel S:

u(r) = 2.5log(F(736_S) +21.585 (3.26)

where the constant in the denominator provides a conversion from pixels to arcseconds. The
other constant 21.585 comes from the fact that pixel size and zeropoint (Fy = 280.9 Jy)
for Spitzer Post Basic Calibrated data are constant. The conversion factor C' for the flux,
from MJy sr~! to Jy per pixel, is equal to 8.461595 x 1076 for Channel 1 and a pixel size of

0.6”. As a result, the constant (or zeropoint for the AB system in that precise case) value
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is 2.5 log(%) = 18.8 (value for 0.6” per pixel) +2.785 (conversion Vega to AB system from
the IRAC Instrument handbook® and Caputi et al., 2006). At optical bands it is common
practice to quote magnitudes in the Vega photometric system but working in the mid-infrared
it is more useful to use the AB system. Where comparisons are made between optical and

mid-infrared, we use the following transformations (Frei and Gunn, 1994):

B(Vega) = B(AB) + 0.163
Rc(Vega) = Ro(AB) — 0.117 (3.27)
Ic(Vega) = Ic(AB) — 0.342

ARCHANGEL allows to describe the Surface Brightness as the sum of disk and bulge compo-
nents. Instead, we choose to restrict to disk fits only. With multiple component fits there are
frequently trade-offs such that the overall fit may be satisfactory but the physical meanings
of parameters are ambiguous. Usually the dominant radial Surface Brightness characteristic
of spiral galaxies is an exponential decay of projected luminosity with radius. Deviations are
most frequently seen toward the center where a bulge may become dominant. It is beyond
the scope of this program to dissect galaxy images into detailed morphological components
because such dissection has negligible effect on the product that most interests us: total
magnitudes. We restrict fitting to a rough characterization of the exponential fall-off. Ac-
cordingly, surface brightness profiles as a function of radius are fitted by simple straight lines
between a. (radius of the isophote encompassing half of the total light in the [3.6] band)
and age 5 (radius of the 26.5 mag arcsec™2 isophote in the [3.6] band). In rare cases, fits are
adjusted by eye, if they are clearly inappropriate between a. and asg.5 after checking that
the background brightness variation is not causing any unexpected surface brightness profile
changes. Figure 3.8 displays an example of surface brightness fit obtained with ARCHANGEL.

1o is obtained by extrapolation as shown by the following relationship:

pB oy = o 4 1.08572 (3.28)

This corresponds to an exponential profile L0l (r) = L[03'6]e_T/ Q. LES'G] and ,u[03'6] are the
disk central surface brightnesses in intensity and magnitude units respectively. « is the disk
scale length and r is the distance from the galactic center. Some concerns may arise about
the disk-only fitting technique for bulge galaxies. However, de Jong (1996a) showed that
disk-only fits gave unbiased disk parameters relative to a 2D fit decomposition parameters

within only 0.5 mag arcsec™2.

Surface brightness values between two isophotes are then added up to constitute the growth

curve. An example of a magnitude growth curve as a function of semi-major axis is shown in

3http:/ /irsa.ipac.caltech.edu/data/SPITZER /docs/irac/ iracinstrumenthandbook/
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Figure 3.8. The light from each succeeding annulus contributes to the (negatively) increasing
magnitude with increasing radius. If the sky value is properly set then the growth curve will
asymptotically flatten. Should the curve turn over it would be inferred that the sky level
is set too high - flux from the galaxy is being attributed to the sky and being removed.
Conversely, the sky set too low causes flux from the sky to be attributed to the galaxy
and the growth curve will fail to flatten. Given a growth curve as seen in Figure 3.8 it is
straightforward to define the useful parameters asg, a., and agg enclosing 20%, 50%, and 80%
of the light respectively. The associated surface brightnesses, magnitudes and semi-major

radii are illustrated in Figures 3.7 and 3.8.
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FiGURE 3.8: Example of an ARCHANGEL output surface brightness profile and its disk-
only fit between a. and ags5 at 3.6 microns (left) and growth curve (right) for PGC41729
or NGC4522. Left: parameters of the fit, disk central surface brightness (ug) and scale
length () are listed on the figure. Two more parameters also listed are the effective surface
brightness (u.) and radius (r. = a.). No correction has been applied yet to the data. The
green ellipse on the inset image represents the 26.5 mag arcsec™2 isophote at 3.6 microns.
Right: the incremental growth of the apparent magnitude of the galaxy with radius is shown
by the progression of stars. The fit providing an extrapolation to a total magnitude is
generated over the domain of the red stars. The level of the total magnitude is shown in
magenta. In both panels, red, green and blue lines show the radii enclosing 20%, 50% and
80 % of the total light.

The Spitzer photometry is sufficiently deep that magnitudes in the growth curve approach the
total magnitude of the galaxy. One way to extend to the total magnitude uses the procedure
built into ARCHANGEL based on interpolations and extrapolations with rational functions.
Such functions have a wide range in shape and have better interpolating properties than poly-
nomial functions. They suit data where an asymptotic behavior is expected. The quadratic
form/quadratic form, meaning a degree of two in both numerator and denominator is the

simplest choice. The asymptotic magnitude is the ratio of the second order coefficients of the
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numerator and denominator. However, rational functions are non-linear. They can produce

vertical asymptotes due to roots in the denominator that are to be ignored. F'it uncertainties

are given by the standard error of the estimate SEE = \/% Yo (m(ri) pie — m(ri) measured)?-
Because of the convergence problem that can occur with rational functions, we provide in
total three magnitudes that approximate the global magnitude of the galaxy: [3.6]26.5, an
isophotal magnitude that directly measures the light within a reliably attained radius, [3.6]:t,
a "total” magnitude given by the asymptote of the ARCHANGEL rational function extrapola-
tion, and [3.6]¢.¢, an "extrapolated” magnitude assuming a continuation of the exponential
disk beyond the radius of the isophote 26.5 mag arcsec ™2 obtained with equation 3.25. The
relative merits of these magnitudes will be discussed in subsection 3.3.4. Other products are
the average Surface Brightness within a. and agy and a concentration index Cgy = agp/agp.
Table 3.2 gives the parameters that are extracted for the galaxy used as an example in Fig-
ures 3.7 and 3.8 and illustrates what is seen in a single row in the catalog ” Spitzer [3.6]
Band Photometry” at EDD and in Appendix A (although restricted to twenty entries and
simplified: common name, date and exposure time are absent). Capabilities within EDD
allow a user to link to other catalogs, thereby accessing all manner of information about each

target.

Figure 3.9 gathers as examples the three outputs obtained with ARCHANGEL for five galaxies,

each one of them belonging to at least one of the five subsamples of the CFS program.

1 2 3 4 5 6 7 8 9 10

PGC Name Date Exp a5 [3.6]26.5 [3.6]i0t Om [3.6]cat 140

41729 NGC4522 2007.02.14T14:46:36.378 240 181 11.98 11.970 0.003 11.957 20.32

11 12 13 14 15 16 17 18 19 20 21 22 23 24
« b/a oy, PA  aso 180 Qe e < pe > Q2o 20 < p2 > Cs2  RefLink
31.8 026 0.01 34 77 23.04 36 21.24 20.31 15 19.99 19.53 5.2 SSOV

TABLE 3.2: Extracted photometry parameters. (1) Principal Galaxies Catalog number, (2)
common name, (3) date of Spitzer observation, (4) nominal total integration, seconds (actual
time collecting photons somewhat less), (5) ag6.5: major axis radius at isophote 26.5 mag
arcsec™2, (6) [3.6]26.5: AB magnitude within ags s, (7) [3.6)¢r: total AB magnitude from
rational function asymptote, (8) op,: root mean square deviations, rational function fit, (9)
[3.6]cst: total AB magnitude by extrapolating flux beyond age 5 assuming continuance of
exponential disk, (10) pg: central disk surface brightness from inward extrapolation of disk
fit, mag arcsec™2, (11) a: exponential disk scale length, arcsec, (12) b/a: ratio of minor to
major axes, (13) 03,/,: uncertainty in axial ratio, (14) PA: position angle of major axis, deg.
(15) agp: major axis radius of annulus enclosing 80% of total light, arcsec, (16) uso: surface
brightness at agg, mag arcsec™2, (17) a.: ‘effective radius’, major axis radius of annulus
enclosing 50% of total light, arcsec, (18) u.: surface brightness at a., mag arcsec™2, (19)
< pe >: average surface brightness within a., mag arcsec™2, (20) ag: major axis radius
of annulus enclosing 20% of total light, arcsec, (21) pgp: surface brightness at agy, mag
arcsec™ 2, (22) < pgp >: average surface brightness within agg, mag arcsec™2, (23) Cyga:
concentration index, agg/asg, (24) Spitzer program link.
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F1cURE 3.9: Surface photometry outputs

from the ARCHANGEL software.
is from the Calib subsample. PGC0016423 has hosted at least one supernovae of Type Ia.
PGC0068455 and PGC0019725 are in the V3k and PSCz catalogs respectively. PGC0040208
is a flat galaxy. For each galaxy, the variations of the position angle and of the b/a ratio are
given as a function of the radius in arcsec. The masks is shown in red on top of the galaxy
images and the fitted ellipses are in black. Surface brightness profiles, growth curves and
their fits are represented. In every plot, except for the insert in the growth curve plot, red,
green and blue colors show the annuli encompassing 20, 50 and 80% of the light. On the

insert, the green ellipse is the isophote at 26.5 mag arcsec ~2 in the [3.6] band.

PGC0005035
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3.3.2.3 Some Analyses

In this subsection, we focus mostly on the Cosmicflows with Spitzer sample although the
additional Spitzer archival galaxies minus S*G’s are processed equally. We present the differ-
ent parameters derived with the software ARCHANGEL for each one of the CFS galaxies. We
claim at the beginning of subsection 3.3.1.2 that we choose to observe each galaxy to within
at least twice daos to capture most of galaxy lights and to minimize magnitude measurement
uncertainties. Then, we force ellipse fitting up to 1.5 X agg.5. Figure 3.10 confirms that dss
from the third reference catalog (RC3) in EDD, used to set observations, and a5 obtained
after reduction are comparable representatives of size. The scatter is only 41 arcseconds
around a 1:1 linear relation. The observational sensitivity is sufficient for our ultimate goal
since at 26.5 mag arcsec 2 the isophotal magnitude is already very close to extrapolated ones

on Figure 3.11. We will show this in more details in subsection 3.3.4.
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FiGUurE 3.10: Comparison between the radius in arcsecond of the isophote at 26.5 mag
arcsec ™2 in the [3.6] band, obtained after reduction with ARCHANGEL, and the radius at 25
mag arcsec”2 at B band used beforehand to set observational parameters. These parameters
are proportional to each other. In the case of an optimal 1:1 linear relation, the scatter is
only 41 arcseconds.

Histograms of the other parameters are given in Figure 3.12 in mag arcsec2 for surface
brightnesses and in arcseconds for corresponding radii. For all these parameters there is no

outliers.
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FicUrRE 3.11: Histograms of the three magnitudes derived with ARCHANGEL. The mag-
nitude at the 26.5 mag arcsec™2 isophote at 3.6 um, [3.6]a6.5 (black straight line), the
magnitude obtained by the extrapolation of the growth curve, [3.6]:,: (blue dashed line) and
the magnitude assuming a continuous exponential disk, [3.6]¢,: (red dotted-dashed line).
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F1GURE 3.12: Histograms of some of the parameters computed with the ARCHANGEL soft-
ware. Left, from top to bottom, histograms in solid lines of the central disk surface brightness
1o and of the surface brightnesses at 50, 20 and 80% of the total light e, poo and pgg (mag
arcsec~2). Histograms of the average of the surface brightnesses between 0 and 50 and 20%
of the light, < pe > and < gy > respectively, are overplotted in dashed lines. Right, from
top to bottom, disk scale length o and annuli encompassing 50, 20 and 80% of the light a.,
ago and agp, in arcseconds. The histogram of the concentration index, Cgo = agg / ago is
overplotted in a small panel on the right side of the asy and agg histograms.
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One specificity of the adapted version of ARCHANGEL is the computation of the minor to
major axis, b/a, ratio which is defined as the mean of the b/a ratios between 50% and 80%
of the light. Measuring b/a ratios is not an easy task and a comparison with the ratios from
the HyperLeda Database in B-band on Figure 3.13 left shows that at least one b/a source
cannot be trusted. Each value needs to be checked before any usage. The initiated Citizen
Science Project to order galaxies by inclinations to which we contribute will be most useful.

Position angles on the other hand are in good agreements on the right of the same Figure.
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FIGURE 3.13: Left: Residual between Cosmicflows program b/a ratios and the b/a ratios
obtained with ARCHANGEL versus ARCHANGEL’s b/a ratios. Right: Differences between
ARCHANGEL-derived position angles and HyperLeda’s versus ARCHANGEL’s. The black
dotted-dashed lines show the perfect case y=0, the red straight lines are linear fits to the
data (with a 3 o clipping (20 galaxies) in the right panel), the blue dashed lines are the 1 o
uncertainties.

3.3.3 Corrected Magnitudes and Surface Brightnesses

Several effects affect light as it travels towards us. Apparent magnitude measurements [3.6]
need to be corrected for these effects. Corrected apparent magnitudes [3.6]%%%@ for Spitzer

IRAC channel 1 data are given by:

[3.6]000 — [3.6] — AP0 — AP0 _ ABE L 4[5 (3.29)

[3.6]

with A, galactic extinction correction, Al

()

. o . 3.6 .
internal extinction correction, AEC } k-correction,

and A([f"ﬁ} aperture correction. All these terms are described in details hereafter in different
subsections. Briefly, extinction is due to the reduction in a source apparent brightness by
absorption, scattering or radiation as light travels towards us. Only in extreme cases, light
is totally extinguished. Attenuation would be a more appropriate term. There are several
potential sources of extinction such as Earth atmosphere, Milky-Way and target galaxy dust.
Spitzer is in space which prevents any atmospheric extinction. The k-correction is a term to
correct for the reddening of light due to the universe expansion and the aperture correction

is a particularity of the instrument.
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Disk central surface brightnesses will be the object of study in subsection 3.3.6 and its
measurements also need to be corrected. Inclination effects are quite confusing at optical
band because the path length of observed surface brightnesses, varying with the line-of-sight,
and extinction, work in opposite way on measured pg values. At 3.6 microns we can assume
the obscuration to be negligible and therefore only the geometric effect of the inclination
on surface brightnesses needs to be taken into account. We measure the face-on ,ug)"ﬁ]’a’i as

follows:

3.6],a,i 3.6],a . b
pl et — | [5.60 ~ 2,500 Nog ) (3.30)
with C301=1 accordingly (intrinsic extinction negligible), 2 the axial ratio and ,u([]3'6]’a the disk

central surface brightness corrected for aperture as described in the following subsections.

3.3.3.1 Galactic Extinction Correction

The InterStellar Medium consists of small dust particles with diameters between 0.01 and 1
pum. They scatter, absorb and re-emit light. Blue light is more strongly scattered and ab-
sorbed than red light. Sources appear dimmer and redder. Schlegel et al. (1998) mapped this
effect. The resulting galactic extinction and reddening map is an exquisite tool to compute
extinction correction. To obtain this map, they combine the far-infrared emission (100 pm)
of InfraRed Astronomical Satellite, the Diffuse InfraRed Background Experiment on COsmic
Background Explorer satellite and the colors of background galaxies from Automated Plate
Measurement Galaxy Survey. The colors allow dust normalization to E(B-V) reddening in
magnitudes. Diffuse InfraRed Background Experiment provides absolute calibration across
several passbands. It maps the dust color temperature and converts the 100 pm emission
to dust column density. The relationship between ultraviolet/optical extinction and far-
infrared emission depends on the grain size distribution. Then, assuming that the dust grain
size distribution is everywhere the same and using the mean value in the diffuse InterStellar
Medium given by Cardelli et al. (1989), galactic extinction depends only on object coor-
dinates and observational wavelengths A. The InfraRed Science Archive provides an online
tool at http://irsa.ipac.caltech.edu/applications/DUST/ with these 100 pm cirrus maps that
supply us with the differential reddenings E(B — V). We use the correction term given by
Cardelli et al. (1989) accounting for a small shift to the centroid of the Spitzer passband:

AP = Ry g E(B-V) (3.31)

with R3 ) = 0.20. Galactic extinction magnitude corrections at [3.6] are only 9% compared
to those at I and 4% of the corrections at B. Corrections at latitudes above 15° are almost

always 0.05 magnitude or less, with uncertainties around 0.01 magnitude.
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3.3.3.2 Internal Extinction Correction

Internal extinction is usually the greatest concern. Galaxies of the same intrinsic size and
luminosity appear dimmer when seen edge-on because path lengths through their own ab-
sorbing dust increase. Fortunately, in the infrared such extinction is very small. Giovanelli
et al. (1997b, 1995) showed that there is a luminosity dependence to galaxy internal ob-
scurations (high-luminosity cases are more reddened). Tully et al. (1998) confirmed and
provided an alternative description of the effect. There is a subtle problem because absolute
magnitudes (luminosities) are not known a priori. They are a product of the analysis. Tully
et al. (1998) framed magnitude corrections in term of a distance-independent surrogate, the

linewidth parameter, W, . Accordingly, the internal extinction correction can be written:

AR — 0 glog(a/b) (3.32)

where 73 ¢) is:
V.6 = 0.10 + 0.19(log W, — 2.5) (3.33)

if Wi, > 94 km s™! and ¥3.6) = 0 otherwise. W . is defined by equations 3.19.

There is an advantage to this formulation of the internal extinction. If the inclination is

[

i3'6] low but then W}, is overestimated

[3.6]

()

underestimated, log(a/b) is underestimated driving A
which drives 73 g), hence AES'G] up. The two terms in A are affected in opposite directions.
Regardless, internal absorption corrections are always small, rarely reaching 0.1 magnitude

at 3.6 um. Uncertainties in these corrections are less than 0.02 magnitude.

3.3.3.3 K-Correction

A wavelength emitted at a redshift z increases by a factor (14 z) by the time it reaches us. As
galaxy emissions depend on the wavelength (confer non-flat spectral energy distributions), the
received amount of light in a given finite band might be incorrect. It is over/underestimated
unless some k-correction is applied (e.g. Oke and Sandage, 1968). k-correction depends on
spectral energy distribution, redshift and observing passband. The derivation of k-corrections
are generally based on the template fitting of observed spectral energy distributions. They
require redshift and color photometry (at least one) or morphological type to build a template
(e.g. Blanton and Roweis, 2007; Chilingarian et al., 2010; Cowie et al., 1994; Han, 1992a).
Our interest lies with spiral galaxies, a k-correction based on morphological type is ideal.
Huang et al. (2007) happened to develop eleven model Spectral Energy Distributions ranging
from a pure early template, i.e. an old "early-type” stellar population as might be found in
an elliptical galaxy or spiral bulge, to a pure late template, i.e. a mix of stars and interstellar

emission as might be found in "late-type” spiral galaxy disk. Convolving each one of the
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spectral energy distributions with IRAC filter functions, they show a linear dependence of the
k-correction with redshift at 3.6 ym. In addition, this linear dependence is independent of
the galaxy type at small redshifts, at this position on the Rayleigh-Jeans tail of the spectral
energy distribution of star light. We use the low-z formulation by Huang et al. (2007):

ARG — 997, (3.34)

with z the galaxy redshift. Uncertainties are at the level of 0.01 magnitude or less.

3.3.3.4 Aperture Correction

The fourth and last adjustment is the aperture correction. Aperture corrections are required
for extended source photometry with Spitzer (e.g. galaxies) because their absolute calibra-
tions are tied to point sources with IRAC observations. There is extended emission from
the Point Spread Function outer wings, and the scattering of the diffuse emission across the
focal plane that is captured by the extended source photometry but not by the calibrations
on point sources. Since the photometry is normalized to 12” apertures, a correction must
be applied for large apertures (Reach et al., 2005, and IRAC Instrument Handbook)?*. For
an effective aperture radius r in arcseconds, the channel 1 IRAC extended source aperture

correction recommended is:

_ b
FIRACtrue = FIRACmeasured X (ae " + C) (335)

where a = 0.82, b = 0.37 and ¢ = 0.91. Then the extended source aperture correction in
magnitudes is:
A6 — —2.510g(ae‘rb +¢). (3.36)

The average correction for galaxies of interest to our program is 0.10. The variations on this
correction from source to source for our galaxies, which are typically larger than 1, is 0.01

magnitudes and 10% relative uncertainties in the adjustment are negligible.

Regarding surface brightnesses, fluxes need to be corrected directly with equation 3.35 before
using relations 3.26, 3.28 and 3.30. The correction is very small for IRAC channel 1. For
example, the disk central surface brightness of PGC7544 shown in Figure 3.14 becomes
18.10 after correction against 18.06 before. This is largely within the retained uncertainty
(0.5 mag arcsec2) on disk central surface brightness measurements for the project developed

in subsection 3.3.6.

“http:/ /irsa.ipac.caltech.edu/data/SPITZER /docs/irac/ iracinstrumenthandbook/
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FIGURE 3.14: Example of an ARCHANGEL output surface brightness profile and its disk-
only fit between a. and agg.5 at 3.6 microns for PGC7554. Parameters of the fit, disk central
surface brightness (1) and scale length (a) are listed on the figure. Two more parameters
also listed are the effective surface brightness (i) and radius (r. = a.). No correction has
been applied yet to the data. Radii enclosing 20%, 50% and 80 % of the total light are given
by red, green and blue lines. The green ellipse on the inset image represents the 26.5 mag
isophote at 3.6 microns.
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An extremely important virtue of the Spitzer [3.6] band photometry is the robustness of the

luminosity measurements (a) with uniformity across the sky, (b) with inclusiveness of target

light because of the sensitivity, and (c) because adjustments are small. There was a discussion

of uncertainties associated with the different corrections in the previous subsections and it can

be summarized that as long as sources are not in extremely obscured regions of our Galaxy

(Al[)3‘6] < 1) then the global uncertainty in adjustments is at the level of 0.03 magnitude or less,

with internal absorption within sources dominant in the error budget. The IRAC handbook

gives a 2 — 3% error on the absolute flux calibration (excluding the aperture correction), but

more importantly for this program, it claims photometry is repeatable across the sky at the

1% level.
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Among our parameters we determine isophotal, ”total”, and ”extrapolated” magnitudes. The
latter two both approximate the global magnitude, the ”"total” from the rational function
asymptote of the growth curve and the ”extrapolated” from the extension of the exponential
disk fit beyond the radius of the isophotal magnitude. By construction, [3.6]26 5 is fainter than
[3.6]¢s+ and should be fainter than [3.6)¢,:. The average difference ([3.6]26.5 —[3.6]czt) = 0.016
magnitude corresponds to a typical disk fit of 6.2 exponential scalelengths at the 26.5 mag
arcsec”2 isophote. The typical uncertainty in this extrapolation is below 0.01 magnitude
except if the target is extremely low surface brightness. Surface Brightness profiles of spirals
can depart from a pure exponential at large radii, either with flares or truncations and because
of the interplay between bulges and disks (Kent, 1985). Yet because such a large fraction
of the flux is captured by the deep Spitzer integrations the differences between measured
isophotal and extrapolated magnitudes are so small as to leave little room for uncertainty in

the extrapolation.

By comparison, ([3.6]26.5 — [3.6]t0t) = 0.007 magnitude, that is, [3.6];s is fainter than [3.6]cx¢
by 0.009 magnitude on average. The root mean square scatter is 0.018 magnitude between
these alternative measures. The differences are primarily due to a slight instability in the

rational function fits. We give preference to the exponential disk extrapolations.

We turn to what is probably the largest source of error, the determination of the ”sky” level.
With observations in space at [3.6] band this noise level is dominated by diffuse zodiacal
light and discrete high redshift galaxies. The discrete contaminants can be easily seen to
very faint levels in regions beyond the galaxy. They are less easy to see and exclude if they
are superimposed on the target galaxy. A major task before running a surface photometry
analysis is the removal of contaminants like foreground stars and background galaxies. Our
approach is to not be too aggressive with the removal of contaminants. We remove contam-
inants as best we can on the target and remove contaminants in the adjacent sky to the
same level, leaving in place fainter sources since such sources must also be hidden within the

galaxy.

It was described in the section on ARCHANGEL photometry that sky settings were established
from the median of pixel fluxes in boxes placed around the galaxy and validated by the nature
of the magnitude growth curve (it should go asymptotically flat) and the surface brightness
profiles (flares or cutoffs as noise dominance are approached as suspicious but not considered
a conclusive sign of bad sky setting). In order to generate a quantitative test of the effects
of sky variance we have run Spitzer-adapted ARCHANGEL on 235 galaxies, part of the Tully-
Fisher calibrator sample defined in Tully and Courtois (2012). This sample contains only a

few low surface brightness and irregular galaxies.

A first run gives us the sky value S and its uncertainty og;,. We run ARCHANGEL two more

times with sky values of S & o4y respectively for each one of our selected galaxies. This
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gives us three extrapolated magnitudes that we call [3.6]p, [3.6]+, and [3.6]_. Figures 3.15
and 3.16 show the variation of (|[3.6]p — [3.6]—| 4 |[3.6]o — [3.6]|)/2 as functions of type and
apparent magnitude. These plots show the sensitivity to the choice of sky value and that
this sensitivity becomes particularly acute for low surface brightness systems. The galaxies
of type Sd, identified in the plots as low surface brightness galaxies, and the Magellanic
irregular galaxies are clear outliers. There are also three galaxies with very bright objects
nearby that could influence the sky level with stray light and might explain their position in
Figure 3.16. These three are retained in the calculations of the offset and scatter since they
are typical spiral galaxies but the low surface brightness and irregular galaxies are excluded.
Magnitude uncertainties due to the sky error are of the order 0.04 £0.02. Uncertainties with
low surface brightness and irregular galaxy magnitudes tend to be more important which is
understandable. Low surface brigthness galaxies have by definition surface brightness values
closer to that of the sky and irregular galaxies not only tend to be low surface brightnesses
but in addition might not be well described by elliptical isophotes. Changing the sky value a
little might change the measured flux considerably toward the external part of such galaxies.
Low surface brightness and irregular galaxies apart, Figure 3.16 indicates that uncertainties

do not strongly increase at fainter magnitudes.
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FIGURE 3.15: Variation of magnitude uncertainty as a function of morphological type. The
mean offset of 0.04 magnitude and root mean square scatter of 0.02 magnitude indicated
by the solid red and dotted blue lines respectively excludes types Sd and later. Three cases
with contamination from nearby bright objects are indicated by asterisks. The scatter is
asymmetric about the mean since an absolute value difference from the fiducial value cannot
be less than zero.
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FIGURE 3.16: Variation of magnitude uncertainty as a function of magnitude. Type Sd
systems, here referred to as low surface brightness galaxies, are represented by squares and
types Sdm-Sm-Im irregular galaxies are represented by triangles. Asterisks locate galaxies
with a very bright object close to them. The mean offset and scatter lines have the same
meaning as in the previous figure.
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values can be four times higher than on average without resulting in abnormally high un-
certainty in magnitudes.
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Next we test for uncertainties in magnitude due to the sky against the sky value itself, as
well as against the isophotal semi-major axis in the [3.6] band agg 5, inclination from face-on,
and apparent area defined as the area of the ellipse at asg.5 to see if any trends exist. The
results in Figures 3.17 and 3.18 show no correlation. In Figure 3.17, we can see that the
uncertainty in magnitude does not depend on the sky value. We checked for a dependence on
sky uncertainty and find no correlation. These results suggest that the total and extrapolated
disk apparent magnitudes are adequate (we do not show the plots for both magnitudes here
as they are very similar). In any case, the highest sky values are relatively moderate (< 0.20
MJy sr~!). One can also notice that sky values and sky uncertainties are not correlated,
evidently a reflection of the relative uniformity of background across dimensions of 5 — 10
arcminutes. Structure in the background could be a worse problem when the sky setting
is very low. Perhaps it is a surprise that the uncertainty is not proportional on the galaxy
apparent area (Figure 3.18, bottom). The more pixels that are affected by changing the sky
value, the more the magnitude might change. In any case, these tests indicate that magnitude

uncertainties can be taken to be approximately constant for all normal spiral galaxies.
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FIGURE 3.18: Variation of magnitude uncertainty as a function of three galaxy characteris-
tics: (top left) semi-major axis, (top right) inclination, and (bottom) apparent area. Squares,
triangles and asterisks represent low surface brightness, irregular, and possibly contaminated
galaxies respectively. There is no apparent correlation between the magnitude uncertainty
and the radius, inclination, or apparent area of a galaxy.
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Regarding surface brightness uncertainties, we have seen that concerns, which might have
arise about the disk-only fitting technique, are not very relevant. Since de Jong (1996a)
showed that disk-only fits gave unbiased disk parameters relative to a 2D fit decomposition
parameters within 0.5 mag arcsec™2 and because the background (distant galaxies and zodi-
acal light) uncertainties lead to a small magnitude uncertainty even for IRAC channel 1, we

retain an uncertainty budget of 0.5 mag arcsec™2 for ,u([]3'6] measurements.

3.3.5 Comparisons with Other Pipelines

Our ARCHANGEL analysis procedures can be compared with other reductions of Spitzer
observations. Comparisons with magnitudes found by the projects SINGS (Munoz-Mateos
et al., 2009), CHP (Freedman et al., 2011, private communication) and S*G (Mufioz-Mateos,
in prep.) show that the Cosmicflows project is on the same magnitude scale as all these
projects. In the case of CHP we give special attention to a comparison because CHP and
CFS, have the common ambition of measuring galaxy distances. We do the same with S*G
as we take directly magnitudes derived from their pipeline. As we go forward, we want
to understand to what degree the alternative photometry analyses are interchangeable. A
comparison is given between the sources in Figure 3.19. There is a slight tendency for CHP
values to be brighter for the largest galaxies, with essentially no difference faintward of
[3.6] = 12. The most likely explanation for a difference with the bright and large galaxies is
small differences in the way sky values are set. The root mean square scatter in the differences
(6 deviant points rejected) is +0.052 which, if attributed equally, implies an uncertainty in an
individual measurement of +0.037 magnitude for each source. S*G values tend to be dimmer
for the smallest galaxies. Again probably because of the way sky values are set which is in
this case quite different from us. Instead of using sky boxes, they compute sky values out
of annuli located just at the extremity of what they estimate to contain the totality of the
galaxy light. This different sky setting might also explain the slight increase in the root
mean square scatter (4 galaxies rejected) which reaches +0.1 giving an uncertainty about
+0.07 magnitude for each source. Regardless, it is reassuring that our magnitudes are in

agreements with these two alternative computations.

Comparisons with other projects give comparable results. Typical zeropoint differences are
+0.015 and root mean square uncertainties are +0.05 — 0.07 magnitude. A summary of
comparisons are given in Table 3.3. These results provide an estimate of the internal errors
of alternate fitting procedures with the same data. We recall that our two measures of mag-
nitude agree at the level of 0.01 with scatter +0.02. In summary of errors, the dominant
contributions are sky settings (0.04 magnitude), flux calibration (0.02 magnitude), and ex-
tinction (0.02 magnitude), leading to total uncertainties in magnitudes of ~ 0.05 mag. The

great interest with the CFS program is to use TFR to measure distances to galaxies and
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the typical scatter in TFR is 0.4 magnitude, 20% in distance. With errors on photometry
after corrections held to 0.05 magnitude the contribution to the distance error budget from

photometry is minor.
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FIGURE 3.19: Comparisons between exponential disk extrapolated magnitudes [3.6]cz+ of
ARCHANGEL and asymptotic total magnitudes from CHP (top) and S*G (bottom) programs.
Top: the slight tilt of the thick line best fit, and the offset of ([3.6]cyst — [3.6]cmp) = 0.01
from the dotted line null value, have only 2 — 2.5 ¢ significance. Both the tilt and the offset
have been computed rejecting 6 deviant points. Bottom: the fit at 3 o clipping (4 galaxies
rejected) has a slope of -0.02 £ 0.004 and a zeropoint of 0.17 £0.04. The red dashed thick
line stands for the offset at -0.02 magnitude and the blue dashed lines represent the scatter
at 0.1 magnitude. Deviant cases except for 2 are low surface brightness galaxies and we find
no reason to reject ARCHANGEL values.
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Program N  Range Mother — MArchangel  Scatter

S4G 241 7-16 -0.02 0.10
CHP 171 8-16 -0.01 0.05
SINGS 12 8-10 0.02 0.07
Various® 5 9-11 0.01 0.03

TABLE 3.3: Comparisons between ARCHANGEL magnitudes and other magnitudes: (1)
program name (* measurements from a small number of programs focused on large galaxies,
Jarrett, private communication) (2) number of galaxies compared, (3) range of magnitudes
over which the comparison is made, mag, (4) difference ARCHANGEL magnitude — other
magnitude, mag, and (5) scatter, mag.

Finally, from the comparisons we consider that CHP, S*G and ARCHANGEL magnitudes can
be used indifferently. For a better precision they are averaged when more than one of them

is available in section 3.4.

3.3.6 Bimodality in Disk Central Surface Brightness: a Study Example

Based on Photometry Parameters

In this subsection, we report on measurements of the disk central surface brightnesses (jo)
at 3.6 microns for 438 galaxies selected by distance and absolute magnitude cutoffs from the
more than 2350 galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S*G), one
of the largest and deepest homogeneous mid-infrared datasets of nearby galazies. Our sample
contains nearly three times more galaxies than the most recent study of the ug distribution.
We demonstrate that there is a bimodality in the distribution of pg. Between the low and high
surface brightness galaxy regimes there is a lack of intermediate surface brightness galaxies.
Caveats invoked in the literature from small number statistics to the knowledge of the en-
vironmental influences, and possible biases from low signal to noise data or corrections for
galaxy inclination are investigated. Analyses show that the bimodal distribution of ug cannot
be due to any of these biases or statistical fluctuations. It is highly probable that galaxies
settle in two stable modes: a dark matter dominated mode where the dark matter dominates
at all radii - this gives birth to low surface brightness galaxies - and a baryonic matter domi-
nated mode where the baryons dominate the dark matter in the central parts - this gives rise
to the high surface brightness disks. The lack of intermediate surface brightness objects sug-
gests that galaxy evolution does not favor a mode where dark matter and baryons are equally

present in the central parts of galazies.
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3.3.6.1 Introduction

Observational surveys of the distribution of galaxy parameters in diverse environments pro-
vide essential constraints for theoretical models of galaxy formation and evolution (e.g.
Thompson, 2003). The sample selection in these surveys needs to be as bias-free as pos-
sible to conduct an appropriate analysis. Recently a number of large surveys (e.g. Dale
et al., 2009; Sheth et al., 2010; Stoughton et al., 2002) have been conducted with various
telescopes that have led to multiple findings of bimodal distributions of galaxies in terms of
color (Baldry et al., 2004; Brammer et al., 2009; Martinez et al., 2006; Whitaker et al., 2011),
star formation (Wetzel et al., 2012) and disk central surface brightnesses (uo, e.g. McDonald
et al., 2009a,b). Bailin and Harris (2008) have even suggested a trimodal distribution for

galaxy concentrations.

Surface brightness profiles were first studied in 1948 by De Vaucouleurs and later on by
Sersic (1959) and Freeman (1970). However, the first convincing evidence of a py bimodal
distribution was published only a long time after by Tully and Verheijen (1997). This study
revealed that the pg distribution in Ursa Major was discontinuous with a lack of galaxies
of intermediate surface brightness, or alternatively that there was an excess of low and high
surface brightness (L/HSB) galaxies. The authors suggested two stable modes for galaxy
formation: a dominant dark matter component at all radii giving birth to LSB galaxies and a
dominant baryonic matter in the center giving rise to HSB galaxies. They suggested that the
low number of Intermediate Surface Brightness (ISB) galaxies could be the result of galaxies
avoiding the situation where baryonic and dark matters are co-dominant in the center. The
very few ISB galaxies could also indicate that there is a small probability for LSB galaxies to
turn into HSB galaxies at some point. However, the authors expressed concerns because of
possible large errors in fitting galaxy disks due to shallow K’-band observations which could
lead to premature truncation of disks. As a result bulges could be partially included in fits
leading to a bias in pp. Later Bell and de Blok (2000) argued that the bimodality could
also be an artifact due to incorrect inclination-corrections applied to the pg values. They
noted that the bimodality could also result from small number statistics. McDonald et al.
(2009b) studied a larger number of galaxies in the Virgo cluster to overcome the problem of
small number statistics and found a bimodal distribution too. However, they were hesitant
to claim that bimodality is inherent to all environments because they had studied only one

cluster and felt that different environments could show different behavior of pyg.

The goal of this section is to address all of these issues with a study of 438 galaxies selected
from the Spitzer Survey of Stellar Structure in Galazies (S*G, Sheth et al., 2010). We study
the po distribution to confirm the evidence of the gap found in the Ursa Major and Virgo

clusters. The confirmation of a gap can place constraints on present day galaxy distributions
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which are essential to the comprehension of galaxy formation and evolution. Post-Basic
Calibrated Data used for measurements are publicly available at the Spitzer Heritage Archive
website. We show that the 438 galaxies constitute a representative sample to an absolute
magnitude of -15 in the 3.6 pm band of the Spitzer Space Telescope (Fazio et al., 2004; Werner
et al., 2004). The sample extends up to 20 Mpc and includes all morphological types later
than SO~. The key attributes of the sample are that it is a homogeneous dataset with a large
number of galaxies from the field and cluster environments imaged with excellent photometry
(Reach et al., 2005). The mid-infrared wavelengths also offer a view of galaxies at very low
extinction (Draine and Lee, 1984) and with 4 minutes of integration time per pixel, the data
are significantly deeper than anything that can be obtained from the ground for a large
sample of galaxies. In the rest of this section, after testing ARCHANGEL measurements of
o at 3.6 um, we discuss the sample selection, the bimodal distribution of ugj"ﬁ} and the
likelihood of obtaining a dip at ISBs from statistical fluctuations of a flat ug distribution

selection.

3.3.6.2 Ursa Major: Testing Measurements of jy at 3.6 ym

To test ARCHANGEL measurements of g at 3.6 pum to that obtained in previous papers, we
retrieve the available 43 of 78 previously used Ursa Major galaxies (Tully and Verheijen, 1997)
from the Spitzer archive. Sixteen of these galaxies are from the Carnegie Hubble Program
(Freedman et al., 2011) and 27 are from the S*G survey. Disk central surface brightness
values obtained with our procedure at 3.6 microns in the AB system are compared to values
obtained in the K’ band in the Vega system from the 1997 paper in the top panel of Figure
3.20. We find a good agreement between K’ and [3.6] band values. Bottom panels of the same
figure show pg distributions for the 43 galaxies in common with the previous studies. The
bottom right panel also shades the galaxies according to their type - one immediately sees that
the early type galaxies have a higher g (ie, are usually HSBs) compared to the usually lower
surface brightness late type galaxies demonstrating the known strong correlation between
morphological type and the disk central surface brightness. The previous studies found
values for LSB and HSB peaks in the K’-band at about 19.7-20.0 for LSBs and 17.3-17.5
for HSBs (mag arcsec 2 in the Vega system). We find values of 22.5 and 19.5 for LSBs and
HSBs at 3.6 um but in the AB system as shown in Figure 3.20. A conversion between the
Vega and AB systems re-establishes the proper relative positions between peaks in the K’
and [3.6] bands. Namely, at 3.6 microns, peaks are located at smaller values in the Vega
system ([3.6](Vega) = [3.6](AB) — 2.785) than in the K’ band in the same system. A single
Gaussian model of the pg distribution can be rejected at more than the 99% confidence level
while the significance of a double Gaussian modeling is quite high (54%). However these

43 galaxies do not constitute a complete sample and cannot lead to a universal conclusion
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about the bimodality we seek to test. Still the comparisons show that our procedure gives

results similar to the previous studies and does not introduce any particular bias.

Number of galaxies
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12¢
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FIGURE 3.20: Top: Comparison between disk central surface brightnesses from Tully &
Verheijen 1997 in the K’-band, Vega system and this work, AB system. The dotted line is
the 1:1 relation shifted by the average K’(Vega)-[3.6](AB) value of the sample. Bottom left:
Histogram of the disk central surface brightnesses corrected for inclination and aperture of
43 Ursa Major galaxies. The dashed line represents the sum of two Gaussian fits from LSB
and HSB subsample modelings. While the significance level (s) of the F-Test (F) for the
double Gaussian is high, the single Gaussian modeling can be rejected at more than the
99% confidence level. Bottom right: Distributions of type greater than 6 galaxy disk central
surface brightnesses (dashed histogram) and type smaller than 6 galaxy disk central surface
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brightnesses (plain histogram) for the available galaxies of the Ursa Major cluster.

As stipulated in subsection 3.3.2.2, surface brightnesses are fitted with disk-only. Tully and
Verheijen (1997) and McDonald et al. (2009a) were concerned about the disk-only fitting

technique for bulge galaxies. However, they respectively showed that neither dropping bulge

galaxies nor making a bulge-disk decomposition removed the bimodality. They also asserted

that their results were not significantly affected by alternative decompositions. We have re-

tained in subsection 3.3.4 an uncertainty budget of 0.5 mag arcsec 2 for o

This leads to a choice of bin sizes of 0.5 mag arcsec™2 for histograms of )

[3.6]

[3.6]

measurements.

distributions.
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3.3.6.3 Sample Selection

The S*G survey is a volume-, magnitude-, and diameter-limited (d < 40 Mpec, |b| > 30°,
MBeorr < 15.5 and Das > 1) survey of over 2,350 galaxies observed with channels 1 and 2
(3.6 and 4.5 pum respectively) of the IRAC instrument (Fazio et al., 2004) aboard the Spitzer
Space Telescope (Werner et al., 2004). It is a very large extremely deep, representative
and homogeneous sample of nearby galaxies containing all Hubble types. We use only the
3.6 um band data that we preferred for the Cosmicflows project based on the knowledge
that 4.5 um fluxes have a higher contribution from hot dust than fluxes at 3.6 um (Meidt
et al., 2012). We extracted from the S*G survey every galaxy of type later than SO~ up
to a distance of roughly 20 Mpc according to the Extragalactic Distance Database. At low
redshift, surface brightnesses are independent from distances. Thus, distances used here
are simple estimates derived from redshifts tethered to a Virgo infall model constrained by
distance measurements. The resulting sample goes down to an absolute magnitude limit of
-16 in the B band in the Vega magnitude system. This faint magnitude limit prevents the
loss of low surface brightness galaxies (LSB, Zhong et al., 2008) from the volume surveyed

and guarantees the presence of galaxies of intermediate surface brightnesses.

Figure 3.21 shows histograms of the sample as function of 1) numerical morphological type,
which increases with the ”lateness” of the literal type (E to Im through S), 2) absolute 3.6
wm magnitude and 3) distance. The left panel in Figure 3.21 shows a deficit of Type-7/8
galaxies and a small excess of Type-5/6 galaxies but this is not a bias from the selection —
the distribution of the full S*G sample shown with the dashed line also displays the same
behavior. Moreover, the morphological T-type assignments from HyperLeda (Paturel et al.,
2003) are qualitative with an uncertainty of 0T=1. There is also no a priori expectation of

similar numbers of galaxies in each category in a given volume.
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FI1GURE 3.21: Histograms showing the distributions of the 438 galaxies extracted from the
S4G sample. From left to right: Morphological type from HyperLeda database (we chose
all galaxies with T > -3 or later than SO~). The dashed histogram is the distribution of
HyperLeda types for the whole S*G sample ; Distance to the galaxies from the Extragalactic
Distance Database ; Absolute Magnitude (M3 < —16 in the AB system).

Figure 3.22 shows the angular distribution across the sky of the 438 galaxies; point sizes are

set according to their distances from us. We perform aperture photometry for the 438 Post
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Basic Calibrated Data of the galaxy sample using the adapted for this work ARCHANGEL

software following the process detailed in subsection 3.3.2.2.
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FIGURE 3.22: Angular distribution on the sky of the 438 S*G galaxies. Size of the symbols
represents the distance to the galaxy. The largest symbols show galaxies closer than 10
Mpc, the medium sized symbols stand for galaxies between 10 and 15 Mpc, and the smallest
symbols show galaxies farther than 15 Mpc.

3.3.6.4 A Lack of Intermediate Surface Brightness Galaxies

The entire ,ug’ﬁ] e

distribution for the 438 galaxy sample from S*G is shown in Figure 3.23.
It reveals a hint of bimodality — There is a lack of galaxies between 21 mag arcsec 2 and 22
mag arcsec 2 (less than 45 galaxies versus more than 60 galaxies at the peaks). We fit this
distribution with a double Gaussian assuming a population with po greater than 21.5 mag

2

arcsec”? and a population with pg less than 21.5 mag arcsec™2 - roughly reflecting a LSB

and HSB population respectively (see top panel in Figure 3.24) . This model has a much
higher significance (can only be rejected at a 21% confidence level) compared to a simple

Gaussian model which can be rejected at a 55% confidence level.

2 matches

As shown in the top panel of Figure 3.24, the ad-hoc limit of 21.5 mag arcsec™
well with the well known fact that LSB galaxies are in general of late Hubble type while
HSB galaxies are in general of early Hubble type (e.g. de Jong, 1996b). In this figure, the
LSB galaxies appear only for types later than the Scd type. The bottom panel of Figure
3.24 shows the u([)3'6]’a’i distribution for each morphological type in the 438 galaxy sample.
The histogram peak shifts to the left (higher u([)3'6}’a’i) with increasing morphological types,

supporting the correlation between types and the disk central surface brightnesses.
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FIGURE 3.23: Histogram of the aperture-inclination corrected disk central surface bright-
nesses. A Gaussian fit (dotted line) to the distribution can be rejected at the 55 % confidence
level (F=F-Test, s=significance level) while a sum of two Gaussians respectively from the
modelings of LSB and HSB disk central surface brightness subsample distributions can be
rejected only at the 21% confidence level (dashed line) supporting the bimodality seen pre-
viously.
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FI1GURE 3.24: Top: disk central surface brightness versus morphological type. An ad-hoc

limit set at u([)g'ﬁ}’a’i = 21.5 mag arcsec” 2 shows that galaxies with ,u([fﬁ}’a’i > 21.5 mag

arcsec™2 appear for types greater than ~ 6 (later than Scd). Bottom: Peaks of the ugo"ﬁ}’a’i

distributions shift to the left with increasing morphological type.
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Since the double Gaussian modeling can be rejected as a model for the total sample at
the 21% (against 55% for the single Gaussian modeling) confidence level, we next define
selection criteria to understand better which galaxies are in the gap and what might be

causing a bimodality.

Close neighbor: galaxies with a close neighbor (D < 80 kpc) can undergo interactions which
can potentially modify their ug values. If there are only two parent populations (HSB and
LSB types), then mergers / interactions could move galaxies into the gap separating the HSB
and LSB galaxies (Tully and Verheijen, 1997). We remove galaxies with close neighbors to
test the postulate that this will increase the bimodal nature of the pg distribution. We assume
that a galaxy with a velocity, v, has a ”close neighbor” whenever there is another galaxy

within 80 kpc with a velocity equal to v+ 200 km s~!

. We find only a few galaxies with
close neighbors as shown on Figure 3.25. The remaining ”isolated” sample consists of 411
galaxies. The distribution of the 27 galaxies with close neighbors looks quite flat - although
the numbers are too small to investigate the nature of the distribution. Quite a few of the
27 galaxies are in the gap. This agrees with the hypothetical scenario proposed by Tully
and Verheijen (1997) in which LSB galaxies tend to turn into HSB galaxies progressively

going through a stage as intermediate surface brightness galaxies due to an interaction with

a neighbor.
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FIGURE 3.25: Separation between galaxies with at least one neighbor closer than 80 kpc
(dashed histogram) and without a neighbor within 80 kpc (plain histogram). The velocity
of the neighbor has to be within + 200 km s~! of the galaxy velocity. The dashed line is
the sum of two Gaussians. It cannot be rejected at more than the 24 % confidence level (1
o significance level (s)) with a F-Test (F).

Inclination: next we explore the effect of inclination corrections as noted by Bell and de
Blok (2000). According to them, the effects of dust and projection geometry may not be
negligible, even in the mid-infrared: 1) averaging ellipse surfaces at high inclinations to
obtain pp may result in a systematically smaller value (Huizinga, 1994), 2) assuming a

thin, uniform, slab disk at high inclinations may lead to incorrect conclusions because three
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dimensionality of stellar structures affects the inclination correction in non-trivial ways. It
is difficult to characterize the surface brightnesses of edge-on galaxies because integrating
along the line of sight may hide the effects of sub-structures like bars and spiral arms (e.g.
Mosenkov et al., 2010). No precise method exists for correcting such effects and the coefficient
CB39] in equation 3.30 itself may vary with galactic radius. In absence of a proper (or even
better) method to correct for inclination and because numerically obtained inclinations are
quite uncertain (see for example, Figure 3.13), we decided to remove every galaxy with an
inclination greater than ~ 73° (%:0.35)5 leaving us with 292 galaxies. Figure 3.26 displays
the bimodal distribution of this refined sample along with the distribution for the ”edge-on”
galaxies. The inclined galaxies are well-described by a single Gaussian that peaks in the
previously observed gap between the HSB and LSB galaxies. The remainder of the sample
is well-fitted with a double Gaussian model which cannot be rejected at more than the 16 %

confidence level with the F-Test (based on the ratio of model and data variances).

80 T T T T
0 | Ob/a>=0.35
) r| ®b/0<0.35
- o F= 1.357s= 059
é 6O H_ --F= 1125 084 |
< L
o
S 40r 7
(-
()
0O
c 20r ]
5 .
= I S N

O - I

26 24 .22 20 18 e
M0[3‘6]‘O“ (maq arcsec™?)

FiGURE 3.26: Distribution of disk central surface brightnesses of highly inclined galaxies
(¢ > 73°, dashed histogram) against the others (i < 73°, plain histogram). The uégﬁhaﬂ
distribution of highly inclined galaxies is fitted by a Gaussian (dotted line) whereas the less
inclined galaxy u([js'ﬁ]’a’i distribution is fitted by a double Gaussian (dashed line) (F=F-Test,

s=significance level).

Axial Ratio: an error in the axial ratio is another source of error in the inclination correction
we apply to get the face-on uggﬁ]’a value. An error of 0.2 in the axial ratio leads to an error of
about 0.5 mag arcsec™2 (namely a change of bin in our histograms). We remove every galaxy
whose ARCHANGEL derived ratios differ from that found in HyperLeda database (Paturel
et al., 2003) by more than 0.2. The resulting distribution of ug)'ﬁ}’a’i is shown in Figure 3.27.
Where the axial ratio between the HyperLeda values and that measured by ARCHANGEL
in the S*G data are similar (408 galaxies), the bimodal distribution is still visible. There

are fewer LSB galaxies in this plot compared to the original because LSB galaxies are the

%0.4 instead of 0.35 was the choice of Bell and de Blok (2000). Because of the uncertainties on inclinations
(~ 4 —5%), choosing 0.35 (73°) over 0.4 (69°) does not change the conclusions.
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ones most affected by a change in observations (optical versus mid-infrared). The double

Gaussian modeling cannot be rejected at more than the 19% confidence level.
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FI1GURE 3.27: Distribution of pg)’ﬁ]’a’i separating galaxies which ” ARCHANGEL axial ratios”

differ by more than 0.2 from ”HyperLeda axial ratios” (dashed histogram) from which that
do not (plain histogram). The total sample is modeled by a sum of two Gaussians (dashed
line) (F=F-Test, s=significance level).

Combination of selection criteria: if we now combine the three selection criteria (isolated,

non-inclined galaxies, with similar axial ratios in the optical and mid-infrared) we get a sam-

ple of 249 galaxies. On Figure 3.28, the u([)&ﬁ]’a’i

distribution for this highly refined sample
clearly shows the bimodality. The double Gaussian modeling now cannot be rejected at more
than the 19% confidence level according to the F-Test. On the contrary, the single Gaussian
modeling can be rejected at a 81% confidence level with the same test. Thus we conclude

[3.6],a,i

that the pg distribution of the sample is bimodal and that there is a lack of intermediate

surface brightness galaxies.
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FIGURE 3.28: pugi """ histogram after dropping galaxies inclined by more than 73°, with
a neighbor closer than 80 kpc and with an axial ratio different by more than 0.2 between
HyperLeda and S*G data. A double Gaussian (dashed line) clearly fits the distribution far
better than a single Gaussian (dotted line) (F=F-Test, s=significance level).
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3.3.6.5 Why a Dip at Intermediate Surface Brightness?

The different results of previous sections demonstrate strongly that the u[[)3'6]’a’i distribution
is bimodal. Is it possible that the bimodality is from statistical fluctuations? To obtain the
likelihood of getting a dip at intermediate surface brightness from a statistical fluctuation,

we simulated a flat u([)3'6]’a’i distribution of 700 galaxies with pg between 19 and 24 mag

arcsec 2.
central surface brightness distribution (McGaugh, 1996; McGaugh et al., 1995). This flat

distribution has an upper brightness limit to disk central surface brightnesses that must

We chose a flat distribution in agreement with the current description of disk

have a physical origin (Freeman, 1970) and a lower brightness limit due to observational

2 gize bin contained the same number

limitations in the simulations. Each 1 mag arcsec™
of galaxies. We randomly selected 249 galaxies from that distribution and looked at the
likelihood of obtaining a gap between two peaks. We repeated the selection 10,000 times
and retained only simulations with a gap between two peaks and a number of galaxies in the
gap no greater than 50 % the number of galaxies in the peaks. This is approximately what
we observe in Figure 3.28. Table 3.4 lists the histogram parameters of the 9 simulations out
of the 10,000 simulations which showed a distribution similar to the observed bimodality we
observed in the 249 galaxy sample. The last line corresponds to the mean values for the 9
simulations. Thus the likelihood of randomly obtaining the observed bimodality is only ~

0.1 %.

Simulations peak; pos. peak; peaks pos. peake gap position gap %1 %o

431 71 24.0 62 22.0 31 23.0 44 50

870 63 23.0 61 21.0 27 22.0 43 44
2603 64 24.0 63 21.0 30 22.0 47 48
3923 65 20.0 99 23.0 28 22.0 43 48
4852 66 24.0 61 22.0 23 23.0 35 38
4887 64 23.0 63 20.0 28 21.0 44 44
8330 66 22.0 62 24.0 30 23.0 46 48
8421 67 23.0 60 20.0 30 22.0 45 50
9233 63 23.0 62 21.0 30 22.0 48 48
Mean 65 23 61 21 28 22 44 46

TABLE 3.4: Kept simulations: (1) Number characterizing the simulation out of 10,000. Only
simulations with two peaks and a gap in between are selected. The number of galaxies in the
gap has to be at most 50 % the galaxy number in peaks. Only 9 out of 10,000 simulations are
similar to the observed bimodality. In other words, there is only a ~ 0.09 % probability that
the bimodality is due to a statistical fluctuation. (1) - (2) Value (number of galaxies) and
Position (mag arcsec™2) of the first peak, (3) - (4) Value (number of galaxies) and Position
(mag arcsec™?2) of the second peak, (5) - (6) Value (number of galaxies) and Position (mag
arcsec™2) of the gap, (7) - (8) Percentage of galaxies in the gap with respect to the number
of galaxies in the first and second peaks respectively.
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In the Vega system, peaks have been found at 17.5-18 and 20 mag arcsec™2 for both Virgo
and Ursa Major Clusters in the K’ band and in the H band respectively (McDonald et al.,
2009a,b; Tully and Verheijen, 1997). The gap found in between has a width of one unit in
magnitude per square arcsecond and is located at ~19 mag arcsec™2. In this study, at 3.6
um in the AB system, the observed bimodal distribution shows two peaks at 20.5 and 22.5
mag arcsec” 2 and a gap of width 1 mag arcsec™? at 21.5 mag arcsec™? in between. This
excellent agreement between the studies, including the shift to smaller values when moving
towards longer wavelengths (visible after applying the AB-Vega system conversion) already
shown in Figure 4 of the 1997 paper, is a strong evidence for an inherent bimodality in the

local galaxy population.

The results reveal a clear separation between ug)’ﬁ] of HSB and LSB galaxies. The former are

probably dominated by baryonic matter at their centers whereas the latter are likely dark
matter dominated at all radii (Tully and Verheijen, 1997). Along with a lack of interme-
diate surface brightness galaxies, the data suggest that the two (L/HSB) peaks signify two
stable configurations of galaxy formation (Mestel, 1963). Systems that retain large angular
momentum from their formation may prevent the baryonic matter from collapsing to form a
stellar disk that could dominate the dark halo at the galaxy center. These systems may reach
a rotational equilibrium at densities where the dark matter halo remains dominant and the
galaxies appear as LSB galaxies. On the other hand, galaxies with low angular momentum,
either because of their formation or because they transferred their angular momentum away
from much of their gas, allow baryonic matter to collapse and form disks that can dominate
the dark matter halo at the center. This hypothesis is supported by the differences between
typical LSB and HSB rotation curves. LSB galaxies reach flat rotation at very large radii
from their centers (Swaters et al., 2010) whereas HSB galaxies reach their maximal rotation

speed at, or within, 7=2.15 a where « is the disk scale length (Courteau, 1997).

The gap between the two peaks suggests that galaxy formation does not favor a situation
where the dark matter and the baryonic matter have equal weight in the center. The few
galaxies present in this gap may be transitioning from LSB to the HSB galaxies as suggested
by the experiment with the close neighbor pairs. Eventually all galaxies that undergo inter-
actions may end up as HSB galaxies so that the peak of HSB systems should be higher than

the LSB peak in environments where interactions are common.

Our 438 galaxy sample is representative of all galaxies later than SO~ in the half of the
sky at the Galactic poles within the volume extending to 20 Mpc and brighter than Mp =
—16. The galaxies lie in clusters, groups, and the field. The bimodality in disk central
surface brightnesses first found in moderate and high density regions is found to be pervasive.
Galaxies are mostly HSB or LSB but rarely ISB. This phenomenon must have a physical

explanation, one that probably will give an important clue regarding the process of galaxy



Chapter 3. Observed Universe 89

formation. Seeking for such a bimodality to be present in disk central surface brightness
distributions of simulated galaxies could unravel some mystery about the process of galaxy

formation.

3.4 Tully-Fisher Relation

This section expounds the calibration of the Tully-Fisher relation in the mid-infrared. It
results from a commonality of interests between the overall Cosmicflows project (subprogram
Cosmicflows with Spitzer, initiated in cycle 8) and the Carnegie Hubble Program (CHP,
initiated in Spitzer proposal cycle 6). The intent of CHP is to reduce systematics arising in
the determination of the Hubble Constant by giving attention to a mid-infrared calibration
of the Cepheid Period-Luminosity relation and a second part addresses the properties of the
rotation rate-luminosity correlation of galaxies or Tully-Fisher Relation (TFR). Cosmicflows
seeks to obtain accurate distance measurements for thousands of galaxies using the mid-
infrared TFR in order to map deviations from Hubble flow. Since the TFR zeropoint is
established by the Cepheid distance measurements, the Cepheid Period-Luminosity relation
calibration is required. Freedman et al. (2011) describe the goals of CHP and Freedman
et al. (2012) report on the results of the Cepheid calibration that gives a distance modulus
for the Large Magellanic Cloud of 18.48 4+ 0.03 magnitudes.

3.4.1 Calibration at 3.6 ym

The ensuing discussion about the Tully-Fisher calibration borrows on the recent re-calibration
of the I band correlation by Tully and Courtois (2012) (hereafter TC12). The strategy con-
sists in forming a template relation using samples from 13 galaxy clusters and the establish-
ment of a zeropoint using nearby galaxies with independent Cepheid period-luminosity or
Tip of the Red Giant Branch (TRGB) distances. [3.6] magnitudes are obtained mostly with
ARCHANGEL and are eventually combined with CHP measurements. HI profile and inclina-
tion information are the same as in TC12. The significant difference is the replacement of
mid-infrared for optical luminosities. It turns out that although the new photometry has
high fidelity and the photometry correction terms are small there is an intrinsic color term
in the [3.6] band TFR. Scatter in the relation will be reduced upon application of a color

correction. We will conclude the section with an estimate of the Hubble Constant.
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3.4.1.1 Calibrators

The slope and zeropoint calibrator samples are described in detail in TC12. The correlation
slope is established from a template built from galaxies in 13 clusters from the closest Virgo
cluster up to Abell clusters, the farthest being Abell 2634. As a matter of fact, the only
departure in terms of an extension from the I band calibration occurs precisely in the case of
Abell 2634. The CHP program included observations of a larger region including Abell 2666.
The two clusters are close in projection and, evidently, in distance. We find no discernible
difference in distance between galaxies closest on the sky to Abell 2634 versus those closest

to Abell 2666. We propose to average over the entire complex.

Each cluster sample is comprised of galaxies likely to be at similar distances. There was an
attempt to include all galaxies with suitable properties down to a defined faint luminosity
level to have an unbiased sampling of the cluster volume to a magnitude limit. Candidates
are chosen out of a projection-velocity window. We care about minimizing relative distance
effects in the TFR so it is more important to minimize interlopers than maximize true
members. Cluster members that are ”window outsiders” would not be expected to lie in any

preferred part of the TF diagram. The selection criteria are:

e morphological types earlier than Sa are excluded (SO types are similar to spirals but
have been shown not to lie on the same Tully-Fisher relation, e.g. Bedregal et al., 2006;
Williams et al., 2010),

e HI profiles with adequate signal-to-noise are required,
e HI profiles should present no evidence of confusion or tidal disruption,

e inclinations less than 45° are rejected to limit large linewidth de-projection errors.
Tests with samples that satisfy this limit have not revealed that this selection gives rise

to a distance bias (TC12).

Criteria for inclusion of zeropoint calibrators are similar, with the additional requirement
that they have very well known distances from either Cepheid or TRGB measurements.
In TC12, the Cepheid scale had been set by a distance modulus for the Large Magellanic
Cloud of 18.50 magnitude (Freedman et al., 2001). Here we adopt the slightly modified
modulus 18.48 +[0.03 —0.06] magnitude based on mid-infrared photometry of Cepheids in the
Large Magellanic Cloud and in our Galaxy, the latter anchored with trigonometric parallaxes
(Monson et al., 2012). The TRGB distances are based on a Population II calibration but
have been demonstrated to be on a consistent scale (Rizzi et al., 2007; Tully et al., 2008).

At the time of this calibration work, Cosmicflows with Spitzer observations were incomplete,

still already 230 of 314 galaxies (73%) used in the I band calibration (plus 9 other galaxies
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introduced with the extension of the Abell 2634 sample to include Abell 2666) had Spitzer
[3.6] photometry, including 26 of 36 (72%) that set the zeropoint. The completion was greater
than 60% with each of 12 of the 13 template clusters (the Pisces filament is the exception).
Consequently, we proceeded with the TFR calibration with the available material. The data
that are used in the following discussion are collected into Table B.1 of Appendix B. This
table includes CFS and CHP total magnitudes, each including the four corrections described
in subsection 3.3.3, and averages of the two methods. The table also gives inclination and
linewidth information drawn from TC12 and color terms for color corrections described in
subsection 3.4.1.3. The galaxies in Table B.1 of Appendix B are either part of the zeropoint

calibration sample (ZP) or a member of a cluster contributing to the slope template.

3.4.1.2 Slope and Zeropoint

The TFR calibration requires the definition of a slope and the establishment of an absolute
scale. The slope is the trickiest item because there is a correlation between its value and a
form of Malmquist bias. Given two galaxies at the same distance with the same linewidth,
the brighter galaxy might be chosen but not the fainter one. The potential bias depends on
the slope of the correlation because with a relatively flat slope most intrinsically luminous
galaxies lie above the correlation while with a very steep slope these same galaxies tend
to lie below the correlation. Consider a target for a distance measurement in the field that
intrinsically lies above the assumed mean relation, the trend for distant galaxies if the relation
is flat. With the distance measurement the target is assigned the mean luminosity of the
correlation at the target’s linewidth so given a distance that is too small. This bias has
repeatedly been discussed at length, most recently by TC12. The salient point is that the
so-called ”inverse” relation (ITFR), the least squares regression where errors are taken to be
in linewidth only, gives results that are close to bias free. Willick (1994) pointed out that,
while in his experiments the ITFR bias was reduced by a factor 6 from that incurred using
the direct relation, yet a small bias remained because the sample selection was not made in
the band he considered. We have the same problem. Our strategy is to use the ITFR and
then evaluate the bias with simulations anticipating that, like with the I band calibration,
the effects will be small. The bias tests are discussed in a later subsection 3.4.1.4. The
calibration process has been described in detail by Tully and Pierce (2000) and TC12. With
the I band relation there was no clear evidence for scatter due to a third parameter but the
situation at [3.6] is different. A color term is found and that matter will be discussed in

subsection 3.4.1.3.

The measurement of distances requires the hypothesis of a universal correlation. To begin,
we make inverse fits to each one of the clusters separately. We use the least square fitting

mathematical procedure which consists in finding the best-fitting curve to a set of point by
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minimizing the sum of the residual squares (given points minus model). Squares are used as
they can be assimilated to a continuous differentiable quantity contrary to absolute values.
The condition for the sum of the residual squares to be an extremum (minimum in our case)

for a linear fit of n points (x,y) is given by:

n Ty — )12 noore NE
0% izalyi — (a4 bai)] —0 and 9 i lyi — (a+ bai)]
da 0b

=0 (3.37)

where y; are the variables to fit as a function of the z; variables and a, b are constants.
Because we want inverse fits, y; are to be assimilated to logarithms of linewidths, more

precisely to logW¢ = — 2.5 and x; to magnitudes m.

In matrix form, equations 3.37 can be written:
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which gives:
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where we have used the relation between a 2x2 matrix and its inverse:
-1
ar a2 1 ayg —ag
= (3.40)
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The correlation coefficient corr is the ratio of the covariance cov over the product of variances

o corr = 22— >ici(@i —2)(yi —y)/n
T ooy S (yi — 9)2/n > (zi — 2)2/n (3.41)

where barred quantities stand for the means. With the definitions of variances and covariance,

b= and a =y — br.

x

Standard errors on b and a can be derived with:

no2 —nbcov 1 72 no2 —nbcov 1
erry = \/y (-+-) and e = \/ 5 (3.42)
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However, once a and b are computed, the relation needs to be inverted to find the Tully-Fisher
relation: [z;(=m)] = —g + 7 yi(= logW},, — 2.5)]. We define the errors on such an ”inverse”
slope (%) as the product of the standard error on the ”direct” slope by the ”inverse” slope

divided by the ”direct” slope. The standard error on the ”direct” slope is obtained with the
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relation 3.42 but this time with y; assimilated to magnitudes m and z; to logW}  — 2.5 in

the procedure.

Dotted lines in Figures 3.29 and 3.30 illustrate the inverse fits of the TFR for each cluster.
Slopes are quite similar between clusters. Slopes and their uncertainties are given for each
cluster in Table 3.5. The individual fits are consistent with the soon to be derived best fit
and hence with the universal correlation hypothesis®. As cluster distances increase, the faint
luminosity limits decrease in magnitudes. However, no dependence of the slope with distance

is seen, as would be a marker of Malmquist bias (we still make a tiny correction for bias to

cluster moduli as described in subsection 3.4.1.4).
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FIGURE 3.29: Tully-Fisher relation at 3.6 pym for the Virgo Cluster. The solid line gives
the inverse fit of the universal template correlation. The dotted line is the inverse fit of the
correlation for the Virgo Cluster alone.

SNote that Mocz et al. (2012) calibrated the TFR in u, g, 1, i, z bands of SDSS for over 25,000 galaxies
and found no dependence on the environment. If there is one it would be only at the 3% level. This comforts

our assumption.
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The next step is to combine the 13 individual cluster correlations by vertical translations.
The Virgo Cluster is used as a reference. Each preliminary zeropoint from the individual
fits (—3) provides us with a first estimate of the relative distance between the Virgo Cluster
and the cluster in question. Apparent magnitude zeropoints confirm that Virgo, Fornax
and Ursa Major are the closest clusters. Then come Antlia-Centaurus-Pegasus, then Hydra-
Pisces-Cancer, and finally Coma and the three Abell clusters A1367, A400 and A2634/66.
To establish the best universal slope and the best relative distances between clusters, we
follow an iterative procedure. We initially consider the nearest three clusters because they
are observed to comparable depths in intrinsic magnitude. The Fornax and Ursa Major
magnitudes are shifted according to the difference in zeropoint with respect to Virgo. A
least squares fit of the ITFR is made to this ensemble. The slope obtained from this fit
is then assumed in a fit to the three clusters separately with only the zeropoint as a free
parameter in each case. The first assumed offset for a cluster is corrected for the deviation
of the mean zeropoint zpt = % Yoi i (z; — slope x y;) of that cluster from Virgo’s zeropoint.
Given the new zeropoint offsets the cycle is repeated, leading to rapid convergence. This
procedure is repeated with the addition of each distance group in turn. Again, convergence
is rapid. It is to be stressed that this procedure works because, following expectations, the
slope of the ITFR is not affected by the magnitude level of truncation. This procedure would
manifestly not work with the direct or bi-variate relations where the slopes vary with the level
of truncation. In the end we obtain a slope of —9.74 £ 0.22 for the template ITFR. Zeropoint
offsets with this ”universal” slope are shown in Figure 3.31 and give relative distance moduli
of clusters referenced to the Virgo Cluster. The universal slope of the ITFR is displayed in
Figure 3.31 as well as by the solid lines in Figures 3.29 and 3.30. The error on each cluster
zeropoint (offset + Virgo’s zeropoint) is obtained by the standard deviation, stddev (scatter),
of the galaxy zeropoints, zpt = x; — slope X y;, divided by the square root of the number n

of galaxies in the cluster:

1 "L (zpt — zpt)? 1
errpt = stddev\/; = Z V1 n (3.43)

At the time of this calibration work, [3.6] photometry was available for 26 nearby galaxies with
suitable morphologies, inclinations, and linewidths that also have well measured distances
from either the Cepheid period-luminosity or TRGB methodologies. These 26 are a subset of
the 36 absolute calibrator galaxies used in the I band calibration (TC12). Their luminosity-
linewidth correlation is seen in Figure 3.32 where now the ordinate is absolute magnitude from
the established distances. The line is a least squares fit with the slope —9.74 prescribed by
the template. The zeropoint is —20.34 +0.10 where the error is the sum in quadrature of the
standard deviations (scatters) of all the calibrators together and of the zeropoint calibrators

divided by their respective number. The most deviant point is the fastest rotator, NGC



Chapter 3. Observed Universe 96

2841, with a deviation of 2.7 o with respect to the template dispersion. This galaxy was a
2.3 o deviant in the I band calibration. There is nothing unusual about this galaxy other

than its extreme rotation rate so we see no reason to disregard it as a calibrator.
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FIGURE 3.31: Template Tully-Fisher relation in the [3.6] band obtained with data from 213
galaxies in 13 clusters. Offsets given with respect to the Virgo Cluster represent distance
modulus differences between each cluster and Virgo. The solid line is a least squares fit to
all the galaxies with errors entirely in linewidths, the ITFR.
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FiGURE 3.32: TFR for the 26 galaxies with distances established by observations of Cepheid
stars (circles) or Tip of the Red Giant Branches (squares). The solid line is the least squares
fit with the slope established by the 13 cluster template. The zeropoint of the TFR is set at
the value of this fit at logW} , = 2.5.
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The distance to the Virgo Cluster is given by the zeropoint of the constrained slope shown in
Figure 3.31 minus the zeropoint of the absolute calibration shown in Figure 3.32. Application
of this shift allows both cluster template and zeropoint calibrator galaxies to be plotted

together as seen in Figure 3.33. The ITFR expression in the [3.6]-band is given by:

Mlh® = —(20.34 +0.10) — (9.74 % 0.22)(log W}, — 2.5) (3.44)
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FIGURE 3.33: The template of the [3.6] band - HI linewidth correlation is built with 213
galaxies in 13 clusters extending in range from 1000 to 10,000 km s~! with the absolute
magnitude scale set by 26 zeropoint calibrators.

The TFR scatter in magnitudes (relevant for distance measurements) for the entire cluster
template sample is £0.49 magnitude from the universal ITFR, corresponding to a scatter in
distance of 25%. The scatter for the 26 zeropoint calibrators is a similar 0.44 magnitude.
Dispersion increases toward fainter magnitudes as well documented at I band by Giovanelli
et al. (1997a). The sample presented here is still limited but the dispersion is consistent with
a Gaussian distribution. With large samples (Tully et al., 2008) one finds that about 3%
of candidates are more deviant than anticipated by Gaussian statistics. The causes are not

always evident.

Scatter may arise from:

e measurement uncertainties affecting magnitudes, inclinations, and linewidths but ob-
servational errors are not likely to account for the whole scatter (e.g. Bothun and

Mould, 1987),
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e correction uncertainties applied to measured parameters,

e "cosmic” scatter, e.g. cluster depth effects or interlopers, deviations from disk planarity,
other gravitational and photometric asymmetries, variations in the stellar population

make-up, variations in disk-to-bulge ratios, etc.

Whatever the sources, we have a standard to meet set by the I band analysis. The sample
used in the current analysis involve more than 70% of the sample used in the I-band cali-
bration (T'C12). Inclinations and linewidths are the same, the factors mentioned associated
with cosmic scatter are the same, corrections to photometric parameters are reduced in the
mid-infrared, and the integrity of the magnitude measurements must be at least as good
or better with the Spitzer observations since observations are made all-sky with the same
instrumental configuration. Error bars on magnitudes are reduced compared with those in
band to the degree that observational errors in magnitudes are a minimal component of un-
certainties. Yet the scatter found at I band is less: +0.41 magnitude for the cluster template
sample, lower with a significance of 2 o, and 0.36 magnitude for the zeropoint calibrators.
As much as half of the increase in magnitude scatter will occur because the slope of the
correlation is steeper in the mid-infrared. However there could be an additional explanation

for the increased scatter found at [3.6].

vomB N Slope 7P scatter ZP cotor scatter bias DM Dist V/D
V 1410 24 -8.21£0.71 10.404+0.14 0.67 10.494£0.11 0.56 0.00 30.83£0.14 14.7+0.9 96.2+6.9
F 1484 15 -9.39+0.66 10.73+0.13 0.49 10.86+0.12 0.47 0.00 31.204+0.14 17.4+1.2 85.446.4
U 1101 32 -9.83+0.52 10.844+0.10 0.55 10.94+0.08 0.44 0.00 31.28+0.11 18.0+£0.9 61.1+4.2
An 3119 11 -10.7940.79 12.474+0.07 0.23 12.44+0.06 0.21 0.04 32.82+0.10 36.6+1.7 85.14+4.2
Ce 3679 11 -12.69+1.76 12.57 £0.19 0.62 12.58+0.18 0.59 0.01 32.93+0.20 38.5£3.5 95.4+8.8
Pe 3518 12 -8.55+0.94 12.874+0.13 0.44 12.89+0.12 0.42 0.01 33.24+0.14 44.5£3.0 79.1+£5.4
H 4121 14 -10.48+1.49 13.304+0.14 0.53 13.354+0.14 0.52 0.05 33.74£0.16 56.0+4.2 73.6+5.5
Pi 4779 23 -10.15+0.82 13.70+0.10 0.47 13.69£0.08 0.40 0.02 34.05+£0.11 64.6+3.4 74.0£3.9
Ca 4940 11 -11.46+1.17 13.77+0.12 0.39 13.78+0.10 0.34 0.02 34.14+0.13 67.3+4.0 73.4+4.4
Co 7194 16 -8.494+1.10 14.444+0.12 0.49 14.504+0.10 0.39 0.06 34.904+0.13 95.4+5.6 75.3+4.5
A4 7108 7 -8.03+1.40 14.524+0.08 0.21 14.50+0.08 0.21 0.10 34.944+0.11 97.3£5.1 73.1+3.8
Al 6923 19 -9.38+1.16 14.50+0.11 0.47 14.50+0.11 0.42 0.08 34.92+0.14 96.4+6.0 71.8+4.5
A2 8381 18 -9.554+1.38 14.83+0.12 0.51 14.85+0.10 0.44 0.05 35.244+0.13 111.7+6.6 75.0+4.4

TABLE 3.5: Properties of the Cluster Fits: (1) Cluster name (V Virgo, F Fornax, U Ursa
Major, An Antlia, Ce Centaurus30, Pe Pegasus, H Hydra, Pi Pisces, Ca Cancer, Co Coma,
A4 Abell 400, A1 Abell 1367 and A2 Abell 2634 and 2666, (2) Mean velocity of the cluster
with respect to the CMB, km s, (3) Number of studied galaxy per cluster, (4) Slope of the
inverse fit, (5) Zero point relative to Virgo’s zeropoint, no color adjustment, mag, (6) Scatter,
no color adjustment, (7) Zero point relative to Virgo’s zeropoint after color adjustment, mag,
(8) Scatter after color adjustment, mag, (9) Bias, mag, (10) Bias corrected Distance Modulus,
mag, (11) Cluster Distance, Mpc, (12) Hubble parameter, km s~! Mpc~!
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3.4.1.3 A Color Dependence

It has long been known that the TFR steepens toward longer wavelengths (e.g. Courteau
et al., 2007; Tully et al., 1982). The effect is seen in Figure 3.34 (Note: in the discussions
in this section all optical photometry values have been transferred from Vega system to AB
system according to relations 3.27). There is a strong color correlation with linewidth, more
rapidly rotating galaxies tend to be redder, so at longer wavelengths the high rotation end of
the TFR rises with respect to the low rotation end. Within a small linewidth interval, redder
galaxies will rise more than bluer galaxies. It follows that red and blue galaxies cannot be
well mixed in the TFR at all wavelengths. The trends that could be anticipated are shown in
Figure 3.36 (only a portion of the sample have photometric measurements at B band). The
comparison of fluxes at four bands from B to [3.6] for individual sources given in Figure 3.35
confirms the well known linkage between galaxy type and color. Early type galaxies have
relatively more infrared flux relative to late type galaxies. This point was also illustrated
with the representative spectral energy distribution plots in Figure 3.3. Galaxies that are
more luminous and earlier in type are dominated by older, more metal enriched red giant

stars emitting more in the infrared.
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FIGURE 3.34: TFR in B, R, I and [3.6] bands. B and R bands data are from Tully and Pierce
(2000) , I band data are from TC12 and [3.6] band data are from section 3.3. Linewidths
are the same as used by TC12. The slopes steepen from blue to red, with values —7.27 at
B, —7.65 at R, —8.81 at I, and —9.74 at [3.6].

Magnitude in B,R,I,[3.6] bands
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FIGURE 3.35: Representation of fluxes at B, R, I,[3.6] bands normalized to unity at I band.
Type Sa: red; types Sb-Sc: green; types Sd-Sm: blue. The extrema are defined by members
of our sample and color swaths indicate the domains dominated by the different types.

There have been long standing suggestions that the dispersion in the TFR might be reduced
by inclusion of additional parameters. In an early instance (Rubin et al., 1985), when only
photographic or photoelectric magnitudes were available, the case was framed in terms of
galaxy types which are strongly correlated with color. Masters et al. (2006) have maintained
the use of a type separation with I band work. Tully and Pierce (2000) acknowledged the hint
of a type dependence in the I band relation but concluded that the evidence remained too
weak to warrant adding complexity to the TFR analysis. The situation changes with the mid-
infrared information. In spite of superior photometry the scatter in the TFR is increased and
there is a significant color signature. The variations in spectral energy distribution implicit
in the range of representative colors shown in Figure 3.35 provide a natural explanation given

the extended lever arm from the optical to the [3.6] band.

There is also the possibility that some flux in the [3.6] band may come from other than old
stars. Meidt et al. (2012) determined that 12+5% of [3.6] flux arises from hot dust, Polycyclic
Aromatic Hydrocarbon emission, or young to intermediate age stars in six representative
spiral galaxies observed with Spitzer Space Telescope. However the variance of 0.05 mag is
small compared with the ITFR scatter. Moreover, it can be anticipated that the galaxies
most affected by manifestations of star formation are later, bluer types, whence augmented
flux will tend to diminish a color term arising from old stars. Whatever the cause, it can
be anticipated that the scatter can be decreased with the introduction of a color correction.
To address this issue we consider the straight line fits included in the top and bottom left

panels of Figure 3.36. The fits are least squares minimizations on the ordinate parameter;
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the difference in magnitude of a target from the mean TFR. The bottom right panel shows

the concordant variation of color with linewidth. Faster rotators tend to be redder.

—2F T T T T ] —2F T T T T

N =

= [| zero point: 0.27 o [ zero point: 0.19

S [ 5 [ + ]
- —1F 3 9 -1F E
c [ 2 £ ]
s b 18 A
b of 1% of :
- £ ] - £ ]
o] F 1 o F 4
[3) £ ] o £ ]
= s q = s ]
| E 1 r + 7
o E E

2 L L L L ] 2t L L L 1
-2.0 -1.5 -1.0 -0.5 0.0 0.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
‘b.\'.k _ [E_G]b.\'.k.o ‘b.'\.k _ [B_G]D.'\.k.u

E

5 —2F T T T T | 30 T T T T

- F| zero point: —0.36 [

c E [ 4

o L 281 B
8 T e

2 H Yoo o+

= ] “326f sl Sy .
© 1 EPL L

o) 4 = [ M HE T OF N

= 1 = L

o r PR L F
< +
o o 2.4rF :f %ﬁ;}* I t, 7
t +
3 Lo+ N +%++ + A *

I 292b L+ ¥ +*¢+#+ .
s r + ++ 4

A [ oty

E 2 1 1 1 1 20 1 * +1 1 1

2, =20 -1.5 -1.0 -0.5 0.0 0.5 -2.0 -1.5 —-1.0 -0.5 0.0 0.5

‘b,\',k _ [3.6‘Ib,\',k,a ‘b,\',k _ [3.6]b,i,k,n

FIGURE 3.36: Top and left bottom panels: Deviations from the mean ITFR relation as a
function of I — [3.6] color. Solid and dotted lines are best fits and 95% probability limits.
Top left: At B band red galaxies tend to lie below the mean relationship. Top right: At I
band there is a hint that red galaxies lie low although the correlation fit is dominated by a
few extreme cases. Bottom left: At [3.6] band the sense of the correlation has flipped and
red galaxies tend to lie above the mean relation. Bottom right: The correlation between
linewidth and color.

In the mid-infrared case, the offset for an individual galaxy from the mean fit in Figure 3.36
is:

AMEGE" = My +20.34 +9.74(log W, — 2.5). (3.45)

An equivalent correction can be constructed with apparent magnitudes rather than absolute
magnitudes, A[3.6]°°" = A ﬁ%‘]’r, with an appropriate replacement of the zeropoint con-
stant in equation 3.45. The correction term commensurate with the fit in the third panel of
Figure 3.36 is:

A[3.6]" = AMEPE" = —(0.47 £ 0.11)[(1*"* — [3.6]""") + 0.77]. (3.46)

where both I%%* and [3.6]>"%% band magnitudes are in the AB system. I%"*< is the cor-
rected I-band apparent magnitude. We introduce a new color adjusted magnitude parameter

Cize) = [3.6]b%Fe — A[3.6]°l" where the distinct nomenclature emphasizes the composite
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nature of this pseudo-magnitude. Next, the analysis discussed in subsection 3.4.1.2 leading
to the construction of Figure 3.31 is repeated. Likewise, the adjustments are applied to the
calibrators with independently established distances and the procedures that lead to Fig-
ure 3.33 are repeated. The adjusted relations are shown in Figure 3.37. The new correlation

is described by the formula:
Mgy, o = —(20.34 4 0.08) — (9.13 £ 0.22)(logW},,,, — 2.5) (3.47)

The flattening of the adjusted relation comes about since redder systems move downward
and redder galaxies tend to have larger linewidths. The overall magnitude scatter in the new
relation is £0.44 magnitude (corresponding to a scatter in distance of 22%), down from 0.49
magnitude before adjustment, and comparable with 0.41 found at I band with an otherwise
comparable analysis (TC12). The comparable numbers for the zeropoint calibrators alone
are a scatter of 0.37 with the adjusted parameter C3 g}, 0.44 before the adjustment, and 0.36
at I band. The comparisons between [3.6] and I have some imprecision because the sample
sizes for the latter are 25% greater. The TFR parameters derived from alternative samples

and bandpasses are summarized in Table 3.7.
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Ficure 3.37: The ITFR after adjustments for the color term. Left: Color adjusted ap-
parent magnitudes translated to the relative distance of the Virgo Cluster. Right: Color
adjusted absolute magnitudes with the absolute distance scale established by the galaxies
with independent distances represented by large open circles.

3.4.1.4 Bias and an Hubble Constant Estimate

Willick (1994) showed that a small Malmquist bias exists in the use of the ITFR, although
reduced from the direct TFR by a factor of 6 in the situation he explored (Willick et al.,
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1995). Reducing the bias reflects on the Hubble Constant (e.g. Bottinelli et al., 1986). The

bias arises from two effects:

e sample selection departs from an idealized case of a flat magnitude limit because sam-
ples have been selected in blue bands and color terms translate to a slope in the limiting
magnitude in the infrared: slower rotators which tend to be bluer are favored for in-
clusion over faster rotators which tend to be redder (see Figure 3.38, left). It is the
so-called Gould’s effect (Gould, 1993),

e the shape of the galaxy luminosity function contributes to the bias because there are
more intrinsically fainter galaxies that scatter bright-ward through errors than intrin-
sically brighter galaxies that scatter faint-ward (Eddington, 1913). The bias increases
with distance as the effect of the exponential cutoff of the luminosity function plays an
increasing role while for the direct fit it is a constant whatever the completeness of the

cluster considered is (e.g. Teerikorpi, 1990, 1993).

The Schechter luminosity function is written:

o L —L
ﬁ)(ﬁ)aexp( I

(L) = ( ) (3.48)

where L* is a characteristic luminosity above which the distribution decreases exponentially,
« is the slope for ”small” luminosity L, and ®* specifies the normalization. Since % =
—0.4 In10 dM from the definition of the absolute magnitude 3.9, it can be rewritten as a

function of magnitude:

dL * *
(M) = @(L)| 7| = (L)0.4In10L = (0.4In10)®* 1004+ M=M") gy (1 (0-4(M" M)y
(3.49)
where M* o« —2.5logL*. This equation depends both on galaxy type and environment.

The amplitude of the bias from the two effects was explored with the calibration at I band
(TC12). The situation now with the [3.6] band sample is slightly worse than at I because the
wavelength interval from selection at B is larger. The bias analysis carried out in the case of
the I band calibration is repeated here, tailored to the current situation. We first combine the
Virgo, Fornax, and Ursa Major samples to improve statistics and include contributions from
a range of environments. This ensemble is described by a Schechter (1976) function with faint

end slope a = —0.9 and a bright end cutoff at M, —22. Then we randomly populate

x
3.6) —
an artificial TFR to match the observed [3.6] band[ re]lation in terms of slope and zeropoint,
drawing from the Schechter luminosity function. We fake a scatter of 0.4 magnitude. The
faint limit or cutoff is determined empirically to roughly obey the relation M[l?frg] =Cy—
2.70(logW}. . — 1.8) where Cy couples with distance. The artificial TFR and the cutoff for
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the nearest clusters is shown in the left panel of Figure 3.38. The dashed blue line indicates
the cutoff experienced at a distance modulus of 31. The cutoff, characterized by CYy, slides
to brighter (more negative) magnitudes linearly with increasing distance modulus. The
bias (AM)easured 1S determined at intervals of Cy corresponding to increasing distance.
More precisely, for each successive sample with a different cutoff Cy, the inverse slope is
determined and compared to the expected slope without any bias (namely, slope given to the
artificial TFR). Then (AM ) eqsured 18 the average deviation in magnitudes obtained with
the inverse slope from the fiducial relation with the expected slope where (AM);rye = 0 by
construction. The growth of the bias as a function of cutoff magnitude is seen in the right
panel of Figure 3.38. The solid curve, normalized to zero at a distance modulus g = 31 where
even the faintest of useful candidates are included, is described by the formula between bias,
b, and distance modulus, pu:

b= —0.0065(u — 31)? (3.50)

By comparison, the coefficient in the case of the I band analysis is —0.005. The letters at the
bottom of the figure are codes for the 13 calibrating clusters (see Table 3.5 to decipher codes)
and their horizontal placements indicate the respective sample limits and projection upward
gives the corresponding biases. These biases are recorded in Table 3.5 and are reflected in
the adjusted cluster moduli and distances. For a galaxy in the field, the corrected distance

modulus p€ can be expressed as

pe = (Crzg) — Meyy ) +0.0065[(Cz ) — My ) — 3117 (3.51)

The last column in Table 3.5 records the ”Hubble parameter” for each cluster: the velocity of
the cluster in the CMB frame divided by the measured distance. These quantities are plotted
against distance in Figure 3.39. A similar figure was presented as a summary of results from
the I band calibration with the same 13 clusters (TC12: distances compared in Table 3.7).
Here, as there, we see a large scatter in the Hubble parameter for the nearer clusters and
small scatter for the more distant clusters. It can be anticipated that the measures for the
nearer clusters are strongly affected by peculiar motions. The five clusters within 40 Mpc are
all part of our extended supercluster complex: either within the historic Local Supercluster or
the so-called Great Attractor region. The low scatter among the seven clusters more distant
than 50 Mpc (veprp > 4000 km sfl) suggests that the relative contributions of peculiar

velocities have a modest effect on redshifts at such large distances.

In the case of the I band calibration, the mean value of the Hubble parameter for the seven
most distant clusters was 75.1 £ 2.7 km s~! Mpc~! where the error is just the root mean
square scatter of the seven contributions. That value would increase to 75.8 with the revised
Large Magellanic Cloud distance from Monson et al. (2012). With the present calibration,

including the new Large Magellanic Cloud distance, the fit shown in Figure 3.39 gives a value
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of Hy = 73.8 with a root mean square scatter of 1.1 and a standard deviation of 0.4 km s~!

Mpc~! for the same seven clusters considered previously. If the fit is extended to include the
Pegasus Cluster at 44.5 Mpc then Hy = 74.4 and the scatter is 2.0 km s~ Mpc~!. The effect

of a deviant radial motion of 200 km s~! is illustrated in the figure as a function of distance.
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FIGURE 3.38: Left: Simulated TFR drawing randomly from a Schechter luminosity function
with slope « = —0.9 and cutoff M* = —22. The ITFR has slope —9.13 and scatter 0.4
magnitude. The dashed blue slanting line illustrates the color dependence at the faint limit
resulting from sample selection in the blue. Right: Bias (AM)easured as a function of
absolute magnitude limit which increases with distance. Black triangles: flat faint limit;
red circles: faint limit increasing with increasing linewidth in accordance with the blue line
in the left panel. Solid curve: the empirical bias fit b = —0.0065(u — 31)2. Letters at the
bottom are codes for the 13 calibrating cluster (see Table 3.5 for translation of codes). Their
horizontal positions indicate sample limits and vertical intercepts with the solid curve give
the corresponding biases.

The uncertainty from the fit in Figure 3.39 is given by the statistics of the deviations of
the seven contributions. It is unrealistically low. This error is what is expected if there is

1 are the norm, and given the

perfect Hubble expansion. If peculiar motions of 200 km s~
expected statistical errors on the distance D of each cluster (4-5 % according to Table 3.5),
the anticipated scatter around the mean Hubble value is +2.6 km s~ Mpc~!. We have used

the propagation of error formula giving in this case:

0H OH 1
errpg—y = \/(867’7"1;)2 + (8—Derrp)2 = 5\/2002 + (v x 0.045)2 (3.52)
v
where the error on the velocity v was assimilated to the peculiar motions and 0.045 = 7P

is a compromise between the 4-5 % statistical error on distances. The scatter is half this
value. We consider this to be our 1 ¢ random error. We have several sources of systematic

error. The dominant component, creating almost 4% uncertainty in Hg, comes from the
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uncertainty in the TFR zeropoint with just 26 calibrators. Combined with a small uncertainty
from the finite population of the template, the uncertainty in Hy associated with the TFR
calibration (assuming the zeropoint calibrator distances are perfect) is typically £2.9 km
s7! Mpc~!. We have used 1) the error on the zeropoint (and distance modulus p) 0.08
mag, 2) errp = erru@D from the definition of the distance modulus 3.10 and 3) formula
3.52 reduced to errors on distances D solely. However, the zeropoint calibrator distances
are not perfect. Freedman et al. (2012) and Riess et al. (2011) report that with new Milky
Way parallaxes for Cepheid stars and mid-infrared Spitzer photometry the uncertainty in the
Cepheid scale is in the range +[1.9 — 2.5] km s~! Mpc~!. The TRGB zeropoint calibration
which concerns 4 of the 26 calibrators, has similar or smaller systematics. The cumulative
systematic error (sum in quadrature) in Hp is £[3.5—3.8] km s7! Mpc~!. Combining random

and systematic components we find Hy = 73.8 £ 2.6(ran)+[3.5 — 3.8](sys) km s~! Mpc~1.
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F1GURE 3.39: Hubble parameter as a function of distance. The red solid line is a fit to
cluster points at distances greater than 50 Mpc (voap > 4000 km s=1). The fit gives
Hp =73.8+ 1.1 km s~ Mpc~!. Curved dotted lines illustrate deviations in velocity of 200
km s~! from the fit.

3.4.2 Robustness of the Calibration

In this section, the robustness of both the calibration method and the mid-infrared TFR
presented in the previous subsections is shown. The previously expounded calibration was
indeed presented at the time of its release as preliminary, especially because of the lack of

completeness of the calibrator sample. Still, this subsection confirms this first calibration.
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Magnitudes used in this subsection come from ARCHANGEL (Cosmicflows with Spitzer survey
completed in the mean time). They are combined with this time S*G-pipeline (magnitudes
publicly released in the mean time) or CHP-pipeline magnitudes (as earlier) or both when

they are available.

3.4.2.1 Increasing the Calibrator Sample and Changing the Selection Band

The previously derived template TFR made use of 213 galaxies in 13 clusters. The zero point
calibration was given by 26 additional galaxies. The inverse fit was used to calculate the slope
of the relation and a very small correction was computed to remove a bias. The same analysis
is done here but using an updated sample of template and zeropoint calibrators. This sample

is improved with respect to the previous one by two aspects:

e the number of calibrators is increased from 213426 to 287+32. The list of these
calibrators and characteristics are given in the second table (Table B.2) of Appendix
B,

e galaxies are now selected in K Band which decreases the selection bias. The selection
of calibrators is extended to be complete to K=11.75 magnitude, the limit of the 11.75-
2MASS Redshift Survey (Huchra et al., 2012)

This new set of calibrators follows the same rules as the previous one. Typically, candidates
are chosen out of a projection-velocity window, morphological types earlier than Sa are
excluded, profiles with visible confusion or tidal disruption are disregarded and inclinations
must be greater than 45°. Zeropoint calibrators also need to have a very well known distance

from Cepheid or Tip of the Red Giant Branch measurements.

Then, we proceed exactly as described in subsection 3.4.1:

e an inverse TFR is fitted to each one of the clusters separately. Figure 3.40 left shows the
example of the Virgo cluster. Parameters for every cluster are given in Table 3.6. The
inverse fit assumes errors only in linewidth to obtain results close to free of Malmquist
magnitude selection bias. Yet, there will be a tiny bias residual because of the bright
end cutoff of the luminosity Schechter function although it should be somewhat smaller
than for the previous calibration where, in addition, the selection was made in the B

band. We investigate this bias relic at the end of this subsection,
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FIGURE 3.40: Left: Inverse Tully-fisher relation at 3.6 microns for the Virgo cluster in
dotted line. The solid line stands for the inverse Tully-Fisher of the template cluster. Right:
Universal inverse TFR at 3.6 microns obtained with 287 galaxies in 13 clusters. Numbers of
galaxies selected for the calibration per clusters are given in front of clusters’ names while
distance modulus differences between each cluster and Virgo are visible after clusters’ names.

e because slopes are quite similar between clusters in Table 3.6, individual fits are con-
sistent with the postulate of a universal TFR. Thus the 13 clusters are combined into
one template cluster. Virgo is taken as the reference cluster and each one of the 12
other clusters is shifted to be on the same scale. Three by three, clusters are inserted
into the template and offsets between them and Virgo are found by an iterative process
which relies on least squares fits of the inverse TFR. Convergence is quick. We obtain a
slope of -9.77 £+ 0.19, insignificantly different from the previous slope -9.74 confirming
the robustness of the previous calibration and of the method. The universal slope and

the offsets with respect to Virgo are shown on Figure 3.40 right,

e the zeropoint scale is set by the distance modulus of the Large Magellanic Cloud,
18.48 + [0.04-0.07] magnitude (Monson et al., 2012; Riess et al., 2011). Then, the 32
zeropoint calibrators give the zeropoint of the universal TFR assuming the slope of the
cluster template. Their correlation is visible on Figure 3.41 left where now absolute
magnitudes replace apparent magnitudes. The zeropoint of the TFR is the difference
between the zeropoint given by zeropoint calibrators on Figure 3.41 left and by Virgo
in Figure 3.40 right: -20.31 £+ 0.09. The zeropoint is once again insignificantly larger
than that of the previous calibration, -20.34,

e the universal relation at 3.6 microns is visible on Figure 3.41 right and is given by a

slightly updated version of the previous calibration 3.44:

Mih® = —(20.31 £ 0.09) — (9.77 + 0.19) (log W, — 2.5) (3.53)
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with a scatter of 0.54 for the 13 clusters and 0.45 for the 32 zeropoint calibrators.
The causes of such a scatter have already been discussed. We will again apply a color
correction in the next subsection to confirm the color corrected TF relation derived

before and the robustness of such a process.
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FIGURE 3.41: Left: Inverse TFR for the 32 zeropoint calibrators with distances obtained
with Cepheids (circles) or Tip of the Red Giant Branch (squares). The slope of the solid line
is given by the luminosity-linewidth correlation of the template cluster while the zeropoint
is obtained with the least squares fit to the 32 galaxies. The zeropoint is set at logW¢ .
= 2.5. Right: Inverse Tully-Fisher relation at 3.6 microns with the slope built out of 287
galaxies in 13 clusters and the zeropoint set by 32 galaxies with very accurate distances.

3.4.2.2 Again a Color Term

Because of the increased number of data, we double check the color term deriving a new
estimate. The straight line fit given in Figure 3.42 left is again a least squares minimization
with respect to the difference in magnitude of a galaxy from the derived TFR. In the [3.6]
band, a galaxy is offset from the TFR by:

AMER" = MP"5¢ 1+20.31 4 9.77(logW,y,, — 2.5)

= —(0.52 £ 0.10)[(1>*F — [3.6]>F%) 4 0.73) (3.54)

Note that I Band magnitudes have been shifted from the Vega to the AB system by 0.342
magnitude. Slope and zeropoint are slightly smaller than those obtained before (-0.47 and

-0.36) but within the uncertainty. Still, for completeness, we use this new estimate. Color
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adjusted parameters, Cz3¢4 = [3.6]»%Fa _ A[3.6]l" | are derived accordingly and then, con-
sidered as pseudo-magnitudes to produce the ”control” color corrected calibration. The pro-
cedure described in the previous subsection is reiterated with a number of galaxies slightly

decreased due to a lack of I Band measurements (273+31).

This color corrected calibration is visible on Figure 3.42 right and given by:
Mo = —(20.31 £ 0.07) — (9.10 4 0.21) (logW . — 2.5) (3.55)

with 0.45 and 0.37 as new scatters. A summary of the derived parameters for this TFR are
given in Table 3.7 as well as in Table 3.8 along those of the previous calibration and those
of TC12 for the I Band. Although a direct comparison has some imprecision because of the
different galaxy samples, the agreement is excellent. The robustness of the procedure and
of the derived TF relations is confirmed. Namely, no major bias affects the relation as it is

almost independent of the calibrator sample in terms of completeness and band selection.
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FIGURE 3.42: Left: Deviation from the universal inverse TFR as a function of I®%* -
[3.6]>%%@ color. The solid line stands for the best fit while the dotted lines represent the
95% probability limits. Red galaxies tend to lie above the relation while blue galaxies are
preferentially below the relation. Right: Relation for pseudo-absolute magnitudes with the
zeropoint set by galaxies with independent very accurate distance estimates (open circles).

3.4.2.3 Re-derivation of the Bias

Although all TFRs derived are again inverse fits (errors solely in linewidths), a small Malmquist
selection bias residual still remains. The situation is improved in this case because galaxies
are selected in K (instead of B) band. This change in wavelength selection reduces the inter-

val between sample selection and photometry bands. However, because of the morphology
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of the luminosity function, the amplitude of the bias still increases with distance as the se-
lection limit approaches the exponential cutoff of the luminosity function. Consequently, the
bias analysis is reiterated but without consideration of a faint end cutoff color dependence.
Virgo, Fornax and Ursa Major are this time modeled with a Schechter (1976) function with
a faint end slope of -1.0 and a bright end cutoff at -22. Then, a random population is built
out of this Schechter function to match the TFR at 3.6 microns in terms of slope, zeropoint
and scatter. The bias is estimated as the average deviation of sampled distances from the
input TFR for successive brighter cutoffs but we take the opposite convention with respect
to before for conveniency. The corresponding curve normalized to zero at a distance modulus

of 31 is shown in Figure 3.43 and can be written:
bias = 0.004(p — 31)3 (3.56)

where (1 is the distance modulus. The coefficient 0.004 is smaller than before (0.0065) because
of the previous color dependence. However, the 2.3 exponent is larger than before because
of a larger assumed scatter (0.45 against 0.4) which confirms that the scatter dominates the
bias relic (Giovanelli et al., 1997a). At the bottom of Figure 3.43, letters standing for the 13
clusters are positioned at their cutoffs while the corresponding biases are given by projection
onto the curve. Bias corrections for each cluster are given in Table 3.7 alongside the letters
to match them with the names of clusters. Corrections are already included in moduli and
distances given in this same table. As for an individual galaxy, the bias corrected distance
modulus p is obtained by adding 0.004(y — 31)%3. For completeness, the bias correction for

the non color adjusted relation, obtained similarly, is given by bias = 0.006(u — 31)%3.

Distances obtained for the 13 clusters are compared with previous estimates in Table 3.8.
Overall distances are in good agreement with each other and within uncertainties. Combining
these distances with velocities with respect to the cosmic microwave background, but this
time corrected for a cosmological model assuming €2, = 0.27 and Q) = 0.73 with the
approximative formula in Tully et al. (2013) (to account for the fact that the real total
velocity is given by formula 3.7), it is possible to derive a "Hubble parameter” for each
cluster. These values are given in Table 3.7 and plotted in Figure 3.44. A straight line fit
to the logarithms of these parameters for clusters at a distance greater than 50 Mpc gives
a Hubble value of 75.0 & 3.9 km s~' Mpc~! where 3.9 correspond to twice the statistical
scatter. Proceeding with equation 3.52 as before, we found 2.0 km s=! Mpc~!. Then 2.0
stands for the 1 ¢ random error and the cumulative systematic error is the same as before
(the only change is the error on the zeropoint that is insignificantly decreased from 0.08 to
0.07). Then, combining all the uncertainties Hy = 75.0 £ 2.0 (ran) %+ [3.5-3.8] (sys) km
s~! Mpc~!. This value is somewhat different to that obtained before principally because of
the use of better estimates of total velocities. Still, first and second estimates are within

uncertainties and differ only at the level of 1.2 km s~! Mpc~!. The change in total velocities
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brings the Hubble Constant estimate close to the value found in the I Band (75.1) and to
the value found including the sample of supernovae (75.2, that we derived using the previous

calibration and which is presented in the next subsection, 3.4.3).
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FIGURE 3.43: Bias measured as a function of absolute magnitude cutoff. The dotted and
solid black curves are fits to the blue triangles and red filled circles which are bias estimates
at successive cutoffs for the [3.6] TF calibration and for the color adjusted TF relation.
The formulas are 0.004(y — 31)%3 for the red curve and 0.006(u — 31)2- for the blue curve.
Letters at the bottom stand for the 13 clusters given in Table 3.7. They are positioned
at the magnitude limits of clusters and their vertical projections onto the curve give the
corresponding biases. The bias for an individual galaxy with a measured modulus is given
by projection onto the curves from the top axis.
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FIGURE 3.44: Hubble parameter as a function of distance. The solid red line at 75.0 £+ 3.9
km s~! Mpc~lis a fit to the logarithms of cluster ”Hubble parameters” at distances greater
than 50 Mpc. Dotted lines show the expected values for a deviation of + 200 km s~! from
the mean Hubble flow.
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VUmod €V N Slope 7P scatter ZPc.oior scatter bias DM Dist V/D
V 1495 37 30-30 -9.884+0.73 10.50£0.12 0.64 10.63+0.10 0.55 0.00 30.94+0.12 15.44+0.9 97.04+5.9
F 1358 45 15-15 -9.5640.63 10.77+£0.12 0.46 10.85+0.11 0.42 0.00 31.16+0.13 17.1+1.0 79.6£5.4
U 1079 14 35-34 -9.32+0.52 10.74+0.11 0.64 10.80+0.10 0.57 0.00 31.11£0.12 16.7£0.9 64.74+3.7
An 3198 74 18-13 -10.074+1.33 12.374+0.12 0.52 12.48+0.07 0.27 0.05 32.84+0.10 37.0£1.7 86.5+4.5
Ce 3823 82 14-12 -12.924+1.74 12.51+£0.16 0.60 12.584+0.16 0.55 0.00 32.89+0.17 37.8+3.0 10148.2
Pe 3062 78 16-16 -9.844+1.03 12.91+£0.14 0.55 12.944+0.11 0.44 0.01 33.26%£0.13 44.9+£2.7 68.2+4.4
H 4088 72 25-19 -9.1240.94 13.38+£0.14 0.71 13.52+0.13 0.55 0.01 33.84+0.14 58.6+3.8 69.7+4.7
Pi 4759 39 52-52 -11.024+0.75 13.77+£0.07 0.50 13.764+0.06 0.45 0.03 34.104+0.09 66.14+2.7 72.0£3.0
Ca 5059 82 12-12 -11.65+1.02 13.744+0.11 0.39 13.75+£0.10 0.31 0.02 34.084+0.11 65.5+£3.3 77.3+4.1
Co 7370 76 23-23 -7.97+0.67 14.42+0.10 0.49 14.40+0.09 0.42 0.07 34.784+0.11 90.4+4.6 81.6+4.2
A4 7228 97 7-7  -8.00+£1.38 14.474+0.11 0.48 14.46+0.09 0.42 0.15 34.92+0.12 96.4+5.3 75.0+4.3
Al 6969 93 20-20 -9.32+0.92 14.534+0.08 0.21 14.53+£0.07 0.19 0.10 34.94£0.10 97.3£4.5 71.6+3.4
A2 8938 164 20-20 -9.55+0.97 14.82+0.11 0.50 14.88+0.10 0.43 0.09 35.284+0.12 113.846.3 78.6+4.6

TABLE 3.6: Properties of the Cluster Fits (Robustness): (1) Cluster name (V Virgo, F
Fornax, U Ursa Major, An Antlia, Ce Centaurus30, Pe Pegasus, H Hydra, Pi Pisces, Ca
Cancer, Co Coma, A4 Abell 400, A1 Abell 1367 and A2 Abell 2634 and 2666, (2) Mean
velocity of the cluster with respect to the CMB corrected for the cosmological model, km
s™1, (3) Error on the velocity, km s™1, (4) Number of studied galaxy per cluster for the
original TFR, and for the color-corrected TFR, (5) Slope of the inverse fit, (6) Zero point
relative to Virgo’s zeropoint, no color adjustment, mag, (7) Scatter, no color adjustment, (8)
Zero point relative to Virgo’s zeropoint after color adjustment, mag, (9) Scatter after color
adjustment, mag, (10) Bias, mag, (11) Bias corrected Distance Modulus, mag, (12) Cluster
Distance, Mpc, (13) Hubble parameter, km s~ Mpc~1.

Sample Ngal Slope Scatter Zero Point
I template 267 -8.81+0.16 0.41 —
I zeropoint 36 - 0.36  -21.3940.07 (Vega)

[3.6] template 213 -9.74+£0.22  0.49 -

[3.6] zeropoint 26 - 0.44 -20.34+0.10 (AB)

Mc template 213 -9.134+0.22 0.44 -

M¢ zeropoint 26 - 0.37 -20.34+0.08 (AB)
Control [3.6] template 287 -9.77+0.19  0.54 -
Control [3.6] zeropoint 32 - 0.45 -20.31+0.09 (AB)
Control Mg template 273 -9.1040.21 0.45 -
Control M¢ zeropoint 31 - 0.37 -20.31+0.07 (AB)

TABLE 3.7: TFR parameters in TC12 for the I Band obtained with the B band selected
calibrator sample, in subsection 3.4.1 for the [3.6] calibration derived with part of the B
band selected calibrator sample and in subsection 3.4.2 for the calibration computed with

K band selected calibrators.
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Cluster Control Calib. TC12 Cluster Control Calib. TC12
Virgo 15.440.9 14.74£0.9 15.9£0.8 Pisces 6643 65+3 6442
Fornax 17.1+1.0 17.44+1.2 17.3£1.0 Cancer 66+3 67+4 6543
Ursa Major 16.7+0.9 18.0£0.9 17.44+0.9 Coma 90+5 95+6 9044
Antlia 37+2 37+2 37+2 Abell 400 96+5 97+5 9445
Centaurus 38+3 39+4 38+3 Abell 1367 9745 96+6 9445
Pegasus 4543 4543 4343 A 2634/66 114+6 11247 /
Hydra 59+4 56+4 59+4 Abell 2634 / / 12147

TABLE 3.8: Comparisons between cluster distances from subsections 3.4.2, 3.4.1 and TC12:
(1)-(4) Cluster name, (2)-(5) control calibration distance, Mpc, (3) calibration distance, Mpc
(4) TC12 distance, Mpc

3.4.3 Hubble Constant & Supernovae of Type Ia

This subsection builds on a calibration of the SNla absolute distance scale begun with a
core of distances based on the correlation between galaxy rotation rates and optical I band
photometry. This work extends the calibration to the use of mid-infrared photometry acquired
at 3.6 pum with Spitzer Space Telescope. The great virtue of the satellite observations is
constancy of the photometry at a level better than 1% across the sky. This calibration is
based on 39 individual galaxies and 8 clusters that have hosted well observed SNIa. The
3.6 pum calibration at time of this work was not yet as extensively based as the I band
calibration but was already sufficient to justify a report. Regardless, it has been shown to
be robust in the previous subsection. Distances based on the mid-infrared photometry are
insignificantly different than reported at I band. The Ic band result is confirmed with only
a small adjustment. Incorporating a 1% decrease in the Large Magellanic Cloud distance,
the study indicates Hy = [75.2 — 75.9] £ 3.3 km s~! Mpc~1.

In subsection 3.1.3, the SNIa method was expounded as the potential supplier of the best
Hubble parameter estimate once the zeropoint scale is set. Independent distances are needed
to the hosts of low redshift SNIa (Folatelli et al., 2010; Riess et al., 2011, 2009) to establish
that absolute scale. The Cosmicflows project had already contributed to the establishment of
the SNIa scale (Courtois and Tully, 2012b) primarily using constraints imposed by distances
acquired with the correlation between the luminosities and rotation rates of galaxies (Tully
and Fisher, 1977), the Tully-Fisher relation (TFR). Optical Ic band luminosities were used
in that study. Now there is the opportunity to refine the calibration with the use of pho-
tometry at 3.6 pum obtained with Spitzer Space Telescope (Werner et al., 2004). The great
advantage with Spitzer observations is photometric integrity to better than 1% across the

sky. Additional advantages are minimal obscuration either within hosts or from our Galaxy,
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magnitude measures approximating total magnitudes because of low backgrounds, and fluxes
dominated by light from old stars which presumptively correlates with galaxy mass. Roughly
4000 galaxies have been observed with Spitzer and at the time of this work already, 39 galaxies
had been observed that have hosted SNIa and are appropriate for an application of the TFR
methodology. The present discussion parallels the paper by Courtois and Tully (2012b) with
the important difference being the use of mid-infrared [3.6] photometry in place of optical

I photometry.

Three parameters are needed to obtain distances with the TFR: a luminosity, a measure of
rotation, and an inclination to account for projection effects. Our sample in this study is
a subset of the sample used for the same purpose of a determination of SNIa host absolute
luminosities by Courtois and Tully (2012b). Consequently, we use the same information
on rotation rates, from HI profile information, and inclinations, from optical band imaging.
The difference in this work is the replacement of /¢ luminosities with [3.6] luminosities from
observations using Spitzer Space Telescope IRAC channel 1. At the time of this work we
had 39 galaxies (close to our current number of 45) that have hosted SNIa from the list
of 56 galaxies given by Courtois and Tully (2012b). Their parameters are accumulated in

Table 3.11. Using the TFR, we obtain their distance estimates.

Distance measurements obtained via the TFR are individually uncertain. Averaging over
a cluster provides a more robust distance so we include clusters in our analysis. Thirteen
clusters were used to form the calibration template for the [3.6] band TFR so there is a
good distance determination for each of these clusters. Suitably observed SNIa have been
observed in eight of these clusters. Pertinent information is provided in Table 3.9. With the
two nearest clusters (Virgo and Fornax) high quality distance measures are available from
Cepheid and Surface Brightness Fluctuation observations and these measures contribute to
(indeed, dominate) the values of the moduli in column 3 of the table. The averaging over
multiple contributions follows Courtois and Tully (2012b). When there were more than one
SNTIa observed per galaxy or cluster, or more than one observation per SNla, we take averaged

SNIa modulus estimates.

Distances determined with the TFR enable us to set a zeropoint for the SNIa distance scale.
Consideration of a large sample of SNIa in the redshift range 0.03 < z < 0.5 leads us to an
estimate of the Hubble Constant. Courtois and Tully (2012b) discuss the accumulation of a
sample of SNIa from five sources (Amanullah et al., 2010; Folatelli et al., 2010; Hicken et al.,
2009; Jha et al., 2007; Prieto et al., 2006) with scale shifts as appropriate to match the scale
of the last of these sources, a compilation referred to as UNION2. Relevant distance moduli
are gathered from these five sources and recorded in Tables 3.9 and 3.11 with averaging in
the case of clusters with multiple recorded SNIa events. Moduli drawn from the tables are

compared in Figure 3.45.
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FIGURE 3.45: Comparison between moduli derived with SNIa and with ”other” methods:
the TFR, with Cepheid and Surface Brightness Fluctuation supplements. The comparisons
include 39 individual galaxies with TFR measurements (filled points) and eight clusters
(open squares). The straight line is a weighted fit to the 39 galaxies with TFR distances
and six of the eight clusters.

The straight line in this figure is a fit, assuming slope unity, to the 39 individual galaxies
each with weight 1 and six clusters each with weight 9. The locations of two clusters are
deviant (Centaurus at 5 o under the fit in Figure 3.45 and A1367 at 3 o over the fit).
These two clusters were deviant and rejected from the optical SNIa calibration (Courtois
and Tully, 2012b) and for consistency in the comparison are again rejected from the fit.
The offset between the newly determined distance moduli (other) and the SNIa moduli on
the UNION2 scale is pother — sy = 0.58. The comparable fit with /o band material was
shown in Figure 5 of Courtois and Tully (2012b). The offset in that earlier case was 0.56.
It is instructive to compare results using only identical galaxies and clusters rather than
using the ensemble. Figure 3.46 compares distance moduli measured alternatively with mid-
infrared [3.6] photometry and optical I photometry observed from the ground, using the
same line width and inclination parameters. The comparison involves the 13 clusters used to
establish the TFR template at I (Tully and Courtois, 2012) and [3.6] (this work) and the 39
individual galaxies that have hosted SNIa (Courtois and Tully (2012b) and this work). With
the individual SNIa hosts there is a hint of an increase in the difference between moduli for

the more distant cases but the trend is not statistically significant. No such trend is seen
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with the clusters. Overall the [3.6] moduli are greater than the /¢ moduli by 0.02 £ 0.02
mag. The difference of 1% in distance is not statistically significant. The [3.6] calibration
increases distances by 1% so reduces Hg by 1%. It is to be noted, though, that the new
mid-infrared calibration is tied to a distance to the Large Magellanic Cloud that is 1% closer
than assumed in I Band. With a common choice of Large Magellanic Cloud distance, the

[3.6] band distances are 2% greater than those at I band.
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FIGURE 3.46: Differences in TFR distance moduli measured at [3.6] and at Io plotted
against the [3.6] moduli. Filled points: the 39 galaxies that have hosted SNIa ; Open
squares: the 13 TFR template calibrator clusters.

The final calibration of the SNIa distance scale in the I~ band analysis of Courtois and Tully
(2012b) leads to the determination of the Hubble Constant shown in their Figure 8. It is
based on a fit over the redshift range 0.03 < z < 0.5 to the UNION2 sample (Amanullah
et al., 2010), with cosmological parameters €, = 0.27, and Q, = 0.73. The result obtained
in that paper was Hy = 75.943.8 km s~! Mpc~!. In the present work, distances are decreased
by 1% due to a revised Large Magellanic Cloud modulus and increased 2% with the switch
from optical I¢ to mid-infrared [3.6] magnitudes. The present calibration is in statistical
agreement with the earlier work though formally gives a result 1% lower. An error budget
was discussed by Courtois and Tully (2012b). Their 5% uncertainty is a combination of
the 3% error budget discussed at length by Freedman and Madore (2010); Freedman et al.
(2011); Riess et al. (2011) and 4-4.5% due to some concerns regarding 1) the scatter in
SNIa measurements, 2) the effect of peculiar velocities which are not null although peculiar
velocities are low with respect to the mean expansion at such distances and, 3) the absence
of all-sky consistency. Uncertainties are reduced with this new work in two respects. First,
there is increased confidence in the absolute scale set by the distance to the Large Magellanic
Cloud (Freedman and Madore, 2010). Second, the mid-infrared calibration of the TFR

removes latent concerns about possible photometric differences in different parts of the sky.
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These two improvements warrant a decrease in our total error estimate to reach 4.3-4.5%,
the major part of the decrease is due to the all-sky consistency. As a result, our best estimate
for the Hubble Constant was at that time Hg = 75.2 4 [3.2 — 3.4] km s~ MpcL.

However, as mentioned before, at the time of this work only 39 hosts of SNIa had been
observed with Spitzer. Now, 45 host galaxies have all the required parameters to be com-
pared with SNIa measurements. The new information extends the previous work by only six
galaxies and we do not expect much change with regard to the offsets between SNIa and TF
distance moduli estimates, neither do we between I and [3.6] band measurements especially
because the calibration at 3.6 um has been shown to be very robust. Still, for the sake of
completeness, Figure 3.47 shows the results when the six additional galaxies are included in
the sample and the newest TFR is used to derive moduli. Characteristics of these galaxies
are in Table 3.12 in red, exactly like the color they have been attributed in the Figure, along-
side the slightly different magnitudes and moduli for all the other host galaxies with the last

calibration. For the clusters, new parameters are alongside the first parameters in Table 3.9.
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FIGURE 3.47: Left: Comparison between moduli derived with SNIa and with ”other” meth-
ods (TFR, with Cepheid and Surface Brightness Fluctuation supplements). The solid line
is the weighted fit to the 45 galaxies (filled points) with TFR distances and six of the eight
clusters (open squares). Right: Differences in TFR distance moduli measured at [3.6] and
at Ic in function of the [3.6] moduli. The 45 galaxies that have hosted SNIa are represented
by filled points while the open squares stand for the 13 TFR template calibrator clusters.
In both panels, red points stand for the late obtained photometric data.

Overall, the offset between SNIa distance moduli and other distance moduli is unchanged
while the offset between TF distance moduli from the [3.6] and I band is slightly decreased
to zero but that is within the uncertainty of the previously derived offset (1%=+1%). The
trend of increase in the difference between the two band moduli is more pronounced than
before. This is probably due to the fact that, in the latest calibration, the bias correction

(with a higher exponent but a smaller multiplicative coefficient) increases first more slowly
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than the first derived bias correction with the distance but then, around 32.6-32.7 mag, roles
are reversed. Because clusters as their are less affected by the change of sign observed in
the difference between the two bias corrections due to their sole exponents, the offset was
computed giving a higher weight to these latter. The [3.6] band distances are greater than
the T band distances but only by 1% due to the Large Magellanic Cloud distance estimate
change. Regardless, the Hubble Constant estimate about 75-76 km s~ Mpc~! we gave before

is still correct. Table 3.10 recapitulates Hubble Constant estimates of this section.

Cluster voMB Vmod — Mother1 Hother 2 SN SNIa names
Virgo 1410 1495 31.08"40.06 31.08*£0.06 30.2740.10 1991bg, 1994D, 1999cl, 2006X
Fornax 1484 1358 31.47*£0.06 31.47*4+0.06 30.70+0.14 1980N, 1992A
Cen30 3679 3823 32.93+0.20 32.89+0.17 33.3340.20 2001cz
Pisces 4779 4759 34.05+0.11 34.0740.09 33.4440.09 1998ef, 1999¢j, 2000dk, 2001en, 2006td
Cancer 4940 5059 34.1440.13 34.064+0.11 33.4940.20 1999aa
Coma 7194 7370 34.90+0.13 34.71£0.11 34.56+0.14 2006cg, 2007bz
A1367 6923 6969 34.9240.14 34.84+0.10 33.75£0.20 2007ci
A2634/66 8381 8938 35.24+0.13 35.19+0.17 35.174+0.20 1997dg

TABLE 3.9: Properties of clusters with SNIa: (1) Cluster name, (2) Mean velocity of the
cluster with respect to the CMB, km s~!, (3) Mean velocity of the cluster with respect to
the CMB corrected for the cosmological model, km s™1, (4) TFR distance modulus corrected
for bias, mag, (5) Latest TFR distance modulus corrected for bias, mag, (6) SNIa distance
modulus, mag, (7) SNIa identifications. *Virgo and Fornax are special cases discussed in
the text.

Computation from Ho (km s™" Mpc™1)

1. I Calib. 75.1 £ 2.7 (ran) (75.8%)

2. [3.6] Calib. 73.8 £ 2.6 (ran) £ [3.5-3.8] (sys)
3. [3.6] Control Calib. 75.07 4 2.0 (ran) =+ [3.5-3.8] (sys)
4. I Calib. 4+ SNIa 75.9 + 3.8

5. [3.6] Calib. + SNIa 75.2 + [3.2-3.4]

6.

[3.6] Control Calib. + SNIa 75.9 £ [3.2-3.4]

TABLE 3.10: Hubble Constant Estimates: 1.,2.,3. obtained with distance measurements
derived from the TFRs in I band (Tully and Courtois, 2012) and at 3.6 pm (subsections
3.4.1, 3.4.2), 4. obtained with scaling the type Ia supernovae method (Courtois and Tully,
2012b) using distance moduli derived from the TFR in I band among others, 5.,6. obtained
with comparisons between distance moduli derived from the I and [3.6] band TFRs and the
scaling of the type Ia supernovae method (subsection 3.4.3). * adopting a closer (by 0.02
mag) distance modulus for the Large Magellanic Cloud, ' using velocities with respect to
the cosmic microwave background corrected for the cosmology.
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Name PGC SNIa VCMB [3.6]b’i’k’“ Cls.q) MC[M] UTF SN
UGC00646 3773 1998ef 5011 389 12.89 12.88 -21.16 34.10 33.25
PGC005341 5341 1998dm 1663 236 1291 12,79 -19.18 31.97 32.24

NGC0673 6624 1996bo 4898 445 12.04 12.19 -21.69 33.94 33.23
NGC0958 9560 2005A 5501 584 11.09 11.24 -22.77 34.07 33.82
ES0O300-9 11606  1992bc 5918 323 14.69 14.67 -20.42 35.21 3391
NGC1148 13727  2001el 1092 386 10.05 10.05 -21.13 31.18 30.61
UGC03329 17509  1999ek 5277 525 12.13  11.89 -22.35 34.30 33.53
UGC03375 18089  2011gc 5792 535 11.82  11.78 -22.42  34.28 33.48
PGC018373 18373 2003kf 2295 234 12.72  12.69 -19.15 31.84 31.85
UGC03432 18747  1996bv 5015 289 14.20 14.12 -19.98 34.17 33.32
UGC03576 19788  1998ec 6013 393 13.03 13.07 -21.20 34.34 34.07
UGC03370 20513 2000fa 6525 371 13.48 13.56 -20.97 34.61 34.21
UGC03845 21020 1997do 3136 257 13.35 13.39 -19.52 3293 32.67
NGC2841 26512  1999by 804 650 8.68 8.66 -23.20 31.86 30.23
NGC3021 28357 1995al 1797 303 11.68 11.84 -20.17 32.02 31.73
NGC3294 31428 1992G 1831 431 10.77 10.84 -21.57 32.42 31.65
NGC3368 32192  1998bu 1231 428 8.80 8.89 -21.54 3043 29.35
NGC3370 32207  1994ae 1609 312 11.68 11.81 -20.29  32.11 31.58
NGC3627 34695 1989b 1061 385 8.33 8.40 -21.12 29.54 29.11
NGC3663 35006  2006ax 5396 443 12.44 12.41 -21.68 34.14 33.67
NGC3672 35088 2007bm 2223 399 10.59 10.68 -21.26 31.94 31.62
NGC4501 41517 1999cl 2601 570 8.84 890 -22.68 31.58 30.35
NGC4527 41789 1991T 2072 362 9.34 9.56 -20.88 30.44 29.84
NGC4536 41823 1981B 2144 341 9.81 9.96 -20.64 30.60 30.18
NGC4639 42741 1990N 1308 336 11.18 11.23 -20.58 31.82 31.07
NGC4680 43118  1997bp 2824 237 12.09 12.23 -19.20 31.43 31.97
NGC4679 43170  2001cz 4935 427 11.83 11.90 -21.53 3347 33.33
NGC5005 45749 1996ai 1178 601 9.05 9.11 -22.89 32.00 30.96
ESO576-040 46574  1997br 2385 170 13.82 13.69 -17.88 31.57 31.32
PGC47514 47514  2007ca 4517 285 14.03 13.89 -19.93 33.87 33.78
NGC5584 51344  2007af 1890 267 11.75 11.74 -19.67 31.41 31.31
1C1151 56537 1991M 2274 242 12.91 12.88 -19.28 32.18 32.58
NGC6063 57205  1999ac 2950 308 13.06 13.01 -20.24 33.27 3241
UGC10738 59769  2001cp 6726 585 12.52  12.61 -22.78 35.51 34.23
UGC10743 59782 2002er 2574 206 12.74 1283 -18.64 31.48 32.10
NGC6962 65375  2002ha 3936 633 11.11 11.19  -23.09 34.35 33.10
1C5179 68455 1999ee 3158 444 10.86 11.15 -21.69 32.86 32.59
NGCT7329 69453  2006bh 3143 461 11.24 11.36 -21.83 33.23 32.61
NGC7448 70213  1997dt 1838 316 11.37 11.44 -20.34 31.78 3249

TABLE 3.11: Properties of individual SNTa-host galaxies: (1) Common name, (2) PGC
name, (3) SNIa identification, (4) Mean velocity of host galaxy with respect to the CMB, km
s~1, (5) Corrected rotation rate parameter corresponding to twice the maximum velocity, km
s~1, (6) Corrected 3.6 um magnitude in the AB system, mag, (7) Color adjusted magnitude,
mag, (8) Absolute color adjusted magnitude, mag, (9) TFR distance modulus corrected for

bias, mag, (10) SNIa distance modulus, mag.
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Name PGC  voms  Vmoa  Wma [3.6]"°%%  Cie Moy,  pre  psw
UGC00139 963 3975 3626 311 13.43 13.51 -20.25 33.80 33.33
UGC00646 3773 5348 4898 389 12.85 12.84 -21.13 34.02 33.82
PGC005341 5341 1964 1601 236 12.84 12.72 -19.15 31.88 32.82
NGC0673 6624 5241 5051 444 11.96 12.15 -21.66 33.85 33.81
NGC0958 9560 5732 5623 592 11.09 11.23 -22.79 34.08 34.40
UGC01993 9618 8005 7967 485 12.97 1294 -22.00 35.04 35.19

1C1844 10448 6846 6693 309 13.55 13.23  -20.22 3348 34.52
ESO300-009 11606 6045 6017 321 14.67 14.64 -20.37 35.12 34.46
PGCO11767 11767 8701 8671 422 13.16 13.35 -21.46 34.89 35.39
NGC1448 13727 1194 1062 388 9.97 9.99 -21.12 31.11 31.19
UGC03329 17509 5253 5668 524 11.74 11.65 -22.31 34.01 34.13
UGC03375 18089 5783 5879 534 11.63 11.67 -22.38 34.10 34.06
PGC018373 18373 2168 2281 239 12.45 12,54 -19.22 31.76 32.43
UGC03432 18747 4996 5080 289 13.93 1396 -19.96 33.96 33.93
UGC03576 19788 5966 6009 392 1294 13.01 -21.17 34.23 34.65
UGC03770 20513 6378 6646 371 13.48 13.55 -20.95 34.57 34.79
UGC03845 21020 3034 3166 257 13.33 13.36 -19.50 32.88 33.21
NGC2841 26512 637 810 650 8.63 8.61 -23.16 31.77 30.80
NGC3021 28357 1515 1781 302 11.64 11.82 -20.14 31.96 32.26
NGC3294 31428 1567 1838 431 10.76 10.82 -21.54 3237 32.23
NGC3368 32192 906 1332 427 8.77 8.86 -21.50 30.37 29.93
NGC3370 32207 1367 1622 311 11.69 11.81 -20.26 32.07 32.09
NGC3627 34695 723 1454 384 8.26 8.36 -21.08 29.44 29.69
NGC3663 35006 5040 5389 443 12.42  12.37 -21.65 34.07 34.24
NGC3672 35088 1860 2210 399 10.57 10.66 -21.23 31.89 32.20
NGC4501 41517 2268 1740 570 8.75 8.85 -22.64 31.49 30.93
NGC4527 41789 1736 2090 361 9.32 9.56 -20.84 30.39 30.42
NGC4536 41823 1808 2162 341 9.81 9.95 -20.61 30.56 30.75
NGC4639 42741 1003 1740 348 11.25 11.26 -20.69 31.96 31.80
NGC4680 43118 2491 2811 237 12,10 12.24 -19.17 3141 32.54
NGC4679 43170 4665 3824 426 11.72  11.84 -21.49 33.36 33.89
NGC5005 45749 1011 1177 601 9.01 9.08 -22.85 31.93 31.17
ESO576-040 46574 2095 2407 169 13.72 13.61 -17.85 31.47 31.89
PGC047514 47514 4217 4577 284 13.96 13.82 -19.89 33.75 34.34
NGC5584 51344 1655 191 266 11.74 11.72 -19.64 31.35 31.92

104423 51549 9115 9691 470 13.73 13.92 -21.88 3595 35.67

I1C1151 56537 2176 2287 241 12.83 12.83 -19.25 32.08 33.16
NGC6063 57205 2841 2958 308 12.98 12.95 -20.21 33.18 32.99
UGC10738 59769 6716 6850 584 12.37 12,53 -22.74 35.38 34.85
UGC10743 59782 2744 2581 218 12,59 12.76 -18.85 31.61 32.68
NGC6962 65375 4200 3695 639 11.05 11.15 -23.09 34.31 33.69

1C5179 68455 3400 3108 444 10.80 11.14 -21.66 32.81 33.18
UGC12133 69428 7391 7213 442 13.17  13.32 -21.64 35.05 34.99
NGC7329 69453 3245 3150 461 11.19 11.34 -21.80 33.16 33.19
NGC7448 70213 2170 1752 309 11.32  11.40 -20.23 31.63 32.72

TABLE 3.12: Properties of individual SNIa galaxies (latest results): (1) Common name, (2)
PGC name, (3) Mean velocity of host galaxy with respect to the CMB, km s~!, (4) Mean
velocity of host galaxy with respect to the CMB corrected for the cosmological model, km
s~1, (5) Corrected rotation rate parameter corresponding to twice the maximum velocity, km
s~1, (6) Corrected 3.6 um magnitude in the AB system, mag, (7) Color adjusted magnitude,
mag, (8) Absolute color adjusted magnitude, mag, (9) TFR distance modulus corrected for
bias, mag, (10) SNIa distance modulus, mag. Supplementary galaxies with respect to the
first work are in red.
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3.5 Catalogs of Accurate Distance Estimates

Near, intermediate, and far TFR samples in the Cosmicflows program were described by

Courtois et al. (2011b) and in subsection 3.3.1.2. To summarize:

e the "near” sample is intended to achieve dense coverage of a volume extending to
3300 km s~! with inclusion of all galaxies later than Sa that are brighter than My =

—21, inclined greater than 45°, and not obscured, disrupted, or confused,

e the "intermediate” sample is drawn from flux and color limits applied to an Infrared
Astronomical Satellite Redshift Survey (Saunders et al., 2000). The flux limit at 60 ym
is 0.6 Jy, the color criterion to separate normal spirals from active nuclei is a ratio of
100 pum to 60 pm flux greater than one, there is a velocity cutoff at 6000 km s~—!, and

there is the same inclination restriction as with the near sample,

e the "far” sample is restricted to extreme edge-on systems drawn from Flat Galaxy
catalogues (Karachentsev et al., 1999; Mitronova et al., 2004). Candidates in the sample
that lie at declinations accessible to Arecibo Telescope have velocities extending to
15,000 km s~ .

These are the well defined samples. In addition distances are derived to all other suitably
observed galaxies. A quite separate and active component of Cosmicflows is a program with
Hubble Space Telescope to obtain Tip of the Red Giant Branch distances to nearby, spatially
resolved galaxies (Jacobs et al., 2009; Makarov et al., 2006; Rizzi et al., 2007). Exquisite
distances (5% accuracy) are available for approaching 300 galaxies within ~ 10 Mpc. Still,
generally the information for the additional systems comes from archives. Thus, distances
for Cosmicflows encompass measures by other methodologies discussed in the literature.
Foremost among these are Cepheid Period-Luminosity Relation (e.g. Freedman et al., 2001,
2012), Surface Brightness Fluctuation (e.g. Blakeslee et al., 2010; Tonry et al., 2001), Funda-
mental Plane (e.g. Colless et al., 2001), and Supernova Ia (Amanullah et al., 2010; Folatelli
et al., 2010) procedures. The diverse material is drawn together in the Extragalactic Dis-
tance Database (Tully et al., 2009). EDD goes beyond the compilation of catalogs relevant
to extragalactic distances to include redshift catalogs, that with various levels of comple-
tion describe the distribution of galaxies in the Local Universe, and group catalogs, that help
identify entities where averaging over velocities or distances is reasonable. The first assembly
of distances in this program (Tully et al., 2008) has now been given the name cosmicflows-1.
A core team was involved in the assembly of cosmicflows-2 (Courtois and Tully, 2012b; Tully
and Courtois, 2012; Tully et al., 2013). This work increases the size of this second catalog
by 20% in spatial regions not necessarily accessible from the ground (like very close to the

Zone Of Avoidance). It will help constitute the third catalog of the project, cosmicflows-3.
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In the three subsequent subsections, the two first catalogs are described and an insight into

the third one is given.

3.5.1 Cosmicflows-1

Cosmicflows-1 is the first catalog of the Cosmicflows project. Publicly released by Tully et al.
(2008), it is available at the Extragalactic Distance Database. This catalog contains accurate

distance measurements of 1797 galaxies up to 3000 km s~ .

These distances are given on
the Cepheid reference scale from the Hubble Space Telescope Key Project (Freedman et al.,
2001) with which Tip of the Red Giant Branch (TRGB) and Surface Brightness Fluctuation
(SBF) measurements from the literature are in agreement. Distance estimates obtained with
the SBF indicator come in majority from Tonry et al. (2001). These three methods Cepheid
Period-Luminosity (PL), TRGB and SBF claim comparable accuracies. Consequently, an
uncertainty about 10% is assigned to distance measurements obtained with these estimators.
Tully-Fisher (TF) distance estimates from Tully and Pierce (2000) and Karachentsev et al.
(2002) are added to this ensemble after a small adjustment to be on the same reference scale.

A 20% uncertainty is allocated to these last measures.

Some of these 1797 galaxies have two or three (even four for PGC2557) distances estimates
but the majority of them has solely TF estimates (1199), giving the reason for keeping dis-
tance estimates from this method although it is less accurate than other distance indicators:
the Tully-Fisher relation gives access to a large number of galaxy distance measurements.
The double-entry Table 3.13 gives the number of galaxies which have estimates from SBF,
TRGB, PL, TF methods or a combination of them. These galaxies are part of clusters such
as Virgo (142 galaxies), Fornax (34), Centaurus (13), Antlia (11) and Ursa Major (51, often
mentioned as a cluster, it is more probably a cloud, see for example Karachentsev et al.,
2013), while some belong to groups like Comal (12), Maffei (13) and VirgoW (11). A total
of 437 galaxies are lonely at this point, either because they are in the field or because of
the restricted number of measures available in the group/cluster to which they belong. We
denote 152 pairs of galaxies, again some are the pure result of the limited number of data

points. Other galaxies can be gathered by 3 or more, the maximum is reached for Virgo.

SBF TRGB PL TF PL-TF TRGB-TF TRGB-PL-TF

SBF 334 9 1 8 5 1 1
TRGB - 184 11 13 2 - -
PL - - 10 19 - - -

TF - - - 1199 - - -

TABLE 3.13: Number of Measurements per Method in cosmicflows-1, double-entry table:
(Line) Number of galaxies with First Distance Estimates obtained with the SBF, TRGB,
PL or TF methods and (Column) Potential Second, Third and Fourth Distance Estimates

obtained with a combination of SBF, TRGB, PL and TF relations. Only PGC2557 has four
distance estimates.
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3.5.2 Cosmicflows-2

The second catalog of the Cosmicflows project was publicly released by Tully et al. (2013).
It gathers over 8000 accurate distance measurements obtained from various methods from
the Cepheid Period Luminosity (PL) to the Tully-Fisher (TF) relations going through the
Surface Brightness Fluctuation (SBF), the type Ia Supernovae (SNIa), the Tip of the Red
Giant Branch (TRGB), the Fundamental Plane (FP) and other miscellaneous methods such
as RR Lyrae, Horizontal Branch, Eclipsing Binary. This catalog extends up to 30,000 km
s~! ten times the extent of the first catalog, and it enhances the density of measurements
within the first catalog spatial coverage. The scale is still given by Cepheids but from a
slightly refined version (Freedman et al., 2012; Riess et al., 2011). TRGB measurements are
on the same scale (e.g. Rizzi et al., 2007). With its all-sky consistency, the work presented in
this Chapter contributed to slightly re-evaluate the I-band TFR scale (Tully and Courtois,
2012) in agreement with the tiny difference found between I and [3.6] distance estimates at
the time of the second catalog release. Regardless, above all, the Spitzer work confirms the
results found in I band which were lacking an all-sky consistency as the I band work is a

gathering of several telescope data.

Among the galaxies constituting the catalogs approximately half of them are isolated galaxies.
The others are mostly in clusters such as Virgo (160), Coma (132), Abell 2151 or Hercules
(87), Pisces (74), Hydra (71), Abell 2196/99 (66), Abell 400 (63), Fornax (54), Abell 2634
(54), Centaurus (49), Abell 0426 or Perseus (47), Klemola44 (46), Ursa Major (45), Cancer
(42), Abell 0548 (42), Pegasus (41) etc. In total, they can be gathered in approximately 500
groups and clusters. Again the TFR supplies most of the measurements (5856 of the galaxies
have a unique TF distance estimate, see Table 3.14) then comes Fundamental plane (FP),
SBF (S) closely followed by SNIa (SN), TRGB (T), PL (P) and finally a few miscellaneous
(M) methods. It is to be noted that galaxy distances obtained with different methods are
not necessarily compared and averaged over each galaxies. In the case of measurements from
both SBF and TF methods, distances are averaged after grouping. It is also frequently the
case for distances obtained with both SNIa and TF methods.

With this variety of different distance estimates, the remarkable property of cosmicflows-2 is
the distribution of uncertainties which is strongly bimodal with peaks at around 8-10% and
20% uncertainties on distances. A higher uncertainty is attributed to galaxies with solely
FP estimates (25%) producing another small peak. In the grouped version of the catalog,
the distribution of uncertainties has an additional feature: groups and clusters with several
distance measurements from the TF / FP relations produce another peak at around 15%

but also contribute to the 8-10% peak.
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p T M S SN TF FP T-TF S-TF SN-TF T-S T-M. T-M-S-TF S-FP SN-FP
3 14 - - 4 11 - 9 4 5 3 6 1 - -
- 192 10 12 - 20 - - 2 - - - - 1 -

- - 3 . - - - - - - - - - - -
- - - 2701 10 75 - - - - - - - 3
- - 216 50 7 - - - - - - - -

e 1 (T - -

SRZezaw

TABLE 3.14: Number of Measurements per Method in cosmicflows-2, double-entry table:
(Line) Number of galaxies with First Distance Estimates obtained with the PL (P), TRGB
(T), SBF (S), SNIa (SN), TF and FP methods and various distance indicators (M) ; (Col-
umn) Second, Third, Fourth and Fifth Distance Estimates potentially obtained with a com-
bination of all the distance estimators at hand. Only PGC39600 has five distance estimates.

3.5.3 Cosmicflows-3: an Insight

This Chapter has been the occasion to expound the observational campaign Cosmicflows
with Spitzer (CFS), a photometric component of the Cosmicflows project. The primarily
goal of this observational survey is to increase the number of distance estimates close to
the Zone Of Avoidance using the Tully-Fisher relation. The first channel (3.6 um) of the
InfraRed Array Camera onboard the Spitzer Space Telescope is indeed the instrument of
choice to obtain the required excellent photometry. At this wavelength the Zone of Avoidance
and uncertainties on measurements are considerably reduced. Surface photometry of 1270
galaxies constituting the CFS sample observed in cycle 8 with IRAC channel 1 and over
400 additional galaxies observed in various other surveys have been presented in section
3.3. The Spitzer Survey of Stellar Structure in Galaxies supplies many more galaxies of
interests to the Cosmicflows project. The final set is constituted of about 2,000 galaxies
with required parameters (heliocentric velocity or redshift, W,;, b/a, E(B-V), Ry at [3.6]
(and I), v, at [3.6] (and I), [3.6] and if available I), to derive an estimate of their distance
with the mid-infrared (color adjusted) TFR, all available. Axial ratios come either from
previous estimates of the Cosmicflows program or from HyperLeda if they are from Paturel
et al. (2003). Galaxies without estimates of their axial ratios will be added later on thanks
to the Citizen Science project. Inclination have been obtained with formula 3.20 to correct
linewidths and magnitudes. The compilation of I band magnitudes is described in Tully
et al. (2013). It gathers magnitudes used in Tully and Pierce (2000); Tully et al. (2008),
themselves borrowing from Giovanelli et al. (1997b); Mathewson et al. (1992); Pierce and
Tully (1988); Tully et al. (1996), but also recent derivations from Courtois et al. (2011a);
Springob et al. (2007) and Hall et al. (2012). Tully et al. (2013) showed that these I-band
magnitudes are on a consistent scale after small adjustments with the exception of those of

Hall et al. (2012) because they use a significantly different filter. Accordingly these latter are
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adjusted with the formulas prescribed by Smith et al. (2002) and Tully et al. (2013). These

corrections involve a translation from Sloan g, r, i band (Gunn i band) to Cousins I band:
I=i—0.14(g—r) — 0.35 (3.57)

where cases with r-i>0.95 are excluded, and account for a slight tilt between I and I, from

the Cosmicflows project, magnitudes.

I, =1.017 1 —0.221 (3.58)

I-band magnitudes are corrected with the following formula (Chilingarian et al., 2010; Schlafly
and Finkbeiner, 2011; Tully and Pierce, 2000):

ok = Al — AL — Al where :
Al =(0.92 4 1.63(logW! , — 2.5))log(b/a) (if A} < 0 then Al =0)
Al =1.94x E(B-V)
Al =0.302z 4 8.7682% — 68.6802° + 181.9042"

(3.59)

where the terms have the same signification as those in the relation 3.29 for [3.6] magnitudes.

Besides, these latter are corrected with that relation.

When available, I-band magnitudes are converted to the AB system with equation 3.27 and
pseudo-magnitudes are derived with formula 3.54. Combined with the (color corrected)
Tully-Fisher relation 3.55 applied to linewidths, they enable the derivation of distance mod-
uli with relation 3.10. These latter are corrected for the selection bias with equation 3.56
before deriving distance estimates with formula 3.10 used in reverse. Eventually distance
estimates given in the table of Appendix C will be incorporated into a new data release of
the Cosmicflows project, increasing the size of the previous catalog by 20%, including in

spatial regions close to the Zone Of Avoidance.

In addition, EDD contains a bit more than 10,000 linewidths (with an error below 20 km s~1)
of galaxies which inclinations are greater than 45°. Acquiring the photometry for the galaxies
without any photometric measurement to be matched with their linewidth is accordingly the
next top priority of the Cosmicflows project. This photometry supplied by all sky surveys
such as the Wide-field Infrared Survey (WISE, Wright, 2008) combined with the ongoing TF
calibration (Neil et al. in prep. for WISE) will result in the compilation of cosmicflows-3
which will gather all the distance material available. At present, we estimate that this third
catalog of accurate distance estimates could contain in total (including distance estimates
from Cepheids, TRGB, etc) around 14,000 measures, almost twice the size of the latest

cosmicflows-2 catalog. It will have approximately the same coverage as the second catalog
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but with an enhanced density, especially next to the Zone Of Avoidance thanks to Spitzer

observations. Figures 3.48 and 3.49 give an overview of the provisional cosmicflows-35.
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FIGURE 3.48: Histograms of distances in cosmicflows-1 (blue dotted line),-2 (red dashed
line) and provisional cosmicflows-3 (black solid line).

We have closed this Chapter with catalogs of Cosmicflows which gather peculiar motions of
galaxies in the Local Universe. These peculiar velocities are departures from the cosmic mean
expansion and it is assumed that they arise due to density irregularities. Two regimes require
separate attention. The high density environments in and around collapsed halos are at the
extreme of non-linear dynamics. Within the collaboration, a Numerical Action Method was
developed that provide an optimal description of the distribution of mass affecting galaxies
on curved orbits on first approach to an attractor (Peebles et al., 2001; Peebles and Tully,
2013; Shaya et al., 1995). The other extreme is the regime of linear dynamics. A procedure
used that is appropriate with redshift data sets of 10° or more objects is based on the action
principle (Lavaux et al., 2010). However the methodology that most interests us starts
with Wiener filtering of the peculiar velocity field resulting in descriptions of the density
and velocity fields independent of information provided by redshift surveys (Courtois et al.,
2012; Zaroubi et al., 1995). The fields can then be mapped back to initial conditions that are
then the starting point for constrained simulations that attempt to approximate the observed
universe with a computer model (Courtois and Tully, 2012a; Doumler et al., 2013b; Gottlober
et al., 2010; Klypin et al., 2003). Such constrained simulations constitute the second course

of this work in the framework of the CLUES collaboration.
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FIGURE 3.49: XY supergalactic plane showing the provisional cosmicflows-3 catalog. Black
dots stand for the contribution of cosmicflows-1 (available since 2008), green dots represent
cosmicflows-2 (available since the end of 2013), red dots are galaxies analyzed in this work
with Spitzer and blue dots are galaxies which will be studied with all sky surveys such as
WISE. The ensemble of all these dots (galaxies) constitutes the provisional cosmicflows-3
catalog with over 14,000 accurate distance estimates. Spitzer observations contribute to
cosmicflows-3 by considerably increasing the number of distance estimates near the Zone Of
Avoidance.
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Simulated Universe

Numerical simulations provide the opportunity to develop studies of the formation and evo-
lution of structures. The overarching goal of the CLUES project is to produce constrained
simulations which best approzrimate the observed nearby Universe by reducing the so-called
cosmic variance. Such constrained simulations stem from initial conditions obeying a set of
observational constraints in addition to the random component. Constraints can either be
peculiar velocities or galary distributions. Peculiar velocities, obtained from direct distance
measurements, are data of choice to achieve constrained simulations of the Local Universe
reliable down to a scale of a few Megaparsecs. Unlike redshift surveys, peculiar velocities are
direct tracers of the underlying gravitational field as they trace both baryonic and dark matter.
Yet, the method, designed over the past few years to produce initial conditions constrained by
peculiar velocities, necessitated additional density constraints to result in simulations that re-
semble the Local-Universe. Accordingly, this Chapter presents the first attempt to use solely
observational peculiar velocities to constrain cosmological simulations of the nearby universe.
First the general method to produce constrained initial conditions is reviewed. Then, the
process, as it was at the beginning of this work, is augmented and tested on realistic mocks
before being applied to the first catalog of the Cosmicflows project. Finally the process is
reiterated with the second catalog of the Cosmicflows project after minimizing observational
biases in this latter. The second generation of constrained simulations of the Local Universe

is unveiled.*

!This Chapter makes use of the ICECORE code and we refer the reader to ? TH2012_Doumler_Timur.pdf
” downloadable at ”http://phd-physics.universite-lyon.fr” for more details on this code.
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4.1 Constrained Simulations

Under the assumption of a dark-matter only Universe, even the simplest problem of the emer-
gence of structures defies a proper and detailed analytical treatment. As a result, the study
of the formation of the Large Scale Structure of the Universe relies heavily on numerical sim-
ulations. Actually, large scale dark matter simulations (e.g., Alimi et al., 2012; Angulo et al.,
2012b; Klypin et al., 2011; Prada et al., 2012; Watson et al., 2013) constitute the backbone of
the study of structure formation in the Universe. The standard model of cosmology asserts
that the primordial fluctuations are constituted by a Gaussian random field whose statistical
properties are determined by its power spectrum. An accurate determination of the power
spectrum is enabled by the cosmological parameters. These latter are obtained from ob-
servations of the fluctuations in the cosmic microwave background radiation combined with
Baryonic Acoustic Oscillations and supernova measurements (Komatsu et al., 2011; Larson
et al., 2011; Planck Collaboration, 2013). Standard cosmological computations use then
Initial Conditions drawn from random realizations of the primordial Gaussian perturbation
field which properties correspond to a given power spectrum. By contrast, constrained sim-
ulations stem from Initial Conditions obeying a set of observational constraints in addition
to the random component. They provide a different approach to cosmological simulations
to better approximate the observed nearby Universe to study it more thoroughly. Namely,
they aim at reducing the so-called cosmic variance due to our fixed position in the Universe
combined with the fact that we can only observed one realization (one universe) of the the-
oretical model at one time. This cosmic variance affects greatly the results. For example,
Garrison-Kimmel et al. (2014) reveal the importance of the surrounding environment (in
particular the approaching M31) to derive a proper stellar halo mass relation in the Local

Group.

4.1.1 Constrained Initial Conditions

Initial conditions can either be constrained by peculiar velocities or galaxy distributions:

e the first constrained initial conditions were produced by Ganon and Hoffman (1993),
using the Mark IIT catalog of peculiar velocities (Willick et al., 1996). These initial
conditions were then used to perform the first constrained simulation of the nearby
universe by Kolatt et al. (1996). The CLUES (Constrained Local UniversE Simulations)
project has been ever since running a variety of pure dark matter and hydrodynamical
constrained simulations of the Local Universe, aiming mostly at studying a variety of
issues concerning the Local Group (for a general review Gottlober et al., 2010, and

references therein),
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e galaxy redshift surveys provide a different source of constraints. This was first pioneered
by Bistolas and Hoffman (1998) and followed later on by Mathis et al. (2002) and
Lavaux (2010) and very recently by Hef et al. (2013).

There is a considerable tradeoff between using peculiar velocities and spatial distributions of
galaxies from redshift surveys. Galaxy redshifts are quite easy to measure accurately. Very
large and deep surveys are now routinely produced. However, galaxy distributions constitute
biased tracers of the underlying density field. The mass-to-light bias has yet to be completely
modeled and corrected for. On the other hand, measuring peculiar velocities poses formidable
challenges to observational cosmologists. The observations are susceptible to systematic
biases, and the resulting catalogs are noisy, sparse and with an incomplete sky coverage.
Still, on the theoretical side, peculiar velocities are unbiased tracers of the underlying mass
distribution. As long as virial motions inside clusters can be suppressed, the construction
of the underlying density and velocity fields can be easily performed. The procedure to
reconstruct underlying density and velocity field (and eventually to build initial conditions)
with peculiar velocities is based on the linear Wiener-Filter and Constrained Realization of
Gaussian fields algorithms (Hoffman, 2009; Hoffman and Ribak, 1991; Zaroubi et al., 1995).

These techniques are described more thoroughly in the next section.

4.1.2 Constrained Realizations
4.1.2.1 The Wiener-Filter Technique

The Wiener-Filter (WF) technique is a very efficient and straightforward method to recover
from sparse and noisy data the Gaussian underlying fields assuming a prior model. Developed
in 1949 by Wiener for the field of signal processing, it consists in reducing the amount of
noise in a dataset to generate an estimate of the underlying true signal. Introduced in
1992 by Rybicki and Press, in the astrophysical and cosmological fields of research, it was
soon after used to reconstruct fields from observational datasets (e.g. Zaroubi et al., 1995).
This technique requires only the computation of a correlation matrix and its inverse. More
precisely, the Wiener-Filter corresponds to the minimal variance estimator of the data with
respect to the assumed prior model. This function is obtained by minimizing the square of the
residuals R; between the underlying field f; = >7i_; F};C; and the model f] = 37" | F/.C}
where F” is the Wiener-Filter of the data (best fit to the data) after the minimization process
and C; are the n constraints, either galaxy redshift surveys, i.e densities (Erdogdu et al.,
2006; Fisher et al., 1995; Kitaura et al., 2009), or peculiar velocities like for the Cosmicflows
project (Courtois et al., 2012; Zaroubi et al., 1999). Namely, (R;R;) = ((fi — f])(fj — f]’)>

needs to be minimized. Processing in a similar way to the derivation of the least square
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fitting method explain in Chapter 3, subsection 3.4.1.2, but with higher order matrixes, it is
then possible to write:
n n
fi= Z Z<fi0i><cicj>7lcj (4.1)
j=1i=1

where (AB) notations stand for the correlation functions involving the assumed prior model.

In subsection 2.2.3.2 of Chapter 2, we have seen that from their statistical properties, the
underlying fields are fully determined by the power spectrum. Assuming the power spectrum
as the prior model, replacing f; by either 6(r) or vy 4, or -(r), equation 4.1 seems sufficient to
obtain both the full underlying density d and velocity v fields from a dataset constituted of
n constraints {Cp, C1, ...,Cp} (the Wiener-Filter can inter/extrapolate in absence of data).
On the practical side, observational data contain uncertainties. Data points can thus be
re-written C; = ¢; + ¢; where ¢; is the error on the data. Two approximations can be made

regarding these errors:

e they constitute a purely statistical noise which results in an absence of correlation with
the data. Then, (szJ> = <fiCj> and (CQC’]) = <CiCj> + <€1'6j>,

e they have a Gaussian distribution?. Then, (e;€;) = 55 €; where 5{; is the Kronecker

function which can take only two values, 1 if i = j and 0 otherwise.

From these two approximations and equation 4.1, the perturbation density and velocity fields

can be estimated with: .

V() = 3 (6)ein (4.2)

i=1
n

o =Y (el with o=y, (43)
=1

where 7; = Z?:1<C,Cj)_10j are the components of the correlation vector n with C; = ¢; +¢;

and <CZC]> = <C¢Cj> + <6i€j>.

Regarding the associated correlation functions, they are given by:

/ ! . df o ika —ik.r
O(rNva(r'+1)) = (21_[)3/0 pp(k)e kr ik (04

= —dffaC(T)

, , . (df)z o kakb’ e—z‘k.r
(Va(r )vﬁ(r +1)) = (21‘[)3/0 k4 P(k) dk (4.5)

s £\2
= (af ) \I/aﬁ
2Note that this hypothesis is not actually fully valid because distances are logarithmically linked to distance

moduli by equation 3.10. Consequently, errors have a lognormal distribution. We will more thoroughly explain
and investigate this matter when confronted with the extended cosmicflows-2 dataset in section 4.4.2.
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where

e P is the assumed prior power spectrum, # = 7, the superscript W F' specifies that these

are Wiener-Filter estimates of the true fields,
o (= ﬁ fooo k%j0(kr) P(k)dk,

o Wop = [Urdls+ (Vg — Ur)Pats),
with Oy = ol [ 250 py)ak and W = oy [ jo(kr) — 2450 P(k)dk.
The ”j;8” denote the common Bessel functions.

To summarize, in the Wiener-Filter technique, data dominate the reconstruction in region
where they are dense and accurate. On the opposite when they are noisy and sparse, the
reconstruction is a prediction based on the assumed prior model. Schematically data are
multiplied by ﬁ and the reconstruction tends to the null overdensity field when data
degrade. Consequently, the Wiener-Filter field estimates are non-power preserved. They
cannot be used to build initial conditions as these latter need to be Gaussian fields with
statistical properties given by the power spectrum. In cause is the variance of the residual
which is minimized but not negligible. As a result, the true field is the sum of the mean field
(or Wiener-Filter estimate) and of the residual. Unfortunately, this residual is not known but
it can be approximated to produce initial conditions with the proper statistical properties.

This technique relies on the Constrained Realization (CR) of Gaussian fields.

4.1.2.2 The Constrained Realization of Gaussian Fields

Evaluating the residual, required to complete the Wiener-Filter obtained mean field to pro-
duce proper initial conditions, needed some ingenuity. Bertshinger (1987) suggested first the
utilization of constrained realizations to derive initial conditions, yet the algorithm used at
that time revealed to be unpractical due to a slow convergence. Hoffman and Ribak (1991,
1992) were the first one to present the exact optimal algorithm to evaluate the residual.
Their procedure relies on the fact that the variance of the residual is independent of the
constraints. Basically, (RR') = (ff’) is fully determined by the assumed prior model. Thus,
considering a set of mock constraints C; of a random generated field fRR, which statistics
are characterized by the same assumed prior model as the observational constraints, the

Wiener-Filter of the random field can be written:

V=SS UCHEE) Gy = S ACGIC) I, (10

j=1i=1 j=1i=1
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since the correlation functions are independent of the values of the constraints, they depend

solely on the assumed prior model. This gives by definition of the residual:

Rr= FRRPYE = PSSR C) G0 C, (47

j=1i=1
Finally, from equations 4.1 and 4.7 the constrained realization field is:

fOR ="+ R=fRR 4 z": i(fiCD(CiCle(Cj -C)) (4.8)

j=1i=1

Applying relation 4.8 to the perturbation fields and keeping the same approximations as

before for the errors: .

6 (x) = 8™ (x) + D (S(x)ei)n; (4.9)
1=1
v = R (r) + Z(va(r)ci>m with a=u=z,y,2 (4.10)
i=1

where the components of the correlation vector are now n; = E?:1<Ci0j>_1(0j — Cj). Here
again, the constraints can be either densities or velocities. The combination of the projects
Cosmicsflows and CLUES, namely this work, uses solely peculiar velocities obtained from
direct distance measurements. The similarity between the Wiener-Filter equations (4.2 and
4.3) and the Constrained Realization equations (4.9 and 4.10) can be summarized by pointing
that ”without the random field, the results of the computation are the Wiener-Filter or mean
fields ; with the random field, the resulting fields are precursors to build constrained initial
conditions as they have the characteristics of the assumed prior model”. Figure 4.1 gives

another summary.

A small detail is left to be taken care of. At redshift zero, namely today, radial peculiar
velocities are not all linear as assumed in the technique. Assimilating non-linearities with
a statistical scatter, it is in principle possible to account for non-linear effects. On the
basis that data sample a typical realization of the prior model, i.e. the power spectrum,
%, where x* = >0, > i1 Ci(C;C;)~1C; and d.o.f is the degree of freedom, should be
close to 1. Then, adding a ”sigma non-linear” oy, in the model to drive % close to 1 is
sufficient to compensate for the non-linearities. The oy, is inserted in the data such that

<CZ‘C]‘> = <cic]~> + 55632- + 5£€jU]2VL‘

Ultimately, assuming that the observed peculiar velocities are not strongly affected by non-
linear dynamics (curl free field above the scale of virial motions), and assuming a prior

cosmological model (here growth rate constant with time), the initial conditions are readily
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calculated from the constrained realization fields with the procedure described in subsection

2.3.3 of Chapter 2.
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FIGURE 4.1: Principle of the Constrained Realization of Gaussian fields in one dimension.
Top: the constrained realization field (blue solid line) equals the Wiener-Filter mean field
(black solid curve) at the location of the constraints (red dots). The constraints have been
put atop a random realization (green solid line). Bottom: the residual R is zero at the
positions of constraints (red dots). Anywhere else, it is close to the random realization

(from Doumler’s thesis).

150

200
X [Mpc/h]

250

4.1.3 First CLUES Generation (2003 - 2009)

300

350

400

Following the development of the methodology, the first constrained initial conditions were

produced by Ganon and Hoffman (1993), using the Mark III catalog of peculiar velocities
(Willick et al., 1996). Later on, Kolatt et al. (1996) used these initial conditions to perform

the first constrained simulations of the nearby Universe, more than ten years after the first

standard numerical simulation was run within a Cold Dark Matter cosmological context

(Davis et al., 1985). However, the first simulations output from this method, shown on the

left top panel of Figure 1.3 of Chapter 1, did not meet the standards required to fulfill the

aims of the CLUES project on two aspects :



Chapter 4. Simulated Universe 136

e these simulations presented a shift in the position of structures of approximately 10
h~! Mpc at z=0 with respect to the today observed Universe. In other words, con-
strained simulated halos were, at z=0, located 10 h™! Mpc away from the reference

objects’ original positions,

e additional density constraints were required to form nearby clusters (Klypin et al.,
2003).

4.2 Reverse Zel’dovich Approximation

The major drawback of the Constrained Realization method is the fact that it is formulated
in an Eulerian way at a precise time. As a result the cosmic displacement field is neglected,
although galaxies observed today are at different comoving positions from their progenitors
at higher redshifts. A first attempt to improve this shortcoming has been recently suggested
by Doumler et al. (2013a,b,c) who tested the remedy against simple mock catalogs. They
recover positions up to a few Megaparsecs, typically approximately 5 — 6 h~' Mpc. The
technique, described in the following subsection, was yet to be tested on realistic mocks and

on observational dataset. Accordingly this work takes three additional steps:
e the whole process to produce initial conditions from peculiar velocities is tested on more
realistic mocks which include a zone of galactic extinction and errors on distances,

e the technique is refined, tested against the same realistic mocks and compared with

results from the previous chain of processes,
e in a subsequent section, the refined technique is applied to the cosmicflows-1 catalog

of observational peculiar velocities (Tully et al., 2008, and subsection 3.5.1).

Throughout this section, distances are in h™' Mpec. All figures are presented after a Gaussian
smoothing of the fields at 2 h™' Mpc, which is the intrinsic floor value validity of the linear

theory, as it will be re-measured.

4.2.1 Method
4.2.1.1 RZA-radial (2009 - 2012)
Evaluating exactly the cosmic displacement field is not feasible because of the numerous

non-linear events on small scales which have occurred over time, yet in subsection 2.3.3,

we presented the Zel’dovich approximation (equation 2.46) which stays valid even when
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perturbations are large. Then, evaluating the Zel’dovich linear displacement field from the
Wiener-Filter reconstructed overdensity field (using equations 2.48 and 2.47) gives a solution
to the problem: reversing this displacement in time to move the constraints from z = 0
backwards to their progenitors’ approximated positions at higher redshifts enable to account
for the cosmic displacement field. Called the Reverse Zel’dovich Approximation (RZA) by its
designers (Doumler et al., 2013a,b,c), in the framework of Lagrangian perturbation theory,
it can be written directly from the Zel’dovich approximation 2.46, equation 2.47 and the fact

that today alp = % = Hy:

u(xpg,t)

. (4.11)

Xrinit(XE) = Xg(t) — ¥(xg,t) = xp(t) —
where x is the (Eulerian) position of a data point at time ¢, X, ;¢ is the initial (Lagrangian)
position, ¥ is the displacement field, u is the perturbation or peculiar velocity field and f is

the growth rate.

Once re-located at their precursors’ approximated positions, the constraints are inserted into
the Constrained Realization method to set initial conditions. Tested against simple mocks,
positions are recovered up to a few Megaparsecs, typically ~ 5 — 6h~! Mpc (Doumler et al.,
2013a,b,c). Still, the first application of the process to the first observational catalog of the

Cosmicflows project reveals that the method can be refined.

4.2.1.2 RZA3D, CLUES Second Generation (2013 - )

Because observed constraints have uncertainties (and are probably also affected by biases),
the peculiar velocity field is not accurately described by solely one (radial) component (unique
component accessible from direct observations). An additional step can thus be added to
the initial technique called RZA-radial from now on. In the refined technique (RZA3D)
constraints are not only moved to their progenitors’ positions but, also, the observed uncertain
peculiar velocities are replaced by fully WF-reconstructed three component vectors. Such
resulting constraints have already been given by the Wiener-Filter a weight according to
their precision. Typically, the Wiener-Filter field goes to the null value when there is no
coherent signal or when data points have too large errors. Thus, no error should be allocated
to RZA3D derived constraints when input in the Constrained Realization algorithm?®. Initial

conditions are then produced in the standard way.

In other words, RZA3D differs from the initial RZA-radial on two points:

e instead of observed radial peculiar velocities, the constraints are now the Wiener-Filter

estimated peculiar velocities,

3This is in a sense similar to an unbiased minimal variance estimator (Zaroubi, 2002)
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e initial conditions are constructed under the assumption of null statistical errors to
prevent the double signal suppression resulting from the successive application of the
Wiener-Filter (to obtain 3D velocities) and of the Constrained Realization (to produce

initial conditions).

Figure 4.2 provides a schematic presentation of the WF/RZA method which prepares the

constraints to be input into the Constrained Realization algorithm.
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FIGURE 4.2: The refinement of the WF/RZA technique. The Wiener-Filter applied to
observed radial peculiar velocities provides full 3D reconstructed peculiar velocity field v3/;F
which allows to derive the cosmic displacement field W37 (see equation 2.47). In the initial
RZA-radial technique the observational (radial) constraints at z = 0 are re-located by -W¥F"
to their progenitors’ positions at higher redshifts. Since the peculiar velocity field is curl free
(above the scale of virial motions) it is supposed to be fully defined by only one component.
However, because observed peculiar velocities have uncertainties (and are probably affected
by biases), RZA-radial is insufficient. The proposed refinement in RZA3D takes care of this

flaw by using the full 3D Wiener-Filter reconstructed peculiar velocities v} as constraints.

4.2.2 Building Mocks

When working on scales of a few tens of Megaparsecs (enclosing a volume we call the Local
Universe), the cosmic variance is a major concern because these scales are far smaller than
the scale of homogeneity of the Universe. As a matter of fact, the observational dataset
used in this section only reaches once to twice the size of our filament (from Ursa-Major to

Centaurus clusters, the distance is roughly 40 h~! Mpc). This leads to a bias:
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e our position (as observers) is unique (peculiar) and impacts highly the data collec-
tions. In other words since we are living in a supercluster bounding a very large void,
the observed peculiar velocities are very much dominated by a specific local structure

dynamics,

Thus we must:

e test the methodology against a replica of the actual nearby Universe to be in the same

particular dynamical conditions (including the presence of a nearby very large void),

e run several constrained numerical simulations to estimate the confidence level at which
the observed large scale structures are recovered with a given methodology whatever

the random component.

Accordingly, mock catalogs are drawn from a previous constrained simulation of the Local
Universe (Klypin et al., 2003). This particular simulation, hereafter BOX160, is a dark matter
only simulation of 10243 particles in a computational box of side length L = 160h~! Mpc
constrained by peculiar velocity catalogs and a sample of positions and masses of X-ray
selected nearby clusters. Since this simulation was computed in the WMAP3 framework,
tests on the mock are also conducted in the WMAP3 framework. WMAP3, described in
Table 2.1, is a flat universe with a matter density of €2,, = 0.24, a og = 0.75 normalization
and Hy = 73 km s~ Mpc~L.

BOX160 reproduces many of the key structures of the nearby universe, such as Virgo, Coma
and Centaurus clusters, Perseus-Pisces supercluster and the Great Attractor region. A Local
Group-like structure has been identified in the simulation and a mock observer is attached
to that object. The catalog is built with respect to this observer. We assume that galaxies
follow the peculiar velocities of dark matter halos in which they reside. Consequently, a mock
catalog of dark matter halos has been extracted from BOX160 with the Amiga halo finder
(Knollmann and Knebe, 2009). A comparison between the various halo-finders by Knebe
et al. (2013) did not reveal any substantial difference between the resulting list of halos and
their characteristics. Consequently, the halo finder choice should not impact our work. The
output list of parameters contains halo coordinates in h™! Mpc, peculiar velocities in km s~!
and masses in h~! M. Halos are selected in a sphere of 30 h™! Mpc radius around the mock
observer to mimic as much as possible the extent of the Cosmicflows project’s first catalog
to be used later on. T'wo novelties with respect to the mocks of Doumler et al. (2013a,b,c)
are introduced. To simulate a zone without data similar to that produced by the extinction
of our galaxy’s disk (Zone of Avoidance), every halo with a latitude in between £10° is
removed. Major players in the local dynamics, such as the mock Great Attractor, are thus

(partly) masked by this extinction zone. The mock catalog is also designed to reproduce
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the current observational limits: a 20% uncertainty on galaxy distances, and thereby on
derived radial peculiar velocities. For simplicity the relative errors are assumed to follow a
normal distribution around the true distances D. Resulting distances D’ correspond to the
observational measured distances with their uncertainties. The mock radial peculiar velocities
are then computed as the difference between the total velocity (expansion+peculiar motion)
and the modified distances D’ multiplied by 100 (Hubble Constant x h~! as distances are
in h™' Mpc). This procedure takes place in the Cosmic Microwave Background frame of

reference, namely in the framework of the computational box.

The reconstruction of the Large Scale Structure, and of its initial conditions, from peculiar
velocities is hampered by virial motions of galaxies in clusters. Such motions cannot be
accounted for in the present proposed WF/RZA /CR framework. Grouping distance mea-
surements of galaxies at the same distance (belonging to a same cluster) into a single data
point with a reduced error could provide a partial remedy to the problem. However, the
issue of grouping a given catalog constitutes a formidable challenge that has not been ade-
quately solved yet. Fortunately late-type galaxies constitute roughly 80% of cosmicflows-1
data (Tully et al., 2008). Such galaxies reside mostly in the field where virial motions do not
dominate cosmic flows, thus they are less affected by this problem. The mock catalog is quite
similar on this matter. The halo selection procedure described earlier give 1467 halos. Still,
95% of these halos that serve as mock data points are isolated. As a result, virial motions
do not dominate cosmic flows in the mock either. Such a mock catalog is a reasonable proxy

to the first catalog of the project Cosmicflows.

4.2.3 Application on Mocks

In this subsection, the full machinery to obtain constrained simulations is tested on the mock
built in subsection 4.2.2. The WF/RZA/CR algorithm is first applied using both variants
of the RZA to obtain precursors of initial conditions. A oy term is used to account for
the non-linear contributions of the radial peculiar velocities, which are not included in the
model. From these precursors, initial conditions are set and input in GADGET-2 (Springel,
2005) N-body code to perform dark matter only simulations. The boxsize, 160 h—' Mpc
long on each side, is almost three times the extent of the mock. Periodic boundary conditions
can be assumed without any risk of spurious phenomena in the central 60 h=' Mpc region
to be analyzed. In addition, the distribution of the peculiar velocity field values at high
redshifts (in the initial conditions) is quite Gaussian in Figure 4.3. This implies that there
are enough modes to define large scale flows (and velocities through large scale correlations).
As a result, the 160 h™' Mpc box has a large enough size for computations. The grid size
is N = 2563. Knebe et al. (2009) showed that the choice of the initial redshift value has no
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substantial impact on the resulting dark matter halo properties at z = 0. Thus, we only seek

to avoid shell-crossing. Hence, simulations are started at z= 60.
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F1GURE 4.3: Distribution of the velocity field components, at z = 60, in the initial condi-
tions. The distribution is quite Gaussian implying that there are enough modes to define
large scale flows (and velocities through large scale correlations) within a boxsize of 160 h~1
Mpc long on each side.

4.2.3.1 Wiener-Filter Reconstruction of the Mock Universe

To facilitate the comparisons between the initial BOX160 and its Wiener-Filter reconstruc-
tion from a mock, the BOX160 velocity field is interpolated on a 256% grid using a Cloud-In-
Cell interpolation scheme. Figure 4.4 displays the confidence level zones of the reconstruction
with respect to the original BOX160. The zones result from a cell-to-cell comparison, within
the central 60 h™! Mpc region, between the velocity grids of the Wiener-Filter reconstruc-
tion and of the reference simulation. The total scatter around the 1:1 relation is 201 km
s~! or 1.7 0. The Wiener-Filter velocity field is thus a good reconstruction of the BOX160

source.



Chapter 4. Simulated Universe 142

1500 [T T T T T T T T T T T T T
Ll m50% il

Ll m68% il

Ll m80% i

1000 = 3%, ]

= 500 |
z i ]
5 i ]
3 i ]
E o .
wn = i
(= L |
o L i
é L |
500 -
= i ]
-1000 - .
15000 0 0 ]

41500 -1000 -500 0 500 1000 1500

Box160 v, ,

FIGURE 4.4: Confidence level zones obtained with a cell-to-cell comparison between the
velocity grids of the reference simulation BOX160 and its Wiener-Filter reconstruction
within a 30 h™' Mpc radius sphere. For example, 50 % of the peculiar velocity pairs,
(valuecers zy> BOX160 ; Valuecey zy- wr) can be found in the darker zone. This zone, slightly
scattered around a 1:1 relation, shows the good agreement between the velocity values in a
cell from the reference simulation and in the very same cell from the reconstruction. 68 % of
the pairs are in the sum of the two internal zones and so on. 68, 95 and 99.7 % correspond
to 1, 2 and 3 o uncertainties.

Figure 4.5 shows two planes centered on the look-alike of the Milky-Way of the reference
simulation and of its reconstruction obtained with the Wiener-Filter technique applied to
the mock. Velocity (black arrows) and density (contours) fields are plotted. The green
contour displays the mean density level. The main features - direction of the cosmic flows
and attractors’ positions - are properly reconstructed. The feature, in the XY plane, is the
Great Attractor region look-alike with three density peaks from the reference simulation
marked by red crosses in both quadrants. In YZ, the red cross locates the density peak
of the mock Virgo halo in the reference simulation. These qualitative analyses illustrate
the claim that, with a sparse and noisy mock similar to cosmicflows-1 (in terms of number
of constraints, zone of extinction without data and large errors on peculiar velocities), the
Wiener-Filter is an optimal reconstruction tool in the linear regime of the gravitational
instability. Structures are not necessarily reconstructed at their exact positions since the
intrinsic accuracy is about 2 h™' Mpec. Still, overall, the density field is recovered when

considering only the linear theory on all scales.
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Reference Simulation Box160 - Wiener-Filter Reconstruction

30 g ‘j ] A “L;H‘;H‘»%;HHH‘ T " T T \;
Q I /é SV
20~ ALY 2= , ;
< 103 o E: ]
<% g ‘ o) ]
Z &S 1 ; |
S DI f
> et Vv v : 1
L T T T N I A 7 )
-205—\ (T R T T A R ; 1
ST TS R R Y S A ¥
'305'\ N" X\T /\/ /\ | \E%T |
30 20 -10 O 10 20 30-30 -20 -10
X (h™ Mpc)
30;—”\ N “”\‘“‘\““‘0“
ENONON NN S
20E > =0 v N N .
\ NN\ ~
10E™ SONON N
~ ~ h

Z (h" Mpc)

ST i (&)

s \‘\’>‘>x
<" —

-20;*’)’)”)/) f \\/7,»
@OT\ Z TSNS
2

\[p L

30 BT

30 20 -10 O 10 0 30-30 20 -10 O 10 20 30
Y (h" Mpc) Y (h™ Mpc)

FIGURE 4.5: XY and YZ views of the reference simulation BOX160 (left) and its Wiener-
Filter reconstruction (right) restricted to the central 60 h=' Mpc zone. The reconstruction
has been obtained using only radial peculiar velocity data from a realistic mock catalog
containing about the same errors and same number of data-points as the observational
cosmicflows-1 catalog. The cosmic flows are represented by black arrows. Overdensity iso-
contours are delimited by solid black lines. The green contour delimitates the mean density.
Red crosses show the positions of the major density peaks in the reference simulation. Even
with this sparse and noisy realistic mock, the Wiener-Filter has enough signal to properly

recover the original cosmic flows and density peaks with a precision of about 2-3 h~! Mpc
in position.

4.2.3.2 Constrained Simulations: RZA-radial versus RZA3D

Once the continuous fields obtained with the Wiener-Filter technique have been extrapo-
lated at the data points’ positions, constraints are displaced from their z = 0 location to
their progenitors’ position at higher redshifts. In addition, constraints are replaced by their
full Wiener-Filter reconstruction in the RZA3D technique. Since simulations are run with

periodic boundary conditions, only the divergent part of the velocity field (velocities due to
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densities inside the box solely) is used to generate initial conditions. Hence, any tidal motion

due to densities outside of the box is removed.

A major objective of this subsection is to compare RZA-radial and RZA3D algorithms.
However, cosmic variance can affect the comparison between methods. To take care of this

effect:

e each RZA-radial derived Initial Condition shares the same random component with one
of the RZA3D obtained Initial Condition. Hence, the simulations resulting from the
same random seed initial conditions are expected to reproduce the same Large Scale

Structure,

e ten constrained initial conditions are built to estimate the confidence level on structure

positions for each procedure.

Resulting simulations are also compared with the reference BOX160 to estimate the average
misplacement of simulated structures at z = 0 with respect to original locations. The com-
parison between the constrained simulations and BOX160 is done on a 2563 Cloud-In-Cell
interpolated grid after smoothing the density and velocity fields with a Gaussian kernel of
2.0 h™! Mpc. When averaging over an increasing number of constrained simulations, the
standard deviation with respect to BOX160 starts at 0.47 in logarithmic unit of density for
one simulation and decrease to a plateau value of 0.37 when considering eight or more simula-
tions. Adding more than ten simulations would not produce, on average, other high and deep
density zones that could be compared between the two methods and with BOX160 (or the
0.37 value would have continued to decrease). The standard deviation of RZA3D simulations
around their average is smaller than that of RZA-radial both in terms of velocity and density
(0.34 against 0.35 in logarithmic unit of density and 246 against 258 km s~!). Although there
is a random component, constrained simulations of BOX160 obtained with RZA3D method
have stronger features, reproduced at very similar positions, than RZA-radial constrained
simulations. The cosmic variance is reduced with RZA3D because constraints are stronger
than in the RZA-radial case as seen on Figure 4.6. The n; components of the data-data

correlation vector n have higher absolute values with RZA3D than with RZA-radial.
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FIGURE 4.6: Distribution functions of the component values 7; of the data-data correla-
tion vector n computed with RZA-radial (dotted red line) and RZA3D (dashed blue line)
constraints. The higher the absolute value of n;, the more the corresponding constraint con-
tributes in the constrained Initial Condition. Since the distribution obtained with RZA3D is
wider than that resulting from RZA-radial, RZA3D constraints are stronger than RZA-radial

ones.

BOX160 contains some replicas of prominent nearby structures such as Virgo, Hydra and

Centaurus. These halos are named hereafter s-Virgo, s-Hydra and s-Centaurus to distin-

guish them from the observed ones. BOX160 contains also a halo called s-Cz (in accord with

Doumler et al., 2013b). These target objects are used to monitor the quality of the simula-

tions. Figure 4.7 shows the density field in the planes containing these objects of the actual
simulation BOX160 (top panel), of RZA-radial (middle panel), and RZA3D (bottom panel)

with simulations averaged on ten different realizations. The main dark matter halos from

BOX160 used as tracers are marked by red crosses in the six panels. There is a recurrent

overdensity at the expected location of s-Virgo (high density peak in the YZ plot) only in
the RZA3D simulations.
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FIGURE 4.7: Visualization of planes containing main simulated attractors (positioned at
X=7 and at Z=-6 h™! Mpc). Solid black iso-contours delimit overdensities. The green
color stands for the mean density in the box. Top: Reference simulation. Middle: Average
over ten constrained simulations using RZA-radial on the mock. Bottom: Average over ten
constrained simulations applying RZA3D on the mock. Red crosses show original positions of
s-Virgo, s-Hydra, s-Centaurus and s-Cz in the reference simulation. Positions of the averaged
replicas in the constrained simulations are shown in blue. Crosses’ sizes are proportional to
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For a more quantitative analysis, dark matter halos are obtained with the Amiga halo finder
for each one of the simulations and the s-halos are identified when recovered. A halo in a
constrained simulation is considered to be a replica of a BOX160 halo when the difference in
position is smaller than approximately 6 h™! Mpc and when masses are of the same order.
The search is restricted to a sphere of 6 h™' Mpc since the scope of this work is to find a
method resulting in an error below 6 h~! Mpc (3 o). Blue crosses on Figure 4.7 are located
at the average position of the look-alikes of s-Virgo, s-Hydra, s-Centaurus and s-Cz halos in
the constrained simulations. The cross sizes are proportional to the number of simulations
(out of ten) in which a replica has been found. Table 4.1 recapitulates the characteristics of
the targeted halos and of their look-alikes: virial masses, positions and standard deviations.
RZA-radial fails to recover s-Hydra and s-Centaurus as separate individual objects in five out
of ten simulations, thus they are not reported in the table. In these five out of ten simulations,
they are collapsed into a single object. The table also records the average of each replicas
distance to the genuine halo. The typical difference is about 5 h™' Mpc for the RZA3D
technique against 6 h=! Mpc for RZA-radial. However, because with RZA-radial more halos
are not found in the 6 h=' Mpc sphere (they are outside of the sphere so farther away) than
with RZA3D, the value for RZA-radial is more biased (lowered) by the restricted search than
that of RZA3D. Still, studying the standard deviations of the position errors shows that it
is possible to reach the floor value imposed by the linear regime, 2-3 h™! Mpc with some
random seeds for RZA3D while it is always impossible with RZA-radial. The table proves
an enhanced accuracy of the RZA3D method in terms of position errors (when compared
with BOX160). The gain is also clear in term of reliability-robustness of the results since
more replicas (out of ten different random seed simulations) are found at a similar location

(smaller standard deviations in positions) with RZA3D than with RZA-radial.

We can also consider a comparison between high density peaks in the Wiener-Filter and
in the constrained simulations. The density peak reconstructed by the Wiener-Filter in the
bottom right quadrant of Figure 4.5 is also present in six RZA3D simulations out of ten when
looking within a ~ 6 h™' Mpc sphere centered on the Wiener-Filter peak. By contrast, there
is a peak in only three RZA-radial simulations out of ten within the same sphere. In both

cases, the typical misplacement is 4-5 h~! Mpc with a standard deviation about 1 h=! Mpc.

RZA3D applied to a mock cosmicflows-1 catalog outperforms RZA-radial applied to the
same mock. The stronger the constraints, the more the cosmic variance that exists over ten
constrained simulations because of a different random component is reduced. The number
and accuracy of constraints in a cosmicflows-1-like catalog are adequate to simulate properly
a look-alike of the Local Universe, within a 30 h™' Mpc radius sphere, with a precision

reaching the intrinsic limitation of the technique.
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Simulation case Mass Average Position X, Y, Z Average Distance Nb of oc-
to reference halo currences

Box160 s-Virgo 3.3 7.12, 10.7, 11.5

RZA-radial s-Vir. 0.25 3.40, 9.88, 17.2 6.9 l/i

s-Vir. 0.34;0 =005 7.78 144, 11.1 ; o= 2.4 ; 5/10

Box160 s-Centaurus  6.07 -13.9, 15.1, -8.81

RZA-radial s-Cent. 3.1;0=2.8 -16.9, 13.6, -9.62 ; o= 3.0 6.0 ; 0=04 5/10

[ RZASD |s-Cent.  7.9;0=40  -172,132,-105;[ 0=19] [50];[a=15] |[10/10]

Box160 s-Hydra 5.18 -22.0, 11.8, -3.35

RZA-radial s-Hyd.

[RzAwD ] iy

Box160 s-Cz 0.96

47;0=23  -21.2,0.32, -4.87; o=1.9
4.7, 0 =2.0 -21.9,10.1,-4.58 ;[ o=13 | [3.0];[o=12] | 10/10

-12.7, 2.68, -6.36

RZA-radial s-Cz

[Rzaw ]

0.80; 0 =0.44 -15.3, 5.56, -10.1 ; 0= 2.3 6.3; o=0.57 3/10

0.40 ;0 =0.19 -12.4, 7.37, -7.20 ; o= 2.3

TABLE 4.1: Average parameters and standard deviations o for target halos looked for in
a 6 h™' Mpc sphere centered on their original positions in the reference simulation. (1)
simulation in which the halos are looked for, (2) dark matter mass in 104 h=* Mg, (3)
average coordinates X, Y and Z and standard deviations, h™! Mpc, (4) average distance to
the genuine halo and standard deviation, h=! Mpc, (5) number of simulations (out of ten
with a different random seed) which contain a replica.

4.3 Constrained Simulations with Cosmicflows-1

Cosmicflows-1, catalog of peculiar velocities (Tully et al., 2008, and subsection 3.5.1), is
used to perform constrained simulations of the Local Universe. For every simulation, we
assume a ACDM model in the 7-year Wilkinson and Microwave Anisotropy Probe (WMAPT)
framework (Komatsu et al., 2011). The cosmological parameters are Hy = 70 km s~! Mpc ™1,
2,,=0.272 and Q2,=0.728 (see Table 2.1). Figure 4.10 recapitulates the main results of this

section:

e the left column is the first step of the WF/RZA/CR technique, namely the Wiener-
Filter,

e the middle column represents the outcomes of one single simulation,

e the last (right) column shows the average over ten different realizations.
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These results are described in the subsequent subsections. Note that we perform in parallel
the same work within the WMAP3 framework to evaluate the impact of a change in cosmol-
ogy. Finding no substantial difference, we decided to present only fields obtained within the

WMAP7 framework to match previous work conducted with cosmicflows-1.

4.3.1 Wiener-Filter Reconstruction of the Local Universe

Reconstructions of the Local Universe obtained with the Wiener-Filter applied to cosmicflows-
1 have already been presented at length in Courtois et al. (2012, 2013) (see Figure 2.4 for
some of the results). This work only uses the Wiener-Filter as a step in the process to reach
the ultimate goal, namely the constrained simulations. Regardless, in absence of access to
the full fields of the Local Universe to compare our final products with, the Wiener-Filter
maps of cosmicflows-1 are taken as proxies to the actual Universe and, thus, are worth
presenting. In the reconstruction, supergalactic cartesian coordinates are centered on the
Milky-Way and the XY supergalactic plane contains the Local Structure. The three main
planes are shown at the supergalactic Z=0, Y=12.5 and X=—2.5 h~! Mpc coordinates to
fit the location of the Virgo cluster. For a direct comparisons between the real Universe
and the Wiener-Filter reconstructed large scale structure the V8k galaxy redshifts catalog
is overplotted as grey dots. This catalog contains 30,124 galaxies with distances modified
by a numerical action model of the Virgo infall for v < 3000 km s~!. It is available at the
Extragalactic Distance Database website. Qualitatively, the real Virgo cluster and the void
behind are reconstructed in the supergalactic XY plane. Virgo is also visible next to the

Local Void in the YZ supergalactic plane. It can also be found in the XZ supergalactic slice.

4.3.2 Constrained Simulations of the Local Universe

The Wiener-Filter reconstructed velocity field is then extrapolated at the location of the data
points. Next, RZA-radial and RZA3D methods are applied to cosmicflows-1 constraints in
order to construct initial conditions with the constrained realization algorithm. Ten random
seeds are used to build initial conditions with periodic boundary conditions for both methods.
It is to be noted that observational radial peculiar velocities are measurements of motions
related to the whole gravitational potential. However, simulations are here run in a relatively
small box, with periodic boundary conditions, where not all the attractors responsible for the
entire motions are present. Thus, replacing velocities that result from the entire gravitational
potential by velocities related to the gravitational potential in the box (namely RZA3D
instead of RZA-radial) is more accurate and constitutes another advantage of the RZA3D
method. Resulting initial conditions are then run from redshifts 60 to 0. The cosmic variance

in terms of standard deviations of ten simulations with respect to their average is 1.45 against
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1.40 in logarithmic unit of density and 303 against 291 km s~! for RZA-radial and RZA3D
respectively. Values are in agreement with results found previously in subsection 4.2.3 for

mock constrained simulations. RZA3D constraints are stronger than RZA-radial ones.

4.3.2.1 Constrained Simulations and WMAP7/ACDM Cosmology

In order to check the compatibility of cosmicflows-1 constrained simulations with the stan-
dard model of cosmology, random simulations are run with the same seeds used to set up
the constrained initial conditions. Figure 4.8 compares the final power spectra and mass
functions at z = 0 of ten RZA3D constrained simulations and corresponding random ones
(RZA-radial results in very similar, if not identical, plots which are thus not shown). A clear
overlap is seen, which leads to conclude that the methodology preserves the cosmology. As

the method does not modify the cosmology, its validity is not altered.
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FIGURE 4.8: Power spectra (left) and mass functions (right) of the ten constrained simula-
tions of the Local Universe obtained with RZA3D applied to cosmicflows-1 (black dashed
lines). The red shaded areas correspond to the range within which the ten random simu-
lations, with the same cosmology as constrained simulations (same assumed prior model),
are contained. The dashed-dotted blue line in the left panel stands for the linear part of
WMAP7. Both constrained and random power spectra and mass functions overlap each
other.

4.3.2.2 Constrained Simulations and Local Cosmography

In the simulations, the supergalactic coordinates are parallel to the box coordinates with
the origin at the center of the box where ideally there is a Milky-Way-like. Table 4.2 and
Figure 4.9 are proofs that no Virgo cluster is simulated at the expected location out of ten

RZA-radial simulations constrained by the observational peculiar velocity catalog assuming
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either WMAPT or WMAP3 (choice which results in negligible differences). Accordingly and
in agreement with the theoretical study which advocate the utilization of RZA3D, the rest of
the section focuses only on the analysis of RZA3D constrained simulations. The compatibility

of the constrained simulations with the observed local cosmography is presented.

Case Mass Average supergalactic Average distance to the Nb of oc-
X,Y,Z position observed Virgo cluster curences
Observed 4% -2.74, 12.0, -0.518

Virgo cluster

RZA3D | (WMAP7)  0.7;0=03 123,138,22;0=12 54;0=12 8/10
RZA3D | (WMAP3)  05;0=02 1.30,13.8,0.70;0=10 4.7;0=038 8/10

RZA-radial (WMAPT) 0/10
RZA-radial (WMAP3) 0/10

TABLE 4.2: Average parameters and standard deviations o for the halos representative of
Virgo. (1) simulations in which the halos are looked for, 2) mass in 10'* h=! My,. *Estimation
of the total (baryonic + dark matter) mass (e.g. Ekholm et al., 2000; Karachentsev and
Nasonova, 2010). (3) average supergalactic coordinates X, Y and Z and their standard
deviations, h™! Mpc, (4) distance from the simulation halo to the observed Virgo location
and standard deviation o, h™! Mpc, (5) number of occurrences in ten different simulations
(if a halo similar to Virgo was found in a 6h~! Mpc sphere).
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FIGURE 4.9: Average of ten constrained simulations obtained with RZA-radial applied to
the observational catalog of peculiar velocities cosmicflows-1. Virgo is never simulated at
the expected location, a void stands at its position.

Figure 4.10 displays the Wiener-Filter reconstruction of the cosmicflows-1 catalog (left),

one single RZA3D simulation (middle column) and an average of ten RZA3D constrained
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simulations (right). Fields are smoothed by a Gaussian kernel of 2 h™' Mpc. Red crosses
mark the position of the Virgo cluster in the observed Universe (see Table 4.2 for the exact
position). The Local Void and Virgo Void are also indicated. The Wiener-Filter serve as
targets for the constrained simulations, with the caveat that the Wiener-Filter provides only
the linear overdensity field. The inner R = 30 h~! Mpc volume is dominated by the Local
Supercluster. The general structure of the Local Universe including positions of the voids are
quite well reproduced by a constrained simulation. The average over ten different realizations
shows that in general the Virgo cluster region is well simulated at a similar location whatever

random component is used.

To quantify the reliability of the RZA3D technique in simulating the Virgo cluster and the

area surrounding it:

e the high density peak of the Wiener-Filter reconstruction is identified in each RZA3D

simulation,

e the Amiga halo finder is used to identify replicas of the cluster in the constrained

simulations.

To proceed, we use the same process as with the mock catalog. There is a density peak at a
similar location to the Wiener-Filter peak in the ten RZA3D constrained simulations. The
typical misplacement with respect to the Wiener-Filter peak is about 8-9 h~! Mpc with
a standard deviation about 2 h™! Mpc. Although the supergalactic Y and Z components
are very similar in the Wiener-Filter (~ 13 and 1 h™! Mpc) and in the simulations (~ 13
+ 1 and 3 £ 2 h™! Mpc), the error in position is quite high because in the supergalactic
X direction the shift in position, with respect to cosmicflows-1 Virgo cluster, is negative in
the Wiener-Filter (~ -3 h~! Mpc) while it is positive in the simulations (~ 4 h~! Mpc).
Still, there is absolutely no density peak in the RZA-radial constrained simulations even
when looking in a 10 h™' Mpc sphere centered on the Wiener-Filter density peak. The
blue crosses in Figure 4.10 stand for the positions (average positions, in the right column)
of the Virgo-like halos. Table 4.2 provides details about masses, positions, errors in position
and standard deviations. For completeness, the table presents the results obtained in both
WMAP7 and WMAP3 frameworks although differences are negligible. A Virgo-like halo is
present in eight out of ten simulations. By comparison, with RZA-radial, no replica of Virgo

in 6 h™! Mpc spheres centered on the observational position was found.

A synthetic Local Universe with a Virgo cluster using only observational peculiar velocities
is produced for the first time thanks to the WF/RZA /CR technique described in this work.
This is a proof of concept that the WF/RZA/CR method can be applied to observational

peculiar velocities to successfully build constrained Initial Conditions.
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FIGURE 4.10: XY, YZ and XZ supergalactic slices of the Wiener-Filter reconstruction (left),
of one constrained simulation (middle) and of the average of ten constrained simulations
(right) of the Local Universe within a 30 h™' Mpc radius sphere. The supergalactic slices
are located at Z = 0, X = -2.5 and Y=12.5 h~! Mpc to fit the location of the Virgo cluster.
The overdensity, at 2 h=! Mpc Gaussian smoothing, is represented with black isocontours.
The green contour stands for the mean density. The flows are shown with black arrows. In
the XY supergalactic plane, the Virgo cluster and the Virgo Void are both reconstructed
(left column) and simulated (middle column). Virgo is also visible next to the Local Void in
the YZ supergalactic slice. In general Virgo is well simulated, at a similar location, whatever
random component is used (right column). V8k (catalog of redshifts) galaxies are shown for
reference as grey dots in a &= 10 h™! Mpc thick slice on the Wiener-Filter reconstruction. The
red crosses locate Virgo in cosmicflows-1. The bigger blue crosses represents the (average)
location of the Virgo-like halos.
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4.4 Biases

A preliminary study of the second catalog of the Cosmicflows project (Tully et al., 2013, and
subsection 3.5.2) revealed that although superior in size (number of constraints and spatial
coverage) than cosmicflows-1, some bias effects cannot be ignored anymore at this level.
This section aims at presenting the different biases that can affect observational catalogs like
cosmicflows-2. This section and the subsequent one do not have the pretension to correct for
the whole lot of biases but try to minimize their effects proposing some recipes to be applied

to the observational catalog.

4.4.1 Malmquist Biases

Distance estimates are subject to severe systematic biases which affect the derived radial
peculiar velocities. Almost always all gathered under the term ”Malmquist Bias”, in reality

three types of Malmquist Bias can be distinguished:

e the most often mentioned Malmquist Bias, successively called Problem I, Selection
Effect/Bias, "r against V", Distance-dependent, Frequentist, Calibration problem, M-
bias of the second kind (Kaptney, 1914; Malmquist, 1922; Han, 1992b; Hendry and
Simmons, 1994; Sandage, 1994; Teerikorpi, 1990, 1993, 1995, 1997; Willick, 1994), is
analogous to a selection effect in magnitude resulting in underestimated distances. A
magnitude limit in a selected sample result in a mean apparent magnitude smaller
than it should be. As the limit decreases, in unit of magnitudes with the distance,
the bias increases. Namely, dwarfs and other dimmer galaxies are more and more
under-represented in the sample with respect to brighter galaxies as the observer looks
farther and farther. Consequently, their contribution to the mean apparent magnitude
is increasingly reduced. Thus, the mean increases slower than it would have, with the
distance or redshift, would all the galaxies have really been included. This explains
why equation 3.11 is not valid at higher redshift unless some corrections are made. In
this work, this bias affects principally the calibration of the Tully-Fisher relation: as
some faint galaxies are "missing” in the sample, the absolute slope of the relation is
underestimated so are distances (data points are lacking in the Tully-Fisher diagram
below the fitted relation. Where they to be present, the absolute slope would have been
higher). In this work, this selection effect was minimized with two successive processes:
1) inverse fits were used to calibrate the Tully-Fisher relation and 2) a correction to
be applied on distance modulus estimates was derived to minimize the bias relic (Tully
and Courtois, 2012, and section 3.4). This relic is due principally to the fact that
galaxies are more likely to be scattered towards brighter "regions” in the diagram than

the opposite because of the shape of the Schechter luminosity function,
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e the second bias is called the Homogeneous Malmquist Bias and gathers terminology
such as Problem II, General Malmquist Bias, Geometry Bias, "V against r”, Clas-
sical, Bayesian, Inferred-distance problem, M-bias of the first kind (Kaptney, 1914;
Malmquist, 1920; Han, 1992b; Hendry and Simmons, 1994; Lynden-Bell et al., 1988b;
Sandage, 1994; Strauss and Willick, 1995; Teerikorpi, 1990, 1993, 1995, 1997). Because
our observations are restricted to a sphere centered on us, from the homogeneity of the
Universe, the number of observable galaxies increases with the distance. Then consid-
ering a true distance (r), there is a higher probability to observe a galaxy at (r) + dr
than at (r) — dr. Consequently, the probability for a galaxy which distance estimate
is r to have been put closer is higher than the opposite. Namely, we are more likely to
underestimate the distance. In practice, it is even more complicated than that because
of the presence of small scale structures. The bias is a function of the direction of

observation. This leads us to the third Malmquist Bias,

e the last of the Malmquist Bias is called the Inhomogeneous Malmquist Bias (e.g. Dekel,
1994; Hudson, 1994; Landy and Szalay, 1992). It is the result of the small scale struc-
tures, namely of the fluctuations of the number of galaxies. To apprehend this bias,
let’s consider a group of galaxies at (r) with null radial peculiar velocities for sim-
plicity. Because of observational uncertainties, these galaxies are randomly scattered
to the foreground and background of (r). For all galaxies at the same redshift, their
estimated radial peculiar velocities obtained on either side of (r) result in an inaccurate
infall towards (r) giving birth to spurious structures and flows. In other words, galaxies
are more likely to be scattered from high density regions towards low density regions
than the opposite. Reducing this bias and the previous one (which are highly related) is
a complicated task and we suggest that grouping galaxies in groups and clusters might
reduce this bias as recommended by e.g. Burstein et al. (1990) and Nusser and Davis
(2011): because galaxies in a same cluster or group are approximately at the same
distance, averaging over galaxy distance estimates (to keep only distance estimates of
groups and clusters) reduces errors on distances, thus on radial peculiar velocities, of
clusters and groups by the square root of the number of estimates. Retracing the foot-
steps of the methods proposed for instance by Dekel et al. (1999) for the POTENT
technique or by Hudson (1994), in addition to grouping, we can envisage to correct the
distances or more appropriately, we can minimize their uncertainties. We will propose
a method to reduce uncertainties on distances devised during this work in the next
section. However, unlike the above mentioned methods, ours is based on correcting

peculiar velocities. Before explaining the proposed method, we define another bias.
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4.4.2 FError Bias

This last bias results from the assumption that fractional errors on distances, hence errors
on radial peculiar velocities, have a Gaussian distribution (see subsection 4.1.2). In reality,
because distances are obtained via a logarithmic function applied to distance moduli (equation
3.10), a Gaussian (symmetric) distribution of errors on distance moduli results in a lognor-
mal (asymmetric) distribution of fractional errors on distances and as a result of errors on
peculiar velocities. This asymmetric bias associated with the Gaussian weight distribution,
by assumption, in the bayesian Wiener-Filter technique, results in a spurious overall velocity
infall onto the Local Volume. After assessing the existence of this bias, a method is proposed
to minimize it. This technique based on probabilities and Gaussian distributions is similar
to bayesian methods. It is developed and tested with very realistic mock catalogs, look-alikes
of the second data release of the Cosmicflows project. To control the cosmic variance, mocks
are built out of ten different realizations of constrained cosmological simulations of the Local

Universe. The method is then applied to cosmicflows-2 in the last section.

Errors on observed peculiar velocities grow linearly with the distance. Although these errors
can soon be larger than the peculiar velocities themselves, the bayesian Wiener-Filter tech-
nique applied to radial peculiar velocities reconstruct overall the overdensity and velocity
fields (e.g. Courtois et al., 2012, and subsection 4.3.1). More importantly this distribution of
errors is not symmetric when considering two constraints one located closer to the observer
than it should be and the other one positioned farther away. This asymmetry introduces
a strong bias in the final recovered velocity field. As a matter of fact, observed distances
D of galaxies are derived from the distance modulus pu. Thus even if distance errors in
magnitudes are distributed evenly around the modulus value, since a logarithmic function
is used to derive the distance in Megaparsecs from the modulus p in magnitudes, the error
in megaparsecs is not anymore distributed symmetrically around the distance value D, as
shown by the following set of equations derived from the definition of the distance modulus
3.10:

Ap=+vAm2+ AM?2 ~ AM symmetricaround p
AD = (Ap x In(10) x D)/5  asymmetric around D

(4.12)

where A notations stand for the uncertainties.

Since radial peculiar velocities and their uncertainties are derived from distances by the
classical equation 3.7, the asymmetric distribution propagates onto peculiar velocity errors
via Avpee = Ho x AD. This asymmetrical error distribution results in a bias in peculiar
velocities. Large negative peculiar velocities have an abnormal large error which cannot

be properly propagated in the Wiener-Filter because the sign of the error on a particular
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distance modulus is unknown. As an example, let’s consider a galaxy at 100 Mpc, with
Vpee=0 km s7!, Ho=75 km s~' Mpc~!. A 2 ¢ error on the distance modulus gives either
34.2 or 35.8 mag instead of 4 = 35. The derived distance is either 69 or 145 Mpc, giving

a radial peculiar velocity of 2311 or -3338 km s~!.

As a result, a larger error is made by
allocating a radial peculiar velocity of -3338 km s~! to this galaxy than when assuming 2311
km s~!'. However, the sign of the error on the distance moduli is unknown, hence, although
-3338 km s~ ! is assigned to this galaxy, proportionally the same uncertainty is attributed

I was given. Since,

to that peculiar velocity as it would have been if the value 2311 km s~
the Wiener-Filter technique uses the errors on peculiar velocities as an indication of the
strength of the signal in the correlation matrixes, it results in giving the same weight to both
values although the absolute negative value is more incorrect than the positive value. This
asymmetrical bias results in a spurious overall large infall seen in the velocity field. Figure
4.11 reveals a skewness towards negative peculiar velocities in cosmicflows-2 confirming the

presence of the asymmetry which impacts the reconstruction.
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FIGURE 4.11: Histogram (solid line) of radial peculiar velocities in cosmicflows-2 dataset.
The dashed histograms stand for the possible variations of the histogram shape because of
uncertainties on radial peculiar velocities. A larger tail is visible in the negative side of this
diagram due to the error bias.
Yet, before continuing, it is legitimate to question the relationship between all the above
mentioned biases. If they are intertwined, then we can assume that minimizing one we will
also drive the others closer to their minimum. Surely, minimizing all of them is better but in
absence of such a possibility, it is interesting to define the relations between the biases. As a
matter of fact, Homogeneous and Inhomogeneous Malmquist Biases are related. If the first
one is due to a larger probability of scatter from farther distances to closer distances, the
second one is the result of a larger probability of scatter from high density regions towards low
density regions. In addition, Sandage (1994) highlighted the connection between Selection
Bias (also a higher probability of scatter from fainter to brighter ”regions” than the opposite)
and the Homogeneous Malmquist Bias. As for Landy and Szalay (1992), they proved that the

error lognormal distribution influences the Inhomogeneous Malmquist Bias affecting grandly
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the conclusion on the backside infall onto an attractor. Figure 4.12 recapitulates the bias
effects in the form of a diagram. Minimizing a bias, thus decreasing distance uncertainties,
we potentially decrease all the others as they all have effects proportional to distance errors.
The selection effect has already been minimized, we choose to approach the last presented

bias and we propose a method to minimize it too.
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FIGURE 4.12: Schematization of the different bias effects on individual distance estimates,
hence on individual inferred radial peculiar velocities. From left to right, top to bottom:
selection effect, galaxies are more likely to be scattered towards brighter "regions”, as a result
without appropriate correction distance estimates are too small; homogeneous Malmquist
bias, the probability to find a galaxy at (r) + dr is higher than at (r) — dr, consequently
without correction distances are again underestimated; inhomogeneous Malmquist bias, it
is even more complicated than that because the distribution of galaxies is not homogeneous
on small scales, thus galaxies are more likely to be scattered from high to low density
regions resulting in spurious flow patterns; another complication comes from the lognormal
distribution of errors on distance measurements which results on larger errors at larger
distances. The big black arrows in each panel show the ”direction” in which galaxies are
more likely to be scattered. The dashed red and blue lines give an example of what we could
measure and infer for an individual galaxy with a given uncertainty, while the red and blue
solid lines mimic the distance range of where the galaxy is more likely to be. Biases are
highly related. Minimizing one potentially helps minimizing another. Above all, reducing
errors on distances probably drives all of them down.
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4.4.3 Minimizing Bias(es)

We can advocate that the effects of all the above mentioned biases were reduced (thus

negligible) in cosmicflows-1 for at least two reasons:

e the coverage of cosmicflows-1 was smaller than that of cosmicflows-2 and we know that

bias effects increase with the distance (errors are proportional to distances),

e cosmicflows-1 was in majority constituted of spiral galaxies which are mostly in the
field. On the opposite, cosmicflows-2 contains a large fraction of elliptical galaxies be-
cause it uses, in particular, distance estimates from the Fundamental Plane relation (see
section 3.5). Ellipticals populate in majority dense regions unlike spirals. Cosmicflows-
2 is then more likely to suffer from non-linear motions and from the Inhomogeneous

Malmquist Bias due to high concentrations of single measurements in dense regions.

It is important to note that these biases are by definition highly dependent on the studied
sample (e.g. Landy and Szalay, 1992). Thus, mocks built to test correction methods have
to be very realistic especially since these correction methods rely only on the information at
hand.

4.4.3.1 A Gaussian Distribution of Radial Peculiar Velocities

Instead of correcting distances as widely proposed in previous methods (e.g. Dekel et al., 1999;
Hudson, 1994), we propose to adjust first peculiar velocities and then go back to distances
to correct them. Our process is then based on the distribution of radial peculiar velocities
rather than on the radial distribution of galaxies (e.g. Hudson, 1994; Landy and Szalay,
1992). Sheth and Diaferio (2001) proved that the distribution of radial peculiar velocities
considering groups and clusters (namely removing virial motions) should be a Gaussian.
Consequently, unless we are located at a particular position in the Universe, which is highly
improbable, the distribution of radial peculiar velocities obtained from our position should
be close to a Gaussian too. As a matter of fact, Gaussianity is found in mock peculiar
velocity catalogs drawn from N-body simulations described in subsection 4.4.3.2. Namely,
dark matter halos (what we can actually have access to with dark matter only simulations and
which are themselves well described by the linear theory) are equivalent to groups, clusters
or isolated galaxies. To derive a method to minimize the error bias in observational datasets,
this Gaussianity will be the initial assumption. Yet, if studying simulations, Bhattacharya
(2008) confirmed the overall Gaussian distribution of radial peculiar velocities, he also warns

us that:
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e the cosmic variance due to the particularity of our neighborhood,

e Poisson noise due the restricted size of the sample of peculiar velocities,

both affect the distribution. Still, a major advantage of our study comes from the fact that:

e we use constrained simulations of the Local Universe to produce a set of mocks on

which we test our method,

e our mocks mimic as much as possible the characteristics of the observational catalog

under study.

As a result, both cosmic variance and Poisson noise are reduced.

4.4.3.2 Very Realistic Mocks

To test our method to be discussed in the next subsection, we need to build even more
realistic mocks than whose built to test the augmented Reverse Zel’dovich Approximation

(RZA3D). These mocks need to match cosmicflows-2 on several aspects which are:

e the repartition of the data points (number, spatial coverage and distribution including
the Zone Of Avoidance),

e the distribution of errors which is highly bimodal in cosmicflows-2 (see Tully et al.,

2013, and subsection 3.5.2),

e the asymmetry bias (namely the errors need to be inserted at the level of the distance

moduli not directly on distances anymore),

e the exact error on a distance is unknown, only its 1 o uncertainty is available.

Several realizations are tested to measure the robustness and the accuracy of the method
discussed in the next subsection. Because results are similar, if not identical, for every mock
tested, only one mock built out of one of the ten simulations is discussed in full length
and breadth in this work. The simulation has 5123 particles and is 320 h™' Mpc wide.
It was computed within the framework of the CLUES project (Constrained Local Universe
Simulations, Gottlober et al., 2010) using the method described in section 4.2. A look alike for
all the major structures of the Local Universe can be found in this chosen simulation. Figure
4.13 allows to identify in the XY plane: the Shapley supercluster in the top left corner, Coma
in the top middle, Virgo is close to the center and the Centaurus-Great Attractor region is

on Virgo’s left side. Using Amiga halo finder (Knollmann and Knebe, 2009), a list of halos is
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drawn from this simulation. Halos are then selected to match cosmicflows-2 grouped catalog
in terms of size (number of constraints), distance extent and spatial distribution (including
a Zone Of Avoidance). On Figure 4.13, this compiled list of halos is visible as blue dots in a
10 h=! Mpc thick slice in the XY plane.

Simulation

1505 2P

100

50

Y (h™ Mpc)

|

-100
7 @) 6 © f
'150@9‘”@\””(%” oL AR e BT
-150 -100 -50 0 50 100 150

X (h™ Mpc)

FIGURE 4.13: Distribution of selected halos (blue dots) in the XY plane (+ 5 h™! Mpc
slice in Z) of a cosmological simulation which is similar to the Local Universe. Halos are
selected to build a mock similar to the second catalog of the Cosmicflows project. Black and
green contours show the density field and the mean density.

As predicted by Sheth and Diaferio (2001), the distribution of halo radial peculiar velocities
(computed with respect to the center of the box, where the Milky-Way like is assumed to
be) of this mock catalog can be modeled by a Gaussian visible in Figure 4.14 in blue. This
mock is called original in the sense that it has no error on galaxy distances yet. To match
cosmicflows-2 observed catalog as closely as possible, errors need to be inserted into the mock.
To preserve the asymmetry problem, a Gaussian distribution of errors with 0.2 magnitude

scatter (as on average in the observational catalog) is added to distance moduli. Then to
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preserve the strongly bimodal distribution of errors visible in cosmicflows-2, constraints at
large distances from the center of the box which were attributed a (close to) zero error are
reassigned to have a 1 o (0.42 magnitude) error on distance moduli. Disrupted distances
and corresponding radial peculiar velocities are then computed. Figure 4.14 displays the
distribution of radial peculiar velocities for this ”biased mock” by a dotted black line. This
distribution is flatter than a theoretical Gaussian with a larger tail on the negative side
and, in that sense, is very similar to cosmicflows-2 distribution on Figures 4.11 and 4.21.
Figure 4.15 also presents the histograms of fractional errors on distances (left) and of errors
on radial peculiar velocities (right) in black. Then, because in the observed universe, the
exact error made on a particular measurement is unknown, distances are attributed either a
9%, 15%, 20% or 25% uncertainty in accordance with their real inserted errors to match the

distribution of uncertainties in cosmicflows-2.
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FIGURE 4.14: Distribution of radial peculiar velocities in the original mock catalog (blue
solid histogram) and in the mock containing the asymmetry bias (black dotted histogram).
The original distribution of radial peculiar velocities can be modeled by a normal distribution
(blue solid curve). The distribution of corrected radial peculiar velocities (red solid line) is
shown by the red histogram. A Gaussian can also fit this distribution (red dashed line).



Chapter 4. Simulated Universe 163

—T T T T T T T T T T T T T T T T T 800rT T T T T T T T
[ Biased L 1 i Biased
1000 j Clt?rsfgcted j [ Corr:zacigd
Corrected (abs. val) |: L
800 - i 600 I -
600 = i
Z F 1 Z 400 =
400 *
L 200 _
200 *
(0] T L ou
0.4 02 0.0 0.2 0.4 0 1000 2000 ) 3000 4000
erry/d errVpec (kms™)

FIGURE 4.15: Histograms of fractional errors on distances (left) and on radial peculiar
velocities (right) in the biased mock (solid black lines) and in the corrected mock (solid
red lines). The bimodal distribution of fractional errors on distances with two peaks at
8-10% and 20% errors (absolute values) similar to cosmicflows-2 is visible. The dotted red
histogram shows the distribution of absolute fractional errors on distances after minimization
of the bias with a median at 0.06.

4.4.3.3 The Method

To minimize the bias in the mock catalog, an approach similar to a bayesian way is taken.
After application of the process, the mock should have a Gaussian radial peculiar velocity
distribution with variance and location peak similar to the original ones. In the mock case,
variance and peak are determined by the mock with the original positions, hence velocities.
Regardless, in the ten different realizations, the standard deviation of the Gaussian fitted to
the radial peculiar velocity distributions for mocks similar to cosmicflows-2 is always around
300 & 50 km s~!. As a result, a peculiar velocity is modified according to its probability
of belonging to the theoretical Gaussian (with a typical standard deviation of 300 km s~!)
and according to its uncertainty. Two cases can be distinguished, either the radial peculiar
velocity is positive or it is negative. Then corrected radial peculiar velocities are derived

with equations 4.13 and 4.14 devised in this work:

if vpee > 0,
Vpece = f[P(Vpee — A) + (1 = p)(Vpec + A)] + (1 — f)Vpec (4.13)

if vpee <0,
Upece = f[P(Upec +A)+(1- p)(vpec —A)+ (1 - f)vpec (4.14)

where A is the radial peculiar velocity uncertainty (Awpe) ; p is the probability that a radial
peculiar velocity does not belong to the theoretical Gaussian (thus it needs to be corrected
and it should either be reduced if it is highly positive or increased it is highly negative) ; f is

the probability that the radial peculiar velocity estimate is wrong. Namely, f is proportional
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to the fractional uncertainty on distances (peculiar velocities) normalized to the maximum
fractional uncertainty plus 0.05 (best parameter in our different realizations to retrieve a
distribution close to the theoretical Gaussian) to keep a minimum of trust towards the initial

measurements.

These corrected radial peculiar velocities enable us to compute distances for constraints
using the classical formula 3.7 in reverse order. After corrections, the distributions of radial
peculiar velocities, fractional errors on distances, and errors on radial peculiar velocities are
all shown on Figures 4.14 and 4.15 in red. The distribution of absolute fractional errors on
distances shown by the red dotted line reveals that, after correction, the distribution of errors
is poissonian with a median at 0.06. These distributions and median values are typical for
all the mocks built out of the ten different realizations. The distribution of radial peculiar
velocities can now be approximated by a Gaussian with variance and peak similar to the
original one. Fractional errors on distances are distributed on an approximate Gaussian and
the distribution of uncertainties on radial peculiar velocities is less flat and contained in a

smaller interval of values.
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FIGURE 4.16: Distribution of constraints in the XY plane in a = 5 h~! Mpc thick slice.
Blue dots stand for constraints at their true positions. Black dots are constraints from the
biased mock. Constraints located at corrected positions are shown as red dots. These latter
are overall closer to blue dots than black ones. Namely, after correction, positions (hence
distances and radial peculiar velocities) are more accurate than previous ones.
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Figure 4.16 is a proof of concept that, after correction, positions (hence distances and cor-
rected radial peculiar velocities) are overall closer to the true positions than biased ones. On
this figure, blue dots stand for the true positions in the XY plane of halos in a £ 5 h™' Mpc
thick slice. Red dots represent constraints at corrected positions while black dots show halos
at their location before correction. Red dots are overall closer to blue dots than dark ones.
Namely, in the corrected mock, positions (distances and velocities) attributed to constraints
are closer to true ones than biased positions are. Other slices have been looked at result-
ing in the same conclusion. Moreover, no additional bias is created since, after correction,
positions are not always closer to / farther from the center of the box than original ones.
Namely, distances are not all under/over-estimated. The reconstruction technique is put into
practice in the next subsection on this minimized biased mock. Fractional errors of 6% on
distances are assumed in agreement with the upper limit of fractional error medians found

in the various corrected mocks.

4.4.3.4 Tests

For purposes of completeness, the Wiener-Filter technique is applied to three mock catalogs:
biased, corrected and, as a mean of control, original with positions and 3D peculiar veloci-
ties, to remove any bias due to an increasing smoothing with distance. The reconstruction
obtained with the original mock represents the best overdensity and velocity fields we can
expect from the Wiener-Filter method would the data be perfect. As the goal of this sub-
section is not to test the accuracy of the Wiener-Filter technique already widely tested (e.g.
Courtois et al., 2012; Zaroubi, 2000; Zaroubi et al., 1999, 1995, and subsection 4.3.1), it is
in a sense easier to compare the reconstruction obtained with biased and corrected mocks to
that former reconstruction to determine to which extent the bias is properly minimized. The
three reconstructions are on Figure 4.17. The reconstruction obtained with the biased mock
(middle column) present what is expected from the asymmetry problem, namely a large infall
in contradiction with the simulation. In addition, structures are extended and very round.
On the opposite, the strict infall has disappeared from the reconstruction resulting from
the corrected mock (last column). Structures are more sharply defined in good agreement
with the best result we can obtain using the Wiener-Filter technique on a catalog similar to
cosmicflows-2 but ideal (first column). After this qualitative analysis, a quantitative one can
be derived from cell-to-cell comparisons between reconstructions obtained with the original
and the two other mocks. Such comparisons are visible on Figure 4.18 between cells within
200 h—' Mpec.
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FI1cure 4.17: XY (top), YZ (middle) and XZ (bottom) slices of the overdensity (black
contours) and velocity (black arrows) fields reconstructed with the Wiener-Filter technique
applied to the original (left), biased (middle) and corrected (right) mocks. The green contours
show the mean density. The net spurious infall onto the volume is clearly visible in the
velocity field reconstructed from the biased mock and structures are round. On the opposite,
structures are more sharply defined (for instance, the look-alike of Shapley in the top left
corner of the XY plane) in the reconstruction obtained with the corrected mock and the
strong infall has disappeared (for instance, the expulsion from the void in the top right

cor

ner of the XZ plane).
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The scatter around the 1:1 linear relation is smaller when comparing all but 0.3% of the cells
within 200 h™! Mpc between reconstructions obtained with original and corrected mocks
than between those obtained with original and biased mocks. Even when considering the
whole box, standard deviations are 378 km s~! (2.1 ) for the reconstruction obtained with
the corrected mock against 433 km s=! (2.4 o) for that obtained with the biased mock.
This is probably the results of the flatter radial peculiar velocity distribution in the biased
mock rather than a close to a Gaussian distribution in the corrected mock. The slight tilt,
observed in the comparisons, is due to the fact that the Wiener-Filter smooths according
to given errors. Since no error was attributed to constraints in the original mock while
some were given to velocities in the biased and corrected mocks, the reconstructed velocity
fields resulting from the Wiener-Filter applied to these two last mocks are smoother than
the velocity field obtained with the original mock. A point which is important to notice as a
large lack of power will lead to simulations (the final goal) lacking some power on all scales.
Namely, the random field added by the Constrained Realization technique would not suffice
to re-establish the proper power. Thus, once a process is applied to an observational catalog,

checking the power left in the data is required.
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FIGURE 4.18: Cell-to-cell comparisons within 200 h™! Mpc between reconstructions ob-
tained with original and biased mocks (left) and between those obtained with original and
corrected mocks (right). The gradient of grey delimits the 50, 68, 80, 95 and 99.7 % confi-
dence zones. Apart from the 0.3% cells which cannot be find in the 95% confidence zone, all
the other cells are less scattered around the 1:1 ideal relation when comparing original and
corrected mocks than when comparing original and biased mocks.
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FIGURE 4.19: Residual velocity fields in the XY, YZ and XZ planes when subtracting the
Wiener-Filter reconstructed fields obtained with the original mock to those obtained with
biased (top) and corrected (bottom) mocks. Velocity fields have been first normalized by their
maximal value. While the spurious infall due to the bias is clearly visible in the residual
between reconstructions obtained with biased and original mocks, the effect is minimized
when looking at the difference between the fields obtained with corrected and original mocks.
As no major pattern in the bottom panel is missing in the top panel, the correction process
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does not lead to additional false patterns in the velocity field.
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FIGURE 4.20: Same as the previous figure except for the reconstructed velocity field obtained
with the original mock. It is replaced by the velocity field from the original simulation.
Conclusions are unchanged.
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To check that the infall bias into the box is indeed minimized without creating additional
spurious patterns in the velocity field, Figure 4.19 shows the residual between velocity fields
normalized by their maximal value obtained with biased, corrected and original mocks. On
this figure, the spurious infall present in the reconstruction derived with the biased mock is
visible while it is largely minimized in the field reconstructed from the corrected mock. No
flow which was not in the biased reconstruction appears in the velocity field obtained after
application of the correction process. Residual flows are dimmed or in another word min-
imized. For completeness, Figure 4.20 represents the residual between reconstructions and
the original simulation. Standard deviations between original simulated and reconstructed
velocity fields are 191 km s~! and 225 km s~! when corrected and biased mocks are used
respectively. The exact same conclusions can be drawn. The process devised in this work

contributes to decrease the bias in the mock catalog.

Because our procedure also decreases errors on distances, in addition to the latent rela-
tionship between the biases, we can suggest that it also contributes to some extent to the
minimization of the Malmquist Biases. Regardless, our main concern is with the constrained
simulations which are not affected as much as the reconstruction by the bias (since the precur-
sory simulation used to test the proposed correction is itself based on a preliminary version of
cosmicflows-2), probably because RZA3D, through the Wiener-Filter, is capable of removing
itself most of the biases by replacing noisy radial peculiar velocities with noise-filtered 3D
peculiar velocities. Argumentations can be made in favor of more mathematical derivations
but, because of the cosmic variance, biases, and thus the required correction, highly depend
on the catalog at hand. Thus, we found the method we propose here to be satisfactory to

reach our ultimate goal.

4.5 CLUES with Cosmicflows-2

In this last section, we apply the whole process to the observational catalog cosmicflows-2
within the framework of Planck cosmology but with a slightly modified normalization, than
that given in Table 2.1, in agreement with the value chosen in other works of the CLUES
project (og = 0.829). From the bias minimization up to the RZA3D method, cosmicflows-2
is adjusted before being input in the Constrained Realization of Gaussian Fields algorithm

to produce initial conditions which are run with GADGET.

4.5.1 Minimization of the Bias(es)

For comparison purposes, the Wiener-Filter is first applied to three versions of cosmicflows-2

(CF2). The primary or biased version which can be compared with the biased mock, the
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corrected version to be linked with the corrected mock and the version released in Tully
et al. (2013). This cosmicflows-2 version, hereafter CF2-catalog, contains a small correction
made at that time to reduce the asymmetry bias. That correction consists in shrinking large
negative radial peculiar velocities to make the radial peculiar velocity distribution more
symmetric as it is visible on Figure 4.21. However, both distances and uncertainties are kept

in the process.

4.5.2 Reconstruction of the Local Universe Within 160 h~! Mpc

Figure 4.22 shows the reconstruction obtained out of CF2-biased, CF2-catalog and CF2-
corrected. This figure shows that the small correction previously made goes in the proper
direction. The spurious infall is less pronounced although the correction is not quite strong
enough to minimize the effect of the asymmetry bias. The correction proposed in this work on
the other hand reveals that the reconstructed velocity field resulting from the Wiener-Filter
applied to CF2-corrected does not suffer from the spurious infall anymore. For instance in the

top left corner of the supergalactic YZ plane on Figure 4.22, there is an eviction from the void.
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FIGURE 4.21: Radial peculiar velocity distributions in CF2-biased (dotted black line), CF2-
catalog (solid green line) and CF2-corrected (solid red line). After correction, the distribution
of radial peculiar velocities in CF2-corrected can be fitted by a Gaussian (dashed red line)
with variance and peak close to the original ones (obtained with mocks).
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Moreover, it appears that the x?/d.o.f (with d.o.f the degree of freedom) value of the CF2-
catalog is below 1. As this value measures the adequacy between the data and the power
spectrum, a value less than 1 reveals than the dataset is missing some power probably
because the allocated error budget is too large when applying the Wiener-Filter. For instance,
considering TF distance estimates, since they do not all have a 20 % error (this is the TFR
scatter or 1 o uncertainty), assigning to each one of them such an error does not constitute
the optimal solution. Still, in absence of another solution, these large uncertainties are
allocated to every TF distance measurements of isolated galaxies in CF2-biased and CF2-
catalog. The signal is oversmoothed by the Wiener-Filter. On the opposite, a value greater
than 1 is due to the non-linear part of the dataset which is not taken into account a priori
in the linear bayesian Wiener-Filter technique. As explained before in subsection 4.1.2, a
sigma non-linear added in quadrature to the radial peculiar velocity errors can re-establish
a value close to 1. As Initial Conditions can be derived solely from catalogs with value close
to 1 or resulting simulations will lack some power at all scales, the x?/d.o.f value should
be controlled. Namely the power spectrum of the resulting simulations will not match a

measured power spectrum, such as Planck power spectrum, if x?/d.o.f is not close to 1.

To estimate the quality of the reconstruction of the Local Universe obtained with the Wiener-
Filter applied to CF2-corrected, Figure 4.23* shows the reconstructed overdensity field to
which is superimposed the 2MASS redshift catalog as white dots. The gradient of colors
gives an estimate of the overdensity in the reconstruction with an increase from blue to red.
Typically, voids are in blue and overdensities are in red/orange. Structures of the Local

Universe are reconstructed.

“This figure was made with the SDvision software (e.g. Pomarede et al., 2013).
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FIGURE 4.22: Supergalactic XY (top), YZ (middle) and XZ (bottom) slices of the overdensity
(black contours) and velocity (black arrows) fields reconstructed with the Wiener-Filter
technique applied to CF2-biased (left), CF2-catalog (middle) and CF2-corrected (right). The
green contours show the mean density. The net spurious infall onto the volume is clearly
visible in the velocity field reconstructed from CF2-biased and structures are quite extended.
On the opposite, structures are more sharply defined in the reconstruction obtained with
the corrected mock (for instance, the great wall on the left of the supergalactic YZ plane)
and the strong infall has disappeared (for instance, evictions from regions at the top left and
right corners of the supergalactic YZ and XZ planes are clearer).



Chapter 4. Simulated Universe 174

0000 -5000 0' 5000 10000 15000
SGX (km/s

-15000-10000 -5000 0 5000 10000 15000
SGY (kms)

FiGure 4.23: XY and YZ supergalactic planes of the reconstructed overdensity field
smoothed at 2 h™! Mpc of the Local Universe obtained with the Wiener-Filter applied
to CF2-corrected. The color gradient represents the overdensity field: from blue to red,
the overdensity increases. Typically blue regions stand for voids while red/orange zones are
overdensities. Galaxies from the 2MASS redshift survey are superimposed as white dots
for comparison purposes only. Structures of the Local Universe are well recovered. The
”finger-of-Gods” mentioned in subsection 2.1.2.3 of Chapter 2 are clearly visible in 2MASS,
thus the comparison has its limitation.
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4.5.3 Constrained Simulations of the Local Universe: Main Attractors and
Voids

4.5.3.1 Increasing the Resolution

The spatial coverage of the cosmicflows-2 catalog has required an extent in boxsize that
would drastically reduce the resolution of any simulation based on a 2562 grid. Consequently,
constrained realization fields cannot be transformed in initial conditions for GADGET as such.
To increase the number of particles from 2563 to 5123, we use the software GINNUNGAGAP,
developed within the CLUES project by Steffen Knollmann. This package requires the white
noise of the constrained realization fields, the power spectrum and the assumed cosmology.
With all these parameters, it is capable of increasing the size of the grid to then produce

primordial fields to build initial conditions for GADGET.

The white noise field w(x) is generated with the density perturbation field §(x) and the

power spectrum P(x) which follow the relation in Fourier space:

(k) = /P(K).w(k) (4.15)

Note that this method applied in reverse enable the production of a random field with the
statistics of the power spectrum for the constrained realization technique: it is enough to
generate a Gaussian white noise field with zero-mean and unity-variance and to combine it

with the power spectrum according to formula 4.15 (Bertschinger, 2001; Prunet et al., 2008).

4.5.3.2 Local Cosmography, an Insight in the Zone of Avoidance

With a series of ten constrained simulations, containing 512 particles, produced with the
observational data, cosmicflows-2, within the framework of Planck cosmology, following the
whole process described in this Chapter, we can study in more details the Local Universe.
We choose to present the result for the best realization we have for a boxsize of 500 h~!
Mpc and a grid of 5123. Regardless, the ten realizations are very similar. They have all
variances about 0.44 in unit of density around their average. This latter is visible in Figure

4.24 alongside the chosen realization.
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FIGURE 4.24: Supergalactic XY, YZ and XZ planes of one realization (top) and of the aver-
age of ten constrained simulations (bottom) of the Local Universe obtained with cosmicflows-
2. Solid black contours show overdensities while dashed black contours are underdensities.
The mean density is in green. Underdensities in the average have to be present in most of the
simulations. In other words, there cannot be in any simulation a major peak at their loca-
tions (if there is any overdensity it cannot be higher than half the value of the highest peaks).
The most underdense regions have to be underdense in all the simulations. Regarding the
highest peaks, they have to be present at least in approximately half the simulations to show
up as high as they are. The highest peaks and the largest voids in the unique realization
are present in the average revealing they are stable in the different realizations. These peaks
and large voids correspond to large overdensities (superclusters) and underdensities (major
voids) in the Local Universe.
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This average shows the voids and the peaks with the highest probability. In other words,
large voids and high density peaks are visible in the average only if they are formed in the
majority of the ten realizations. For instance, the highest peaks in the different realizations
have values around 16-20 in unit of density. Since the highest peak values in the average
are approximately 8-10 in unit of density, the highest peaks have to be present at least in
approximately half of the ten realizations (0.5x[16-20]) at the exact same location. As for
underdense regions (including voids), their value in unit of density is necessarily below 1,
thus underdensities need to be present in approximately all the simulations. If there is any
exception, the overdensity at this location cannot be higher than approximately half the value
of the highest peak ([8-10] in unit of density). This value quickly decreases with the number
of peaks to reach underdensity values. In other words, in this average of ten realizations, the
major overdensities are representative at 2 ¢ and voids at more than 3 . Back to the 500
h~! Mpc boxsize, it is a compromise between a better resolution but a greatly reduced zone
of possible study due to boundary conditions and, a decreased resolution but a zone of study
which extends just at the limit of the Shapley supercluster where no spurious effect should

appear because of boundary conditions.

In the chosen realization, on Figure 4.25, a look alike for most superclusters and voids in
the Local Universe can be found. Maps of superclusters and voids to assess the quality of
the constrained simulation are given in Figures 4.26 and 1.1 (Chapter 1). Little is known
about structures in the Zone of Avoidance but, from what can be found in the literature, the

simulation reproduces quite well the observations also in this zone:

e a connection between the Perseus-Pisces supercluster below the the Zone of Avoidance
to a Abell cluster (Abell 569) above the zone of obscuration around SGX~6000 km s~!
(Chamaraux et al., 1990; Focardi et al., 1984) is recovered,

e the Perseus-Pisces chain folding back into the zone of obscuration around SGXa7500

km s~ (Marzke et al., 1996; Pantoja et al., 1997) phenomenon is also visible,

e afilament extends from Hydra and Antlia clusters across the Zone Of Avoidance around
-3000 km s~! to reach the region of the Great Attractor (~Centaurus Supercluster,
Kraan-Korteweg et al., 1994). A potential supercluster is on an extension of the fila-

ment around -6000 km s~! in the zone of obscuration (Kraan-Korteweg et al., 1994),

e and last but not least, Kraan-Korteweg et al. (1994) noted a clustering around -15,000
km s~! in the zone hidden by our galaxy dust, a potential connection between the
Horologium and Shapley Superclusters. The simulation contains this high density
zone. Actually more than half of our ten constrained simulations has a high density
zone at this position. Consequently, although it is slightly beyond the maximum zone
of study we established (L/2 where L is the boxsize, or [-L/4,L/4] ), it looks like it is

a robust structure not an artifact of periodic boundary conditions.
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FIGURE 4.25: XY and YZ supergalactic planes of the smoothed at 2 h—! Mpc simulated
density field of the Local Universe for the best realization obtained with cosmicflows-2
catalog. The color gradient represents the density field: from blue to red, the overdensity
increases. Typically the darkest regions stand for voids while red/orange zones are large
overdensities and green are filaments. Major overdensities and voids in the simulation can
be paired with a major supercluster or void in the Local Universe (white color names). Note
that in the XY plane Sextans and Bootes superclusters are not in the plane.



Chapter 4. Simulated Universe 179

FIGURE 4.26: Representation of the superclusters and major voids in the Local Universe
(from www.atlasoftheuniverse.com).

Before going into a more quantitative analysis, Figure 4.27 shows side by side reconstruction
and simulation. On that figure, the simulation has been smoothed at 5 h=! Mpc to facilitate
the comparison with the smoothed at 2 h™' Mpc Wiener-Filter field computed on half
the grid size. Although the Wiener-Filter shows only the linear field, reconstruction and
simulation agree very well. The reconstruction presents more feature in the center but the
increasing smoothing with the distance to the center of the box is probably the cause for
such an observation. The simulation allows to go deeper into the Zone of Avoidance and to
extend further the study of the Large Scale Structure and, more importantly, it supplies the

whole density field (including non-linearities).
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F1GURE 4.27: Comparisons between reconstruction and constrained simulation of the Local
Universe obtained both with cosmicflows-2 modified by the process explained in this work.
To facilitate the comparison, the simulation has been smoothed at 5 h™' Mpc and the
reconstruction at 2 h™! Mpc. Galaxies from the 2MASS redshift survey, in a 4+ 10 h=! Mpc
thick slice, are superimposed as white dots for comparison purposes only. Structures of the
Local Universe are well recovered in both cases. A few of them are identified (white names).
While the Wiener-Filter reconstructs fairly well the Local Universe in the center of the box,
the simulation allows to go farther in distances and deeper into the Zone of Avoidance and,
more importantly, it supplies the whole density field (including non-linearities).

4.5.3.3 Recovering Clusters

Finally, we turn our attention to the study of halos. To match halos in the simulation with
clusters in the Local Universe, we use first Amiga halo finder to compile the list of halos in
the simulation. Then, we look for look-alikes of known Abell clusters (Tully et al. private
communication) and we add to the list Virgo and, as another example, Ursa Major. We did

not look especially for the Coma Supercluster because it is surely fragmented and regardless
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it is composed of Abell clusters. Thirteen Abell clusters in addition to Virgo, Ursa Major
and their paired halos alongside their distance, their supergalactic coordinate, their mass
and their shift in position are given in Table 4.3. The ability to found dark matter halos at
so close positions (about 3-4 h=! Mpc for a search restricted to a 6 h™! Mpc sphere) to that
of observed clusters is remarkable. Masses are not always satisfactory but two parameters
can be in cause, first simulations are run with dark matter only; second and probably with
the most effect, the mass resolution of the simulation is not exceptionally high. The process
is repeated for Virgo and Ursa Major in the nine other realizations. Including the tenth
chosen realization, we found nine Virgo-like and ten Ursa Major-like dark halos in a 6 h™!
Mpc radius sphere. The look-alikes of Virgo have masses ranging between 1.04 and 4.29 10'3
h=! Mg with a median at 2.23 103 h=! M. As for the Ursa Major-like halos, their masses
are about 1.39 (median) and varies between 1.05 and 3.74 10'> h=' M. More remarkable
than masses, are the small shifts in positions in intervals like [3.03-5.58] (median 3.53) and

[1.39-4.2] (median 2.5) in h™' Mpc for replicas of Virgo and Ursa Major respectively.

In any case, Figure 4.28 is a proof of concept that densities are overall recovered at the
positions of Abell clusters. We can conclude with the remarkable agreement between recon-
structions, simulations and observations of the Local Universe. This is the first time that
such simulations are produced using solely peculiar velocities to reproduce all the major
attractors and voids in the Local Universe at positions shifted by a few megaparsecs. Even
the assumptions and observations regarding the content of the Zone of Avoidance seem to
be recovered. The next step is inevitable: increasing the resolution to 1) better recover halos

and pursue with more detailed studies of the Local Universe and 2) run gas simulations.
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Name Mass D SGX SGY SGZ dscx Oscy Oscz Osa
Virgo de+14* 12.26 -2.79 11.93 -0.56
19219 2.23e+13 12.15 0.74 12.08 -1.04 3.54 0.16 -0.48 3.57
Ursa Major 3.4e+13* 12.27 5.06 11.16 0.58
15991 2.60e+13 13.85 7.38 11.64 1.34 2.32 0.48 0.76 2.49
100005 4.58e+14* 69.8 -2.45 68.59 -12.71
580 2.16e+14 70.82 -0.75 69.59 -13.17 1.68 1.00 -0.45 2.00
200046 2.92e+14* 96.8 70.18 -54.65 -38.19
6499 5.11e+13 92.13 67.39 -51.68 -35.73 -2.79 2.97 247  4.76
100041 2.49e+14* 94.3 10.34 59.96 72.05
4935 6.16e+13 92.92 5.30 59.16 71.46 -5.04 -0.80 -0.58 5.13
100018 2.36e+14* 74.7 -4.27 74.18 -7.67
25 7.60e+14" 73.33 0.24 73.00 -6.96 4.51 -1.19 072 4.72
100083 1.55e+14* 99.7 -45.52 31.60 82.88
4425 6.67e+13 98.60 -45.87  29.18 82.26 -0.35 -2.42  -0.63 2.53
120005 1.35e+14* 72.1 -2.42 71.25 -10.75
6052 5.35e+13 74.20 -3.11 73.70  -8.01 -0.70 2.44 2.74  3.74
200022 1.12e+14* 48 -36.84 -27.28 14.23
1095 1.56e+14 43.68 -33.54  -22.99 15.94 3.31 4.29 1.72 5.68
100175 1.10e+14%* 99.7 -91.89 34.42 -17.65
936 1.70e+14 97.86 -91.28 30.88 -17.02 0.61 -3.54 0.63 3.65
200252 1.07e+14%* 85.8 48.88 -55.70 -43.24
4161 6.94e+13 85.72 49.74 -53.71 -44.60 0.86 1.99 -1.36 2.56
200052 9.88e+13* 64.5 34.57  -47.57 -26.50
5462 5.74e+13 69.25 39.50 -49.45 -28.10 4.93 -1.88 -1.59 5.51
200032 9.61le+13* 58.1 -36.00 -32.27 32.22
608 2.09e+14 54.15 -35.02 -29.10 29.31 0.98 3.17 -2.91 441
100337 7.58e+13* 95.4 15.48 42.12 -84.18
5762 5.55e+13 101.13 17.46 44.55  -89.10 1.97 2.43 -4.91 5.83
100061 6.97e+13* 71.2 1.30 71.06 -4.28
436 2.49e+14 71.52 4.01 71.35 -2.77 2.72 0.29 1.51 3.13

TABLE 4.3: Virgo, Ursa Major and 13 Abell cluster look-alikes in the best realization: (1)
name of the cluster/halo, (2) mass, h™! Mg within Planck cosmology. *Estimation of the
total (baryonic + dark matter) mass (e.g. Ekholm et al., 2000; Karachentsev and Nasonova,
2010; Karachentsev et al., 2013; Tully, 2010) and Tully et al. private communication. T is
likely to be a component of the Coma supercluster (this halo accounts for approximately
half the total mass of Coma), (3) distance from the center of the box, h™* Mpc, (4) to
(6) supergalactic coordinates, h™' Mpc, (7) to (9) shift in position on the supergalactic

coordinates, h™! Mpc and (10) total shift in position (sum in quadrature), h=* Mpc.
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FIGURE 4.28: Superposition of Abell clusters (blue dots, Tully et al. private communica-
tion), located in a 4+ 10 h™! Mpc thick slice in Z in the XY supergalactic plane, on top of a
constrained simulation of the Local Universe. Black and green contours stand for the over-
densities and mean density. The simulation has been obtained with the process described
in this work applied to cosmicflows-2 catalog. Top: simulation smoothed at 2 h™' Mpc,
bottom: smoothing at 5 h™' Mpc. Overdensities are overall simulated at the positions of
Abell clusters. No Abell cluster lie at the center of a major void.






Chapter 5

Summary & Prospectives

The work presented in this manuscript results from the combination of two international
projects: The observational project Cosmicflows which goal is to cartography the Local Uni-
verse. In this regard, this project’s accomplishment consists in catalogs of accurate distance
measurements to map local deviations from the Hubble expansion. These distance estimates
are mainly obtained with the Tully-Fisher distance indicator ; The CLUES project which
produces constrained simulations of the Local Universe with, in this case, the observational
catalogs of peculiar velocities built by the first project. These velocities are ideal tracers of
the underlying gravitational field at the origin of the formation of structures as they account
for both baryonic and dark matter. Resulting constrained simulations of the Local Universe
enable to apprehend our environment with exquisite tools to better understand the forma-
tion and evolution of our meighborhood. In this closing Chapter, we summarize the work

accomplished within these two projects and propose some perspectives.

5.1 Summary

5.1.1 Observed Universe

A great concern with studies of motions on large scales with the correlation between galaxy
luminosities and their rotation rates or Tully-Fisher relation (TFR, Tully and Fisher, 1977)
has been the possibility that systematic errors in photometry could create spurious flows.
Small offsets between different observers, instruments, conditions, hemispheres, or seasons
could be sky-sector dependent. With the new generation of telescopes both in the radio
field and in the photometric domain, cosmic flow studies have received an impetus. The

space-base Spitzer telescope (Werner et al., 2004) is an example of such a telescope with

185



Chapter 5. Summary & Prospectives 186

enhanced capacities. Probably the single most important advantage of the use of space-
based photometry such as offered by the Spitzer mission comes from the confidence that
measurements are on the same scale at better than 1% in all parts of the sky. There are
other advantages. Obscuration is minimal both within targets and from our Galaxy and
backgrounds are very low. This latter point is especially significant because studies of galaxy
flow patterns can now reach high levels of completion across the sky. Then it is a considerable
advantage that the great majority of flux at [3.6] band arises from old stars that are good
representatives of the baryonic mass, mainly those on the red giant branch. It can be surmised
from the modest scatter in the Tully-Fisher relation that there is a close coupling between
the mass in stars and the dynamical mass. There is also an advantage, at least vis a vis
ground infrared observations, with the sensitivity achieved because of very low sky noise. All

but a few percent of the total flux is measured within isophotes resolved from the noise.

Our photometric procedures for the semi-automated analysis of Spitzer IRAC (Fazio et al.,
2004) channel 1 data at 3.6 um have been described. The galaxy surface photometry was
carried out with the ARCHANGEL software (Schombert, 2007; Schombert and Smith, 2012)
adapted for Spitzer data input. Material of interests for the project was available for about
2000 galaxies from the Spitzer Heritage Archive including the subprogram Cosmicflows with
Spitzer. We have demonstrated the ability to use Spitzer Space Telescope mid-infrared data
to perform surface photometry with a relatively high accuracy. No correlation was found
between magnitude uncertainties and other important galaxy parameters such as inclination,
apparent area, or semi-major axis. We concluded that, after all corrections, uncertainties on
magnitudes are of the order £0.05 for the regular spiral galaxies at the heart of the project.
These uncertainties are small compared with the typical overall scatter in the Tully-Fisher
relation. Low surface brightness galaxies or very irregular ones require special attention but

these classes of galaxies are not of principal interest to us.

The current goal of the project is to measure distances, hence map peculiar velocities, across
the local universe within 10,000 km s~! using mainly the Tully-Fisher relation. The Ex-
tragalactic Distance Database (EDD, Tully et al., 2009) contains HI profile information
(Courtois et al., 2009) that provides useful linewidths for over 11,000 galaxies. Spitzer obser-
vations provided the complementary photometric information required for a dense, detailed
map of structure and motions in the near part of the Universe especially close to the Zone

of Avoidance due to the obscuration by our galactic disk dust.

First, galaxies selected as part of the calibrator sample were used to calibrate the mid-
infrared Tully-Fisher relation. Then, using the calibrated relation, distance estimates have
been derived for the rest of the galaxies with acceptable inclinations and available linewidths
that either we have reduced or that come from the S*G analysis. A small disadvantage with

the mid-infrared TFR calibration has been revealed with the documentation of a color term.
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This color term is understood as the natural consequence of the correlation between galaxy
rotation rate or luminosity and color (Tully et al., 1982). At a given linewidth, red galaxies
progressively become brighter relative to blue galaxies as one considers the TFR at longer
wavelengths. Evidence is accumulating that intrinsic scatter in the simple two parameter-
TFR is minimal with photometry at about 1 um. A consequence of the color dependence
is a steepening of the TFR toward the infrared. At the expense of the requirement of extra
knowledge in the form of a color, the TFR in the [3.6] band was reformulated in a form
with scatter that matches the best optical formulations. The correction is small and not
acutely dependent on the color measurement. The appropriate inverse TFR equation for the
measurement of distances is, after checking the robustness deriving two relations with two

different calibrator samples (selection in B and K bands):
Mcy, o = —(20.31 £0.07) — (9.10 £ 0.21)(logW? = —2.5) (5.1)

where MC[sAe] is derived from the corrected apparent magnitude [3.6]b’i’k’“ of a source minus
the color term A[3.6]%!" = —(0.52 £0.10)[(I>*F — [3.6]%%2) 4-0.73] with I Band magnitude
shifted to the AB system. The slope of this formulation has been derived from a sample of
273 galaxies distributed in 13 clusters, while the zeropoint is established from 31 calibrators
with Cepheid or tip of the red giant branch distances. The root mean square scatter in
distances found with these galaxies (cluster template and zeropoint calibrators combined) of
0.43 mag, 22% in distance, is close to the accuracy found with the overlapping I band study
(Tully and Courtois, 2012).

Distance measures derived with this calibration are subject to a small Malmquist bias or
selection effect (Willick, 1994), requiring the distance modulus correction p¢ = p+0.004(u —
31)23. After application of bias and color corrections, a preliminary estimate of the Hubble
Constant can be made from the velocities and distances to seven clusters at Voa g > 4000 km
s~1. Accounting for all error sources (sum in quadrature), the determination is Ho = 75.0 &
5.5 km s~! Mpc~!. The difference between the value determined with this mid-infrared
analysis compared with the I band value found with the same procedures and an overlapping

sample is AHy < 1 km s~ Mpc~!

, not a formally significant difference. We reiterate that
the great strength of the present calibration is the high confidence in uniformity over the
entire sky. Nevertheless the present sample of only seven clusters beyond the domain of
known extreme peculiar velocities was unsatisfactorily small. Subsequently, the [3.6] band
calibration was extended to a calibration of the Type Ia supernova (SNIa) scale, analogous
to what has been done at I band (Courtois and Tully, 2012b), permitting a determination

of Hy at z ~ 0.1.

The mid-infrared TFR calibration of the SNIa distance scale led to a result for the Hubble
Constant that is not significantly different from the earlier optical TFR calibration. The
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earlier calibration made use of a considerably larger collection of material. Besides using over
50% more individual TFR galaxies, it gave consideration to 61 groups or clusters hosting SNIa
with distances not only from the TFR but also with Cepheid, surface brightness fluctuation,
and fundamental plane measurements (Courtois and Tully, 2012b). Nevertheless we contend
that the present confirming work has value because it puts to rest a concern with the optical
study. The optical photometry was acquired by a diverse community of observers on several
telescopes with a variety of detectors and filters and subject to the vagaries associated with
ground-based observations. This mid-infrared photometry has been acquired with a single
observing configuration in space advertising photometric consistency across the sky to better
than 1%. The study has extended the calibration to distances where peculiar velocities

should have negligible impact and we found Hy = 75.5 + 3.3 km s~! Mpc™".

Distances for Cosmicflows encompass measures by other methodologies than the TFR either
from the literature or from other subprograms of the project. Foremost among these are
Cepheid Period-Luminosity Relation (Freedman et al., 2001, 2012), Tip of the Red Giant
Branch (Lee et al., 1993; Makarov et al., 2006; Rizzi et al., 2007), Surface Brightness Fluctua-
tion (Blakeslee et al., 2010; Tonry et al., 2001), Fundamental Plane (Colless et al., 2001), and
Supernova Ia (Jha et al., 2007; Riess et al., 2011) procedures. The diverse material is drawn
together in EDD which goes beyond the compilation of catalogs relevant to extragalactic
distances to include redshift catalogs, that with various levels of completion describe the
distribution of galaxies in the Local Universe, and group catalogs, that help identify entities
where averaging over velocities or distances is reasonable. The first assembly of distances
in this program (Tully et al., 2008) has now been given the name cosmicflows-1. This work
has contributed to build the second catalog of the Cosmicflows project (cosmicflows-2, Tully
et al., 2013) and has initiated the development of a third one with Spitzer observations which
will be completed with other measurements in the mid-infrared (WISE, Wright, 2008, Neil
et al. in prep.). With two catalogs ready cosmicflows-1 and cosmicflows-2 and a third one
in preparation, a collaboration with the CLUES project has been established to pursue re-
constructions (e.g. Courtois et al., 2012) and constrained simulations (e.g. Gottlober et al.,
2010) of the Local Universe.

5.1.2 Simulated Universe

A great concern with numerical simulations to be compared with observations to study the
Local Universe is cosmic variance. This cosmic variance is due to the fact that there is
only one universe that we can observe only, at one time, from our ”particular” position
within the Large Scale Structure environment. Namely, the surrounding environment of
the object of study is as important as the object (e.g. Garrison-Kimmel et al., 2014). To

minimize the cosmic variance effect, the CLUES collaboration works within the framework
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of numerical cosmological constrained simulations of the Local Universe. The first CLUES
simulations based on the Mark III catalog of peculiar velocities (Klypin et al., 2003) were
not very precise: 1) structures in the simulation at z=0 were shifted by 10 h=! Mpc from
their observed positions and 2) density constraints were used to simulate nearby clusters.
The main deficiency of the Constrained Realization of Gaussian fields algorithm (Hoffman
and Ribak, 1991, 1992) used to produce the initial conditions was not to account for the
cosmic displacement field whereas galaxies observed today are at different locations from
their precursors at higher redshifts. A partial remedy to the problem, called the Reverse
Zel'dovich Approximation, was suggested and tested by Doumler et al. (RZA, 2013a,b,c).
This approximation consists in shifting constraints back in time from their positions at
redshift z=0 to the locations of their precursors at higher redshifts. The technique was
yet to be tested on more realistic mocks and on an actual observational catalog of the
Cosmicflows project. The work presented in this manuscript is thus the first attempt to
produce simulations constrained solely by an observational catalog of peculiar velocities from

the Cosmicflows project.

Since cosmicflows-1 (peculiar velocity catalog) extends only out to about 30 h=! Mpc (ra-
dius), derived constrained simulations are subject to the cosmic variance inherent to the
particularities of our neighborhood. Accordingly to test either a reconstruction or a genera-
tor of initial conditions method, mock catalogs have to be drawn from a previous constrained
simulation which looks like the Local Universe and an ensemble of initial conditions has to
be produced. The mock catalogs used in this work have been designed to mimic the ob-
servational catalog by including distance measurement errors and a large continuous zone
without data (Zone of Avoidance due to our Galaxy extinction). Tests on these mocks and
on cosmicflows-1 revealed that the original RZA, from now-on called RZA-radial, method
could be refined. We suggested that observational radial peculiar velocities are subject to
uncertainties and probably also biases which prevent them from completely defining the curl
free velocity field. Thus, the RZA algorithm with its additional feature, which replaces orig-
inal observed radial peculiar velocity vectors by their full 3D reconstructions provided by
the Wiener-Filter estimator (Zaroubi et al., 1999, 1995), should be a remedy to this flaw.
The augmented RZA method (called RZA3D) has been tested against the same mocks and
resulting simulations have been compared with RZA-radial and original simulations. The
enhanced precision and reliability of RZA3D has been validated. The RZA3D methodology
has been subsequently applied to the actual cosmicflows-1 catalog. Only after such a process
of the observational dataset, the Constrained Realization of Gaussian fields technique was
applied to build various realizations of the initial conditions. The different ensuing simu-
lations recover the observed Large Scale Structure with a typical accuracy of 5 h™! Mpc

in position, the best realizations reaching a 2-3 h™! Mpc precision, i.e. the limit imposed
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by the linear theory. The methodology succeeded in performing robust constrained simula-
tions using only observational peculiar velocities as constraints. However, cosmicflows-1 was
too shallow to enable constrained simulations that could reproduce all the main attractors
and voids of the local dynamics. Cosmicflows-2 catalog which contains more than 8,000
galaxy distances (1,800 in cosmicflows-1) and extends out to about 150 h~! Mpc was more

appropriate.

Yet, reiterating the process with the second catalog of the Cosmicflows project revealed that
this greater spatial extent catalog suffered from biases (Kaptney 1914 ; Malmquist, 1920 and
e.g. Dekel, 1994; Han, 1992b; Hendry and Simmons, 1994; Hudson, 1994; Landy and Szalay,
1992; Sandage, 1994; Teerikorpi, 1990, 1993, 1995, 1997) that needed to be minimized before
pursuing with the work. First, cosmicflows-2 was grouped. Second, a correction devised
in this work to minimize in particular the asymmetry bias observed in the second catalog
of the international Cosmicflows project was proposed. This bias is due to the fact that
distance errors have a lognormal distribution rather than a Gaussian one resulting in an
asymmetric radial peculiar velocity distribution. This asymmetric distribution inserted in
the bayesian Wiener-Filter technique results in a spurious infall onto the Local Volume as,
by assumption, a Gaussian weight distribution is assigned to radial peculiar velocities. The
correction was developed and tested on mocks closely matching cosmicflows-2 in terms of
size (coverage, number, spatial distribution including the Zone of Avoidance), lognormal
errors, uncertainties (quasi bimodal distribution) and absence of exact knowledge of errors.
The method to minimize the bias, similar to bayesian ways as it relies on probabilities and

Gaussian distributions, corrects velocities according to the following formula proposed in this

work:
if Vpee > 0,

Upece = fIP(Vpec = A) + (1 = p)(Vpec + A)] + (1 = f)vpec (5.2)
if vpee < 0,

Vpece = f[p(vpec +A)+(1- p)(vpec —A)+ (1 - f)“pec (5.3)

where A is the radial peculiar velocity uncertainty (Awpe.) ; p is the probability that a radial
peculiar velocity does not belong to the theoretical Gaussian (thus it needs to be corrected
and it should either be reduced if it is highly positive or increased it is highly negative) ; f is
the probability that the radial peculiar velocity estimate is wrong. Namely, f is proportional
to the fractional uncertainty on distances (peculiar velocities) normalized to the maximum
fractional uncertainty plus 0.05 (best parameter in our different realization to retrieve a
distribution close to the theoretical Gaussian) to keep a minimum of trust towards the initial
measurements. After correction, distances are computed accordingly and a 6% fractional
error on distances is assumed in agreement with the upper limit of the fractional error

medians measured for the corrected mocks. As this method reduces the error on distances,



Chapter 5. Summary & Prospectives 191

we can expect that it also minimizes other Malmquist Biases to some extent especially since

biases are all related to distance errors (Landy and Szalay, 1992; Sandage, 1994).

The whole process has then been applied to the second catalog of the Cosmicflows project
from the minimization of the asymmetry bias up to RZA augmented, both devised in this
work. Then the resulting dataset was input in the Constrained Realization of Gaussian fields
algorithm to produce constrained simulations of the Local Universe. The second generation
of constrained simulations of the Local Universe performed in this work, solely from observa-
tional peculiar velocities, has finally been presented and shown to reproduce the Large Scale
Structure of the Local Universe. The majority of the superclusters of the Local Universe
within 200 h—! Mpc are recovered so are the filaments interconnecting them, even across
the Zone Of Avoidance. Major voids are also simulated. Looking for specific clusters like
the Abell clusters a handful of them are found with appropriate masses. Regardless, these
halo-replicas are found at locations approaching by a few megaparsecs, typically 3-4 h—!

Mpec, the observational positions of Abell clusters.

5.1.3 Conclusion

Galaxies are sources of observations. Still, they are only tips of the iceberg of a larger
scheme which involves a mysterious dark component: the dark matter and energy. The
standard cosmological model is currently accepted as an elegant theory in which are included
these two necessary exotic dark components. Subsequently, although it can be far from
the truth, this cosmological model enables to simulate the formation and evolution of the
Universe in a remarkable agreement with observations. From initial perturbations to growth
of structures, the Universe seems to be understood to a great extent. Comparisons and
synergies between observations from the Cosmicflows project and constrained simulations
from the CLUES project presented in this work confirm the largely accepted scheme at least
on large scales. The only missing component to perfect comparisons between observations
and simulations are baryons. They still need to be analyzed and studied in thorough details
in simulations to reconcile entirely observations with theories. Yet, before taking this step,
1) observational catalogs are improvable especially in terms of coverage, cosmicflows-3 is
an example, and potentially reduction of uncertainties and biases, 2) resulting dark matter
constrained simulations have yet to be studied more thoroughly to deliver some aspects of
the Local History before adding any gas material. The constant back-and-forth between
observations and simulations provides us with a way to refine our numerical methods but
also to better exploit our observational data (e.g. removing biases, Lavaux et al., 2008, and
section 4.4.3).
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5.2 Prospectives

The main goal of the combined ”CosmicCLUES”! project is to study the Local Universe
formation and evolution to better understand the cosmology of our Universe and as a result
the nature of dark matter. To this end, carrying on developing the synergy between the
theoretical, observational and numerical fields of research is essential. The direct comparisons
between the observed and the simulated universes will enable to confirm, to refine and to

develop the current theoretical understanding of structure formation.

5.2.1 Observations

In the observational field, there are two main points which might be worth looking into:

e first and foremost, there is the increase in size of the future catalogs both in coverage

and in density (spatial extent and number of measurements),

e second, the improvement in distance estimate accuracies.

Actually, the collaboration has already begun to work on both points. The first point has
begun with the collection of data to build cosmicflows-3. Spitzer has already supplied part
of it and, for instance, WISE (Wright, 2008) will provide the rest of it. The calibration
of the Tully-Fisher relation for WISE bands is already in progress (Neil et al. in prep).
Gathering even more data from archives regarding HI profiles and re-measurements in a
consistent way are also ongoing (Courtois et al. in prep). Photometric data will then be
collected from other all-sky surveys like PanStarrs (Kaiser et al., 2002). Cosmicflows-4 can
be envisaged with 100,000 observations, up to 500 h~! Mpc, from the Australian Square
Kilometre Array Pathfinder and Apertif (Johnston and Deboer, 2008; Verheijen et al., 2008).
Regarding the second point, the collaboration has taken three paths; 1) one which tries to
improve grouping of galaxies (Tully et al. private communication). As a reminder, grouping
improves group distance estimate accuracies as the square root of the number of grouped
galaxies, 2) one which aims at reducing the uncertainty on galaxy inclinations with the
soon to be launched Citizen Science project (alternatively, a recent paper by Obreschkow
and Meyer (2013) proposes a method to derive the Tully-Fisher relation without galaxy
inclinations. This process can indirectly be used to constrain inclinations of galaxies with
unknown inclinations, this matter could be look into more thoroughly) and 3) the last one
which concentrates on reducing the scatter in the Tully-Fisher relation (Zaritsky et al.,
2014) using the Baryonic Tully-Fisher relation. That is now deemed appropriate to explain
in more detail this Baryonic Tully-Fisher relation (BTFR) and the results found. This

!Note that this name is not official and is just given here for conveniency.
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relation relies on the observations that the scatter in the TFRs varies with the use of another
parameter (color, half light radius, concentration index, size, morphology, see e.g. Pizagno
et al., 2007) which probably means that the ratio of dark-luminous matter varies within
the disk populations. Perhaps so, but what about the relation baryonic-dark mass? As the
baryonic mass is the sum of the stellar and gas mass (formula 5.4), a tighter correlation
between the baryonic mass and the rotation rate of galaxies would imply that the classic
TF is valid because luminosity approximates quite well the stellar mass and the gas mass is
negligible in most galaxies. Deviant galaxies from the classic TF are indeed gas dominated
galaxies and special galaxies in the sense that they are not classic disk dominated spirals.
The BTFR is able to reconcile disagreements which can be found between such different
systems, namely they do lie on the same BTFR but have their own classic TFR (e.g for
massive disk galaxies and for Hickson compact group galaxies, Noordermeer and Verheijen,
2007; Torres-Flores et al., 2013). The Faber-Jackson relation (FJR) has also its equivalent
the BFJR (Catinella et al., 2012).

Mgas = 1.4 x[(3.7 - 0.8T + 0.04372) +1] x (2.36 x 100000 x D? x Fyp)
accounts for  corrects for gives
He & metals My, My
(5.4)
M. = 1075 FE8 Fs (DE2 6,
' : 0.05

Mbaryonic =M, + Mgas

from McGaugh and de Blok (1997); Zaritsky et al. (2014) with 7" the numerical morphological
type, between approximately 0 and 10 for late type galaxies, and from Eskew et al. (2012).
Myqs is in units of 10° Mg, Fx are fluxes (integrated within the HI profile in units of Jy km
s~1 or in [3.6] and [4.5] Spitzer bands in Jy) and Dy, the luminosity distance. Zaritsky et al.
(2014) noted that the baryonic content of the galaxy considered, Mpgryonic as above defined,
accounts only for the condensed fraction of baryons onto the central region of spiral galaxies
(both extremely cold and hot material and far from the center baryons are not considered).

A fraction found to be a constant 40% (Zaritsky et al., 2014).

In any case, the BTFR relation is found to have a reduced scatter with respect to the classic
TF in various bands (e.g. Zaritsky et al., 2014, at 3.6 pum). However, stellar masses are
still to be better determined. For instance, some tensions between BTFR slopes found by
McGaugh (2012) and Zaritsky et al. (2014) might be due partially to stellar normalizations.
As a matter of fact, gas-dominated galaxies and stellar-dominated galaxies if fitted separately

share the same BTFR slope but when fitted together result in a higher BTFR slope. The
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slope can be driven up more or less depending on the different stellar-normalizations affecting
the stellar-dominated galaxy zeropoint. A reconciliation is absolutely necessary because the
slope value influence the derived distance estimates. On another matter, a higher slope (/4)
privileges the MOdified Newtonian Dynamics model (Milgrom, 1983a,b,c) over the standard
ACDM model.

Although the BTFR has a quite reduced scatter with respect to the classic TFR in the
dwarfs regime, it is not null or small enough to be yet accounted for by the sole observational
errors. Among the possible effects, we note the concentration of dark matter that may vary
differently from the center to the edge (Dutton, 2012) or some interaction between baryonic
and dark matter that may come into play (Desmond, 2012). These are even more reasons
to test the relations with simulations, to compare simulated and observed galaxies to better

understand galaxy formation.

5.2.2 Simulations

Large scales are well reproduced by dark matter only simulations but on small scales because
of the complexity of star and galaxy formation, the baryonic physics cannot be neglected.
Accordingly, for the CLUES project, the next step after reproducing the local Large Scale
Structure is to dig into the matter of galaxy formation and evolution in the Local Universe.
However, running a full hydrodynamical simulation including star formation within the Large
Scale volume with the necessary resolution is currently unconceivable. Then, the CLUES

project can follow different paths:

e running gasdynamical simulations in a smaller volume with higher resolution. Such
simulations can be envisaged within the framework of zoomed simulations. To this end,
the method presented and refined in this work to build constrained initial conditions
could be used to produce constrained density fields. These density fields could then be
converted into white noise fields which would ultimately be input in GINNUNGAGAP
to produce multi-scale initial conditions or, alternatively, into the publicly available
Music (Multi-Scale initial conditions) code developed by Hahn and Abel (2011) which,
to date, has been more tested. These codes both use the popular ”"zoom-in” technique
(see Bertschinger, 2001, for the precursor of the technique) which consists in increasing
the resolution in region of interests (clusters of galaxies, specific objects) selected in
the simulation at z = 0. To this end, the corresponding peak patch in the initial white
noise field from which the region of interest is going to emerge has to be identified.
Then, the resolution is increased in the white noise field in this particular patch while
the large scale is left at low resolution. Large scale modes have to be kept to preserve

their tidal influences on the particular region of interests. Assuming that the baryon
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distribution at the initial redshift follows that of dark matter, a Boltzmann solver (e.g.
Birrell and Rafelski, 2014) allows then to compute velocity and density fields. Resulting

multi-scale hydrodynamical initial conditions could then be input in GADGET,

e running high resolution dark matter only simulations of the full box so that halos of 10°
h~! Mg could be resolved. At this point, parameters of the simulations could be tuned
by first testing intermediate resolutions (for instance a simulation box of approximately
320 h~! Mpc side length with 20483 particles, in a Planck cosmology, results in a
particle mass around 3.3 x 10® h=! M. Thus, dark matter halos of 10'® h—! M, are
resolved with 30 particles). Regardless, the same pre-required white noise as before
could be input in GINNUNGAGAP to increase the resolution but homogeneously (not
locally anymore). Objects in these resulting simulations could then be identified with
a spherical overdensity halo finder (Amiga Halo finder, Knollmann and Knebe, 2009)
as well as friends-of-friends algorithms. Outputs from these algorithms would enable
to populate these simulations with galaxies using the abundance matching techniques
which consist in attributing observed galaxies to simulated dark matter halos. The more
massive the host halo, the more massive the galaxy is assumed to be. Then, a stellar-to-
halo mass relation could be derived from this observation/simulation combination (e.g.
Behroozi et al., 2010; Moster et al., 2010). However, the derived stellar-to-halo mass
relation depends widely on the observational limits of the galaxy survey used to pair
dark matter halos with galaxies (e.g. Garrison-Kimmel et al., 2013). In addition, even if
these different stellar-to-halo mass relations could be reconciled and could be extended
at low mass ends, they might depend on the environment. Therefore, the development
of a stellar-to-halo mass relation in each one of the specific region of the Local Universe
to study would have to be privileged to, eventually, conclude on the (non)-universality
of such a relation. For example, within the CLUES project, the stellar-to-halo mass
relation was derived for Local Group galaxies (Brook et al., 2013). Thus, it could
be first checked that the same relation for Local Group-like galaxies is found. Since
running, a full gasdynamical simulation with the same resolution and the same boxsize
is currently impossible, thorough comparisons with the full box would not be possible
but chosen specific regions could be compared. For instance, the stellar-to-mass halo
relation could be derived for the Local Group-like galaxies in the gas simulation in order
to be compared with the result obtained in the dark matter simulations combined with

the abundance matching technique,

e running a series of lower resolution simulations (for instance 10243 particles with the
same typical boxsize as used for the high resolution simulation, results in a mass particle
about 2 10° h™! Mg). These dark matter only constrained simulations could then be
used to study the cosmic variance in terms of scatter in positions of structures and in

merging histories of the replicas of local clusters. The merging history with the higher
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statistical probability could give clues as to where to look for radio relics produced
during merger events or, at least, provide an estimate of the number of radio relics
which could be observed by future surveys obtained with LOw-Frequency ARray and
Westerbork Synthesis Radio telescopes (Nuza et al., 2012). Studying the mass accretion
history (defined by formation, assembly and last major merging times) of several nearby
groups-like, mass accretion history which has been find to be quiet in the Local Group
case (Forero-Romero et al., 2011), might solve the question of how large and mid scale
environments around groups induce different mass accretion history. Currently, it is
clear that low density environment and isolation criteria are both not adapted to end
up, after selection, with only quiet mass accretion history groups-like (Forero-Romero
et al., 2011). This work would answer the question "how unique is the Local Group
in a given cosmological context?” to better distinguish between models. For instance,
Libeskind et al. (2013) has shown that within Warm Dark Matter, the Local Group
is more likely to be more diffuse than observed today than within cold dark matter.
This leads to an increased trust towards the cold nature of the dark matter although
it is not impossible to find the proper Local Group in a warm context, excluding the

eviction of the Warm Dark Matter from theories.

In parallel, the theoretical approach might also be improved. For instance, the first order
linear approximation used to compute the cosmic displacement field in the RZA could be
refined up to the second order using the second order Lagrangian Perturbation Theory (e.g.
Kitaura, 2013; Kitaura et al., 2012) or even the Augmented Lagrangian Perturbation Theory
proposed by Kitaura and Hef§ (2013). This method builds on the difference between the
long and short range components of the displacement. Namely, at small scales the second
order fails because of shell crossing, it is then replaced by a spherical collapse model. Finally,
a comparison between simulations constrained with different types of constraints, peculiar
velocities and distribution of galaxies (Hef et al., 2013) could also give the advantages and
the limitations of each method. Regardless, the variety of simulations expounded above

would need to be performed in between.

We conclude this manuscript with an overview, Figure 5.1, of this work, realized within the
context of the global ” CosmicCLUES” project scheme, and we extend it to the future work

which can be envisaged.
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FIGURE 5.1: Outlines of current and envisaged additional future work are presented. The blue color shows this work (outputs from outside are in
grey) from the observations to the constrained simulations through, the calibration of the Tully-Fisher relation and the refinement of the process
to build constrained initial conditions (red path) with, parallel work to estimate the Hubble constant, to confirm bimodality in disk central surface
brightnesses of galaxies, to build realistic mock to tests methods and to devise a correction to minimize the bias(es) (blue path). This work results
from, and, enables a synergy between, simulated and observed universes. Namely, the back-and-forth between observations and simulations provides
a way to refine the methods but also to better exploit the observational data to, finally, study the Local Universe, the formation and evolution
of structures. In green are the envisaged extensions to this work which will enable a thorough study of the Local Universe thanks to detailed
comparisons between observed and simulated universes to better understand the nature of dark matter via its influence on structure formation and
galaxy evolution. The proposed future work goes from the baryonic Tully-Fisher relation - to obtain even more accurate distance estimates - up
to the addition of gas in simulations through, the launch of the Citizen Science project - to obtain better inclination estimates - the refinement of
the grouping technique, the production of higher resolution constrained simulations, a higher order development in the computation of the cosmic
displacement field and the completion of the cosmicflows-3 catalog in addition to, comparisons with simulations constrained with redshift surveys.
Basically, the prospective work proposes to augment the quality of the now fully functional red path.
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Appendix A

Extragalactic Distance Database:

Spitzer [3.6] Band Photometry

201



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
PGC | az.5 | [3.6]26.5 | [3.6]tot | om | [3.6]ext | po a b/a | oya | PA | aso | pso | ae He (pe) | a20 | p20 | {p20) | Cs2 | Prog.
94 49 15.93 15.932 | 0.004 | 15.913 | 19.73 7.9 0.20 | 0.00 | 53 30 | 23.70 | 17 | 22.39 | 22.37 8 22.15 | 21.79 | 3.9 CFS
143 405 11.72 11.467 | 0.001 | 11.437 | 23.45 | 144.4 | 0.44 | 0.00 3 430 | 27.87 | 230 | 25.09 | 24.38 | 107 | 24.12 | 23.91 4.0 CHP
527 48 16.11 16.001 | 0.002 | 15.962 | 22.59 13.2 0.29 | 0.00 33 34 25.46 17 | 24.01 | 22.87 8 2241 | 22.09 | 44 CFS
698 124 11.24 11.209 | 0.003 | 11.201 | 20.71 23.2 0.63 | 0.00 | 171 30 21.67 11 19.45 | 17.90 4 16.77 | 16.36 | 8.4 CHP
701 223 11.38 11.329 | 0.075 | 11.360 | 19.74 35.9 | 0.26 | 0.00 44 113 | 23.14 58 21.45 | 20.70 29 20.43 | 20.15 3.8 SINGS
767 68 12.78 12.769 | 0.024 | 12.776 | 18.96 9.9 0.51 | 0.06 | 149 | 29 | 21.92 | 14 | 20.60 | 19.93 6 19.67 | 19.00 | 5.1 CFS
963 77 13.47 13.453 | 0.007 | 13.438 | 20.66 | 14.2 | 0.44 | 0.02 | 80 33 | 23.51 16 | 21.36 | 20.54 7 20.27 | 19.83 | 4.9 CFS
1315 50 13.09 13.082 | 0.003 | 13.088 | 18.68 7.0 0.69 | 0.05 | 154 | 23 | 22.25 | 15 | 20.96 | 20.37 7 20.34 | 20.00 | 3.5 CFS
1592 121 11.78 11.771 | 2.410 | 11.778 | 18.64 16.8 | 0.21 | 0.01 3 62 22.80 22 19.78 | 18.82 9 18.38 | 18.04 | 6.9 CFS
1658 105 12.71 12.713 | 0.009 | 12.705 | 18.15 | 13.7 | 0.13 | 0.03 | 170 | 35 | 21.25 | 13 | 18.99 | 18.62 5 18.48 | 18.06 | 6.5 CFS
1713 57 14.68 14.667 | 0.003 | 14.650 | 20.61 10.4 | 0.36 | 0.00 | 126 35 23.93 21 22.74 | 22.14 10 | 21.99 | 21.49 | 3.6 CHP
2098 40 15.97 15.928 | 0.002 | 15.962 | 19.36 6.1 0.23 | 0.00 | &4 23 | 23.21 14 | 22.39 | 22.06 8 21.87 | 21.68 | 2.9 CFS
2578 77 14.73 14.650 | 0.001 | 14.655 | 21.77 17.7 | 0.41 | 0.00 1 64 25.59 | 42 24.31 | 23.77 | 30 | 23.65 | 23.36 2.2 LVL
2747 102 13.18 13.200 | 0.002 | 13.177 | 17.98 | 13.0 | 0.11 | 0.00 | 178 | 46 | 21.69 | 28 | 20.42 | 19.98 | 15 | 19.75 | 19.66 | 3.0 CFS
2781 47 13.09 13.091 | 0.002 | 13.086 | 18.91 6.7 0.65 | 0.09 8 20 | 22.14 | 13 | 20.96 | 19.96 5 19.32 | 18.84 | 3.9 CFS
2865 190 13.07 12.844 | 0.237 | 13.056 | 19.68 30.2 0.14 | 0.03 | 108 | 115 | 23.95 24 | 20.37 | 20.10 8 20.08 | 19.15 | 144 CFS
2899 45 15.20 15.169 | 0.003 | 15.167 | 20.78 8.5 0.43 | 0.01 41 28 24.17 16 | 22.89 | 22.24 6 22.17 | 21.70 | 4.3 CFS
2928 50 14.76 14.730 | 0.003 | 14.738 | 20.37 8.9 0.38 | 0.00 | 104 25 23.38 14 | 22.04 | 21.44 6 21.26 | 20.88 | 4.3 CFS
2964 41 14.83 14.826 | 0.010 | 14.817 | 19.39 6.2 0.27 | 0.01 | 139 18 22.43 10 | 21.28 | 20.54 4 20.22 | 1991 4.6 CFS
2992 29 15.52 15.500 | 0.020 | 15.468 | 21.16 6.0 0.81 | 0.04 49 18 24.41 9 22.91 | 22.21 5 22.15 | 21.65 3.3 LVL

TABLE A.1: Extracted photometry parameters. (1) Principal Galaxies Catalog number, (2) ag6.5: major axis radius at isophote 26.5 mag arcsec™?,

2

(3) [3.6]26.5: AB magnitude within agg.5, (4) [3.6]t0r: total AB magnitude from rational function asymptote, (5) o,,: rms deviations, rational
function fit, (6) [3.6]cs:: total AB magnitude by extrapolating flux beyond as¢5 assuming continuance of exponential disk, (7) po: central disk
surface brightness from inward extrapolation of disk fit, mag arcsec™2, (8) a: exponential disk scale length, arcsec, (9) b/a: ratio of minor to major
axes, (10) 04/,: uncertainty in axial ratio, (11) PA: position angle of major axis, deg. (12) ago: major axis radius of annulus enclosing 80% of total
light, arcsec, (13) pgo: surface brightness at agg, mag arcsec ™2, (14) a,: ‘effective radius’, major axis radius of annulus enclosing 50% of total light,
arcsec, (15) pe: surface brightness at a., mag arcsec™2, (16) (u.): average surface brightness within a., mag arcsec™2, (17) ago: major axis radius
of annulus enclosing 20% of total light, arcsec, (18) pgo: surface brightness at agg, mag arcsec™2, (19) (ug0): average surface brightness within ag,
mag arcsec 2, (20) Cga: concentration index, agg/agg, (21) Spitzer program.
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Appendix B

Calibrator Parameters

Table B.1
PGC Name 3.6]257 [3.6]%%5" [3.6)%:.5  Dif b/a Inc Wy, Wi, tel S
9332 NGC0925  10.866  10.231  10.549  -1.589 0.57 57. 194  231. 2.364 ZP
13179 NGC1365 8818 8812 8815  -0.725 0.61 54. 371  459. 2.662 ZP
13602 NGC1425  10.693  10.700  10.697  -1.197 0.46 65. 354  391. 2592 ZP
17819 NGC2090  10.477  10.287  10.382  -1.052 0.43 67. 277  301. 2478 ZP
21396 NGC2403 8558 8370 8464  -1.354 0.53 60. 226  261. 2417 ZP
23110 NGC2541 / 11.949  11.949  -1.189 0.49 63. 188  211. 2325 ZP
26512 NGC2841 8.644 8644 8644  -1.114 045 66. 592  650. 2813 ZP
28120 NGC2976  9.904 / 9.904  -0.924 0.53 60. 129  149. 2173 ZP
28357 NGC3021  11.693 / 11.693  -0.773 0.57 57. 254  303. 2481 ZP
30197 NGC3198  10.368  10.326  10.347  -1.177 0.39 70. 296  315. 2.498 ZP
30819  1C2574 11.750 / 11.750  -1.630 0.40 69. 106  113. 2.054 ZP
32007 NGC3351 9208 9210 9209  -0.879 0.70 47. 262  359. 2.556 ZP
32207 NGC3370  11.739 / 11.739  -0.889 0.56 58. 264  312. 2494 ZP
34554 NGC3621 8989  9.035  9.012  -1.002 045 66. 266  292. 2465 ZP
34695 NGC3627 8314 8254 8284  -0.894 0.53 60. 333 385 2585 ZP
39422 NGC4244  10.333 / 10.333  -1.413 0.20 90. 192 192, 2283 ZP
40692 NGC4414  9.368  9.367  9.368  -0.638 0.60 55. 378  463. 2.666 ZP
41812 NCC4535  9.783 9751  9.767  -0.817 0.72 45. 265  374. 2573 ZP
41823 NGC4536  9.840  9.856  9.848  -0.818 0.38 71. 322  341. 2533 ZP
42408 NCC4605  10.161 / 10.161  -0.971 0.41 69. 154  165. 2219 ZP
42510 NGC4603  10.682  10.663  10.673  -0.913 0.64 52. 353  450. 2.653 ZP
42741 NGC4639  11.250 11255  11.253  -1.073 0.60 55. 274  336. 2.526 ZP
43451 NGC4725 8922 8893 8908  -1.068 0.56 58. 397  470. 2.672 ZP
51344 NGC5584  11.763  11.819 11791  -1.171 0.73 44. 186  267. 2426 ZP
69327 NGC7331 8409 8377 8393  -0.873 044 66. 501  547. 2738 ZP
73049 NGC7793  9.298 / 9.298  -1.048 0.62 53. 162  202. 2306 ZP
40095 NGC4312  11.307 / 11.307  -1.087 0.27 79. 217  221. 2344 V
40105 NGC4313  11.029 / 11.029  -1.079 022 85. 257 258 2412 V
40201 NGC4330  11.956 / 11.956  -1.156  0.17 90. 251  251. 2400 V
40507 NGC4380  11.084 / 11.084  -1.274 0.52 61. 265  304. 2483 V
40516 NGC4383  11.628 / 11.628  -0.768 0.58 56. 199  239. 2379 V
40581 NGC4388  10.294 / 10.294  -0.984 0.26 80. 364  369. 2567 V
40622 NGC4396  12.381 / 12.381 0279 035 73. 181  189. 2277 V
40644 NGC4402  10.816  10.772  10.794  -0.634 0.34 74. 267 278 2444 V
40644 NGC4402  10.816  10.772  10.794  -0.634 0.34 74. 267  278. 2444 V
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PGC Name [3.6]257 [3.6]%05" [3.6]%:.F*  Diff b/a Inc Wy, Wi, Pwl S
41024  NGC4450 9.648 / 9.648  -1.028 0.67 49. 304  401. 2603 V
41061 1C3392 11.789 / 11.789  -0.889 0.42 68. 178 192, 2284 V
41472 NG(C4498 12.193 / 12193 -1.203 0.48 64. 182  203. 2308 V
41504 100797 13.010 / 13.010  -1.010 0.69 48. 118  160. 2.203 V
41517 NGC4501 8.827 / 8.827  -0.967 048 64. 507  566. 2753 V
41608 1C3476 12.901 / 12.901  -0.951 0.64 52. 126  161. 2.206 V
41729  NGC4522 12.022 / 12.022  -1.082 0.25 8L 209 211. 2325 V
41812 NG(C4535 9.785 9753  9.769  -0.819 0.72 45. 265 374 2573 V
41823  NG(C4536 9.828  9.844  9.836  -0.806 0.38 71. 322  341. 2533 V
42081 103583 13.311 / 13311 -1.341 042 68. 100  108. 2033 V
42396 NG(C4595 12.495 / 12495  -1.095 0.70 47. 131  180. 2.255 V
42544  NGC4607 11.929 / 11929 -0.499 020 90. 170  170. 2230 V
42741 NG(C4639 11.243  11.247 11245  -1.095 0.55 58. 274  321. 2507 V
42857  NGC4654 10.103  10.097  10.100  -0.850 0.56 58. 282  334. 2523 V
43001 1C3742 13.985 / 13.985  -1.395 040 69. 161 172, 2236 V
43254  NG(C4698 10.069 / 10.069  -1.159 0.44 66. 419  457. 2660 V
11856 ESO357-007  14.728  14.580  14.654  -1.494 024 82. 125 126. 2101 F
12181  ESO357-012  13.471  13.519 13495  -0.975 0.66 50. 123  160. 2.205 F
12404 1C1913 14106 14.115  14.111  -1.211 022 85. 157 158. 2.198 F
12952 NGCI351A  12.808  12.839  12.823  -0.933 0.21 86. 200  200. 2302 F
13059  NGC1350 9.804 9797  9.801  -1.081 0.47 64. 390  433. 2636 F
13089 ESO418-008  13.770  13.796  13.783  -1.093 0.70 47. 121  166. 2.220 F
13179 NGC1365 8.814 8808 8811  -0.721 0.61 54. 371  459. 2662 F
13458  NGC1406 10.774  10.753  10.763  -0.723 0.22 85. 322  323. 2510 F
13571 ESO358-051  13.522  13.555  13.539  -1.079 0.50 62. 118  134. 2125 F
13602  NGC1425 10.686  10.693  10.690  -1.190 0.46 65. 354  391. 2592 F
13687  NGC1436 11.301  11.382  11.341  -0.911 0.63 52. 201  254. 2404 F
13809 ESO358-063  11.245  11.198  11.222  -1.032 0.24 82. 285  288. 2459 F
13854  ES0302-009 / 14513 14.513  -1.533 0.21 86. 142 142, 2153 F
13998 ES0359-003  13.901  13.861 13.881  -1.261 042 68. 112  121. 2082 F
14071  NGC1484 / 13172 13172 -1.222 0.24 82, 162  164. 2214 F
34971  UGC06399  14.126 / 14126 -1.546 028 78. 167  170. 2232 U
35202  UGC06446  14.406  14.047  14.227  -1.867 0.63 52. 125  158. 2198 U
35676  NGC3726 10.318  10.259  10.288  -1.038 0.58 56. 263  316. 2500 U
36343  UGC06667  13.553  13.563  13.558  -1.468 0.14 90. 173  173. 2238 U
36699  NGC3877 10.187  10.172  10.180  -0.980 0.24 82. 347  350. 2544 U
36825 UGC06773  14.704 / 14704  -1.784 0.44 66. 89 97. 1987 U
36875  NG(C3893 10.348  10.281  10.314  -0.834 0.66 50. 283  369. 2567 U
37036 NGC3917 11.477  11.461 11469  -1.219 0.24 82. 273  276. 2440 U
37038  UGC06818  14.340 / 14.340  -1.400 0.35 73. 141  147. 2169 U
37290  NG(C3949 10.921 10949 10935  -0.965 0.63 52. 252 318 2502 U
37306  NG(C3953 9.531 9531  9.531  -0.931 0.50 62. 404  457. 2.660 U
37418  UGC06894  14.934 / 14934  -1.144 016 90. 121  121. 2083 U
37466  NG(C3972 11.940  11.961  11.950  -1.050 0.29 78. 258  264. 2422 U
37525  UGC06917  12.959  12.781 12870  -1.450 0.59 55. 178  216. 2334 U
37542  NG(C3985 12.604 / 12.604  -0.994 062 53. 150 187. 2273 U
37553  UGC06923  13.650  13.665  13.657  -1.397 042 68. 139  150. 2176 U
37617  NG(C3992 9.749 9555  9.652  -1.152 0.55 58. 459  538. 2731 U
37691  NGC4013 10.017  9.993  10.005  -0.695 0.22 85. 388  390. 2591 U
37697  NGC4010 / 11.781  11.781  -0.891 0.17 90. 248  248. 2394 U
37700 UGC06969  15.150 / 15150  -1.300 0.31 76. 125  129. 2110 U
37735  UGC06983  13.338  12.996  13.167  -1.397 0.66 50. 171  223. 2348 U
38283  NG(C4085 11.478  11.472 11475  -0.775 0.24 82. 268  270. 2432 U
38302  NG(C4088 9.788 9779  9.783  -0.793 0.39 70. 331  352. 2547 U
38356  UGC07089  13.413 / 13413  -1.313 022 85. 137 138 2139 U
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PGC Name [3.6]257% [3.6)%05 [3.6]%F  Dif b/a Inc W, Wi, Pl S
38370  NGC4100 10.441  10.402  10.421  -1.021 0.31 76. 374  385. 2586 U
38392 NGC4102 10.224 10.640 10.432 -0.782 0.57 5T7T. 298 355. 2551 U
38795 NGC4157 9.723 9.726 9.724 -0.644 0.19 90. 387 387. 2.588 U
38951 UGC07218 14.874 / 14.874 -1.384 0.53 60. 89 103. 2012 U
38988 NGC4183 12.317 12.246 12.281 -1.351 0.17 90. 227 227. 2.356 U
39241 NGC4217 / 9.889 9.889 -0.639 0.27 79. 383 390. 2591 U
39344 UGC07301 15.093 15.087 15.090 -1.370 0.16 90. 139 139. 2.143 U
40537 NGC4389 11.587 / 11.587 -0.847 0.66  50. 154 201. 2.303 U
29727 1C2556 13.642 13.577 13.610 -1.330 0.55 58. 214 251. 2.400 An
29898 1C2559 12.885 13.057 12.971 -1.001 0.41 69. 256 275. 2.439 An
30308 NGC3223 10.180 10.190 10.185 -0.875 0.69 48. 415 562. 2.750 An
30716 ESO375-026 12.335 12.230 12.283 -0.743 0.20 90. 332 332. 2.521 An
31493 ES0437-014 11.660 11.685 11.673 -0.873 0.31 76. 364 375. 2.574 An
31761 NGC3347A 11.996 11.980 11.988 -0.948 0.34 74. 322 335. 2.526 An
31995 ES0318-004 11.715 11.678 11.697 -1.037 0.23 83. 382 385. 2.585 An
29993 1C2560 11.129 11.093 11.111 -1.031 0.46 65. 376 415. 2.618 An
31875 NGC3347B 12.579 12.508 12.543 -1.323  0.26  80. 327 332. 2.521 An
31926 NGC3347 10.838 10.879 10.858 -1.138  0.36 72. 401 421. 2.624 An
32039 ES0437-056 12.921 12.975 12.948 -1.088 0.64 52. 239 305. 2.484 An
41010 ES0O322-017 15.041 15.198 15.119 -1.539 0.40 69. 147 157. 2.196 Ce
42181 NGC4575 11.555 11.565 11.560 -0.680 0.62 53. 263 328. 2.516 Ce
42271 ES0322-042 / 13.357 13.357 -1.257 0.31 76. 226 233. 2.367 Ce
42369 NGC4603A 12.485 12.450 12.468 -0.868 0.39 70. 270 287. 2.458 Ce
42510 NGC4603 10.679 10.660 10.669 -0.909 0.64 52. 353 450. 2.653 Ce
42880 ESO381-014 14.529 14.423 14.476 -1.226 0.21  86. 213 213. 2.329 Ce
43073 NGC4672 12.034 11.962 11.998 -0.958 0.24 82. 353 356. 2.552 Ce
43282 ES0268-044 12.938 13.074 13.006 -0.776  0.47 64. 247 274. 2.438 Ce
43717 ES0323-027 12.167 12.148 12.158 -0.958 0.53 60. 335 387. 2.588 Ce
44695 ES0269-028 14.444 14.510 14.477 -1.177 0.38 T71. 225 238. 2.377 Ce
45573  ES0269-052 15.456 15.581 15.519 -1.659 0.17 90. 213 213. 2.328 Ce
70702 1C1474 13.054 13.053 13.053 -0.433 0.49 63. 255 287. 2.457 Pe
70803 UGC12451 / 15.007 15.007 -1.477  0.24  82. 172 174. 2.240 Pe
70880 NGCT7562A 14.667 15.082 14.875 -1.825 0.25  81. 199 201. 2.304 Pe
70927 PGC070927 14.497 16.548 14.497 -1.237 0.64 52. 180 230. 2.361 Pe
70981 NGCT7593 13.365 13.352 13.359 -0.829 0.63 52. 239 302. 2.479 Pe
71034 UGC12494 14.670 14.655 14.662 -1.372 0.31 76. 208 214. 2.331 Pe
71051 1C5309 13.142 13.120 13.131 -1.011  0.49 63. 270 303. 2.482 Pe
71087 NGC7610 13.337 13.287 13.312 -1.052 0.61 54. 241 298. 2.474 Pe
71159 PGC071159 14.605 14.621 14.613 -1.203 0.43 67. 148 161. 2.206 Pe
71181 NGC7631 12.470 12.479 12.475 -1.105 0.42 68. 366 395. 2.597 Pe
71260 UGC12562 15.723 15.715 15.719 -1.449 0.27 79. 153 156. 2.192 Pe
71262 UGC12561 15.287 15.285 15.286 -1.436 0.32 75. 184 190. 2.279 Pe
31154 ES0436-034 11.730 11.653 11.692 -0.662 0.23 83. 533 537. 2.730 H
31242 ES0436-039 12.499 12.487 12.493 -0.593 0.20 90. 412 412. 2.615 H
31360 ES0437-004 12.606 12.629 12.617 -0.867 0.50 62. 322 364. 2.561 H
31590 ES0437-018 13.602 13.591 13.596 -0.826 0.33 74. 300 311. 2493 H
31626 ES0437-022 14.177 14.156 14.166 -1.246 0.27 79. 284 289. 2.461 H
31642 ES0437-025 13.218 13.193 13.205 -0.915 0.37 T71. 245 258. 2412 H
31677 ES0437-030 11.759 11.755 11.757 -0.997 0.22 85. 428 430. 2.633 H
31683 ESO501-068 13.065 13.051 13.058 -1.168 0.32 75. 323 334. 2.524 H
31690 ES0437-031 14.422 14.431 14.427 -1.297 0.62 53. 203 254. 2404 H
31732 ES0437-034 16.163 16.081 16.122 -1.932 0.39 70. 170 181. 2.257 H
31738 ES0437-035 13.270 13.262 13.266 -0.956 0.37 T71. 236 249. 2.396 H
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PGC Name [3.6)257 [3.6)%55" [3.655F%  Diff b/a Inc Wpe Wi, iwl S
31805 ESO501-075 12.361 12.345 12.353 -1.023 0.50 62. 322 364. 2.561 H
31951 ESO501-082 12.819 12.861 12.840 -0.970 0.42 68. 383 414. 2.616 H
31981 ES0437-054 13.674 13.620 13.647 -0.477 0.21  86. 275 276. 2.440 H
3664 UGC00633 13.448 13.437 13.443 -1.133  0.27 79. 392 399. 2.601 Pi
3773 UGC00646 12.970 12.951 12.961 -1.201 0.38 T71. 367 389. 2.590 Pi
3866 UGC00669 13.385 13.381 13.383 -0.543 0.25 81. 264 267. 2.427 Pi
3950 UGC00679 15.810 15.793 15.802 -1.312  0.23 83. 174 175. 2.243 Pi
4110 UGC00714 13.430 13.454 13.442 -0.922 0.71 46. 216 301. 2.478 Pi
4210 UGC00732 13.540 13.558 13.549 -1.069 0.60 55. 260 318. 2.503 Pi
4561 NGC0444 14.052 14.051 14.051 -1.301  0.25 81. 253 256. 2.408 Pi
4596 NGC0452 11.984 11.988 11.986 -1.126 0.29 78. 457 468. 2.670 Pi
4735 UGC00841 14.045 14.066 14.056 -1.076  0.23  83. 282 284. 2.453 Pi
5061 NGC0496 13.200 13.187 13.194 -0.984 0.55 58. 285 334. 2.524 Pi
5132 NGCO0512 12.321 12.316 12.318 -1.058 0.28 T78. 521 532. 2.726 Pi
5284 UGC00987 12.497 12.499 12.498 -1.018 0.32 75. 383 396. 2.598 Pi
5344 NGC0536 11.708 11.722 11.715 -1.255 0.36  T72. 513 539. 2.731 Pi
5563 UGC01066 16.788 16.712 16.750 -1.800 0.28 78. 158 161. 2.208 Pi
6502 NGC0668 12.669 12.650 12.660 -0.890 0.69 48. 279 378. 2.577 Pi
6607 UGC01257 13.819 13.835 13.827 -1.107 0.44 66. 324 354. 2.548 Pi
6799 NGC0688 12.437 12.405 12.421 -0.981 0.68 48. 337 450. 2.654 Pi
6851 UGC01316 15.702 15.673 15.687 -1.537 047 64. 205 228. 2.357 Pi
6865 UGCO01319 13.222 13.223 13.222 -0.712  0.71  46. 241 335. 2.525 Pi
7066 UGC01366 12.885 12.861 12.873 -1.203 0.29 78. 412 422. 2.625 Pi
7254 UGC01405 15.148 15.130 15.139 -1.229 0.16  90. 247 247. 2.393 Pi
7387 NGCO0753 11.703 11.653 11.678 -0.798 0.71  46. 314 437. 2.640 Pi
7504 UGC01459 13.122 13.228 13.175 -0.925 0.16  90. 362 362. 2.559 Pi
23146 PGC023146 14.336 14.282 14.309 -0.919 0.19 90. 267 267. 2.427 Ca
23169 UGC04299 12.460 12.480 12.470 -0.820 0.18  90. 389 389. 2.590 Ca
23338  PGC023338 15.151 15.180 15.165 -1.385 0.68 48. 185 247. 2.393 Ca
23347  PGC023347 14.693 14.685 14.689 -0.889 0.72  45. 162 229. 2.359 Ca
23374  PGC023374 15.620 15.647 15.633 -1.373 035 73. 232 243. 2.385 Ca
23420 PGC023420 13.863 13.828 13.845 -1.045 0.66 50. 215 280. 2.448 Ca
23567 UGC04386 12.106 12.115 12.110 -1.100 0.23 83. 480 483. 2.684 Ca
23661 UGC04400 15.790 15.715 15.753 -1.453  0.20 90. 214 214. 2.330 Ca
23662 UGC04399 14.570 14.558 14.564 -1.214 036 72 232 244. 2.387 Ca
23748 UGC04424 15.854 15.742 15.798 -1.5648 0.27 79. 203 207. 2.315 Ca
142820 PGC142820 15.892 15.852 15.872 -1.402 0.28 78. 190 194. 2.288 Ca
42765 UGCO07890 14.429 14.422 14.425 -0.945 0.67 49. 233 308. 2.488 Co
43142 UGCO07955 13.809 13.849 13.829 -1.059 0.18  90. 361 361. 2.558 Co
43278  PGC043278 13.685 13.669 13.677 -0.637 0.26  80. 311 316. 2.499 Co
43686 UGC08013 14.531 14.511 14.521 -1.371  0.29 78 365 374. 2.573 Co
43726 UGC08017 12.664 12.618 12.641 -0.601 0.37 T71. 521 549. 2.740 Co
43840 PGC043840 14.672 14.658 14.665 -0.885 0.43 67. 286 310. 2.492 Co
43863 UGC08025 12.705 12.735 12.720 -1.100 0.19 90. 505 505. 2.703 Co
44795 1C0842 13.524 13.540 13.532 -1.032 0.49 63. 368 414. 2.617 Co
44921 1C4088 13.302 13.311 13.306 -1.116  0.30 77. 467 480. 2.681 Co
45097 UGC08161 13.581 13.547 13.564 -0.794 043 67. 355 385. 2.586 Co
45366 UGC08195 15.258 15.266 15.262 -1.262  0.17  90. 233 233. 2.367 Co
45549 1C4202 12.925 12.918 12.922 -1.162  0.18 90. 524 524. 2.719 Co
45580 UGC08229 13.203 13.075 13.139 -0.799 0.53  60. 342 395. 2.597 Co
45366 UGC08195 15.258 15.266 15.262 -1.262  0.17  90. 233 233. 2.367 Co
45549 1C4202 12.925 12.918 12.922 -1.162 0.18 90. 524 524. 2.719 Co
45580 UGC08229 13.203 13.075 13.139 -0.799 0.53 60. 342 395. 2.597 Co




Appendix B. Calibrator Parameters 207
PGC Name [3.6)25F [3.6)%05" [3.6)55F%  Diff b/a Inc Wpe Wi, il S
45668 UGC08244 15.219 15.193 15.206 -1.356  0.38 T71. 238 252. 2.402 Co
45742 1C4210 14.375 14.352 14.363 -0.963 0.64 52. 227 289. 2.462 Co
45757 NGC5004A 13.196 13.228 13.212 -0.742 043 67. 336 365. 2.562 Co
10913 UGC02364 13.933 13.917 13.925 -1.205 0.35 73. 323 338. 2.529 A4
10943 UGC02375 13.320 13.339 13.329 -1.219 0.30 77. 440 452. 2.655 A4
11074 UGC02405 13.494 13.472 13.483 -1.203 0.37 71. 400 422. 2.625 A4
11102 UGC02415 14.145 14.118 14.131 -0.861 0.35 73. 323 338. 2.529 A4
11136 UGC02423 13.399 13.411 13.405 -0.945 033 T74. 382 396. 2.598 A4
11255 UGC02444 13.050 13.049 13.050 -0.620 0.62 53. 361 451. 2.654 A4
11306 UGC02454 14.048 14.048 14.048 -1.188 0.22  85. 359 361. 2.557 A4
35347 NGC3697 12.581 12.577 12.579 -1.239  0.32 75. 504 521. 2.717 Al
35622 PGC035622 14.679 14.667 14.673 -0.983 0.58 56. 243 292. 2.466 Al
35942 UGC06583 13.415 13.434 13.424 -0.644 0.59 55. 319 387. 2.588 Al
35978  PGC035978 14.669 14.658 14.664 -1.134 0.49 63. 261 293. 2.467 Al
36132 PGC036132 14.317 14.284 14.300 -0.980 0.62 53. 247 308. 2.489 Al
36349 PGC036349 13.205 13.199 13.202 -0.512 0.56  58. 327 387. 2.587 Al
36431 UGC06686 13.118 13.165 13.142 -1.312  0.16  90. 398 398. 2.600 Al
36466 UGC06697 12.989 13.011 13.000 -1.160 0.20 90. 557 557. 2.746 Al
36604 NGC3861 12.290 12.323 12.307 -1.077 0.57 57. 459 547. 2.738 Al
36683 PGC036683 14.112 14.088 14.100 -0.850 0.39 70. 265 282. 2.450 A1l
36706 NGC3884 12.084 12.081 12.083 -0.923 0.72  45. 462 652. 2.814 Al
36778  PGC036778 14.798 14.815 14.806 -1.226  0.23  83. 357 359. 2.556 Al
36779  PGC036779 13.987 13.994 13.991 -1.181 0.37 T71. 379 400. 2.602 Al
36856  PGC036856 13.757 13.779 13.768 -0.858 0.27 79. 366 372. 2.571 Al
37143 UGC06837 14.555 14.580 14.567 -0.737  0.18  90. 331 331. 2.520 A1l
37264 NGC3947 12.642 12.649 12.645 -0.905 0.57 57. 386 460. 2.663 Al
37288 NGC3951 12.949 12.944 12.947 -0.807 0.49 63. 371 417. 2.620 Al
37409 UGC06891 13.822 13.849 13.835 -1.135  0.26  80. 344 349. 2.543 Al
37463 PGC037463 14.625 14.624 14.624 -1.174  0.37 T71. 293 309. 2.490 Al
71597 UGC12631 13.460 13.487 13.473 -1.023 0.32 75. 459 475. 2.676 A2
71795 UGC12678 13.669 13.668 13.668 -1.238 0.22  85. 505 507. 2.705 A2
71880 UGC12701 14.286 14.275 14.281 -0.651 0.26  80. 348 353. 2.548 A2
72024 UGC12721 13.384 13.391 13.387 -1.047 0.44 66. 394 430. 2.633 A2
72115  PGCO072115 12.759 12.749 12.754 -0.134 0.51 61. 425 484. 2.685 A2
72169 PGC072169 13.654 13.679 13.666 -0.696 0.24 82. 377 381. 2.580 A2
72188 UGC12746 12.883 12.884 12.883 -0.733  0.19  90. 451 451. 2.654 A2
72233 UGC12755 13.011 13.016 13.014 -1.164 0.53  60. 503 581. 2.764 A2
72328 NGC7747 12.677 12.681 12.679 -1.109 0.40 69. 531 568. 2.754 A2
72411  PGC072411 13.700 13.631 13.665 -0.965 0.45 66. 367 403. 2.605 A2
72438  PGC072438 13.688 13.658 13.673 -0.683 0.32 75. 398 412. 2.614 A2
72665 PGCO072665 14.178 14.155 14.167 -0.747 048 64. 302 337. 2.528 A2
72751 PGCO072751 14.199 14.186 14.193 -0.803 0.59 55. 262 318. 2.502 A2
72784  PGC072784 14.413 14.388 14.401 -1.021 0.48 64. 344 384. 2.585 A2
72968 PGC072968 14.850 14.854 14.859 -1.189 0.27 79. 321 327. 2.514 A2
85512  PGC085512 15.880 15.848 15.864 -0.954 0.55 58. 234 275. 2.439 A2
91814 PGC091814 14.898 14.859 14.878 -1.118  0.20 90. 239 239. 2.378 A2
169662 PGC169662 14.842 14.794 14.818 -1.058 0.26  80. 346 351. 2.545 A2

TABLE B.1: Calibrator parameters for the Tully-Fisher relation: (1) PGC number, (2)
Common Name, (3) CFS corrected magnitude, mag, (4) CHP corrected magnitude, mag,
(5)CFS and CHP averaged corrected magnitude, mag, (6) Color term (I»%* — [3.6]%5.ka)
mag, (7) Axial Ratio, (8) Inclination, degrees, (9) linewidth not corrected for inclination,
km s=!, (10) linewidth corrected for inclination, km s=1, (11) Logarithm of the inclination
corrected linewidth, (12) Sample ZP Zeropoint Calibrators, V Virgo, F Fornax, U Ursa
Major, An Antlia, Ce Centaurus30, Pe Pegasus, H Hydra, Pi Pisces, Ca Cancer, Co Coma,
A4 Abell 400, A1 Abell 1367 and A2 Abell 2634 and 2666



208

Appendix B. Calibrator Parameters
Table B.2
PGC Name It [B6les Cplap®, b/a Inc Wae Wi, twet S
2758 NGC0247  7.79 9.10 8.98 0.31 76. 190 196 2292 7ZP
3238 NGC0300 7.28 8.40 8.38 0.71  46. 140 195 2.290 ZP
9332 NGC0925 8.96 10.25 10.14 0.57  57. 194 231. 2.364 ZP
13179 NGC1365 8.09 8.77 8.97 0.61  54. 371 459. 2.662 ZP
13602 NGC1425 9.50 10.72 10.64 0.46  65. 354 391. 2.592 ZP
17819 NGC2090 9.33 10.38 10.39 0.43 67. 277 301. 2478 7ZP
21396 NGC2403 7.11 8.46 8.32 0.53  60. 226 261. 2417 ZP
23110 NGC2541 10.76 12.06 11.94 0.49 63. 188 211. 2.325 ZP
26512 NGC2841 7.53 8.65 8.63 0.45 66. 592 650. 2.813 ZP
28120 NGC2976 8.98 9.89 9.97 0.53  60. 129 149. 2,173 ZP
28630 NGC3031 5.20 6.29 6.28 0.54  59. 416 485 2.686 ZP
30197 NGC3198 9.17 10.33 10.28 0.39 70. 296 315. 2.498 ZP
30819 102574 10.12 11.12 11.16 0.40 69. 106 113 2.054 ZP
31671 NGC3319 10.55 11.82 11.72 0.54  59. 195 227. 2.356 ZP
32007 NGC3351 8.33 9.20 9.31 0.70 47. 262 312. 2.556 ZP
32192 NGC3368 7.88 8.80 8.88 0.64 52. 329 418. 2.621 ZP
34554 NGC3621 8.01 9.01 9.05 0.45  66. 266 292. 2.465 ZP
34695 NGC3627 7.39 8.28 8.38 0.53  60. 333 385 2.585 ZP
39422 NGC4244 8.92 10.25 10.12 0.20 90. 192 192. 2.283 ZP
39600 NGC4258 6.84 7.98 7.95 0.40 69. 414 444. 2.647 ZP
40596 NGC4395 9.08 11.21 10.66 0.73  44. 112 161 2.206 ZP
40692 NGC4414 8.73 9.38 9.60 0.60  55. 378 463. 2.666 ZP
41812 NGC4535 8.95 9.75 9.89 0.72  45. 265 374 2,573 ZP
41823 NGC4536 9.03 9.85 9.98 0.38 T71. 322 341. 2.533 ZP
42408 NGC4605 9.19 10.17 10.22 0.41 69. 154 165. 2219 ZP
42510 NGC4603 9.76 10.67 10.75 0.64 52. 353 450. 2.653 ZP
42741 NGC4639 10.18 11.27 11.26 0.60  55. 274 336. 2.526 ZP
43451 NGC4725 7.84 8.87 8.89 0.56  58. 397 470. 2.672 7P
47368 NGC5204 / 11.93 / 0.50 62. 186 267. 2.095 ZP
60921 NGC6503 8.67 9.78 9.76 0.32 75. 223 231. 2.363 ZP
69327 NGCT7331 7.52 8.39 8.50 0.44  66. 501 547. 2.738 ZP
73049 NGCT7793 8.25 9.27 9.30 0.62 53. 162 202. 2.306 ZP
40095 NGC4312 10.23 11.32 11.31 0.27 79. 217 221. 2.344 Vv
40105 NGC4313 9.97 11.04 11.04 0.22  85. 257 258. 2.412 Vv
40201 NGC4330 10.81 11.97 11.92 0.17  90. 251 251. 2.400 Vv
40507 NGC4380 9.82 11.11 11.00 0.52 61. 265 304. 2.483 Vv
40516 NGC4383 10.87 11.69 11.82 0.58  56. 199 239. 2.379 Vv
40530 1C3311 12.81 13.94 13.91 0.21 86. 160 160. 2.205 Vv
40581 NGC4388 9.32 10.32 10.36 0.26  80. 364 369. 2.567 Vv
40622 NGC4396 12.67 12.40 13.10 0.35 73. 181 189. 2.277 Vv
40644 NGC4402 10.17 10.79 11.03 0.34 74. 267 278. 2.444 Vv
40811 1C3365 13.06 14.40 14.26 0.42 68. 122 132. 2.120 Vv
41024 NGC4450 8.63 9.67 9.69 0.67  49. 304 401. 2.603 Vv
41061 1C3392 10.92 11.79 11.90 0.42 68. 178 192. 2.284 Vv
41472 NGC4498 11.00 12.21 12.14 0.48 64. 182 203. 2.308 Vv
41504 1C0797 12.01 13.06 13.07 0.69 48. 118 160. 2.203 Vv
41517 NGC4501 7.88 8.82 8.89 0.48 64. 507 566. 2.573 Vv
41608 1C3476 11.97 12.90 12.97 0.64 52. 126 161. 2.206 Vv
41729 NGC4522 10.95 12.01 12.02 0.25 81. 209 211. 2.325 Vv
41763 1C0800 12.07 13.16 13.15 0.68  48. 115 154. 2.187 Vv
41812 NGC4535 8.96 9.74 9.89 0.72  45. 265 374. 2.573 Vv
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PGC Name 5" [B6la Chy’. b/a Inc Wae Wi, Pwl S
41823  NGC4536  9.04 9.85 9.99 038 71. 322 341. 2533 V
42160 PGC042160 13.55  14.56 1459 062 53. 8  106. 2.024 V
42230  UGC07802  13.05  14.35 1423 018 90. 150  150. 2.176 V
42348 103617 13.36 14.82 1462 052 61. 103  118. 2072 V
42396  NGC4595 1142 1250 1250  0.70 47. 131 180. 2.255 V
42544  NGC4607 1145  11.93 1224 020 90. 170  170. 2230 V
42741  NGC4639  10.16  11.27 11.25 055 58. 274 321. 2507 V
42833  NGC4651  9.43 10.37 10.44  0.64 52. 364  466. 2.669 V
42857  NGC4654  9.26 10.11 10.23  0.56 58. 282 334, 2523 V
43001 103742 12.61  13.99 13.83 040 69. 161  172. 2236 V
43254  NGC4698  8.92 10.10 10.04 044 66. 419  457. 2.660 V
11856 ESO357-007 13.17  14.72 1447 024 82 125 126. 2101 F
12181 ESO357-012 12.53  13.62 13.61  0.66 50. 123  160. 2205 F
12404 101913 1291 1413 1405 022 85 157 158. 2198 F
12952 NGCI351A  11.90  12.86 1292 021 86. 200 200. 2302 F
13059  NGC1350  8.72 9.84 9.82 047 64. 390 433, 2636 F
13089 ES0418-008 12.70  13.80 13.79 070 47. 121  166. 2220 F
13179 NGC1365  8.10 8.77 898  0.61 54. 371  459. 2662 F
13458  NGC1406  10.05  10.78 10.96 022 85 322 323 2510 F
13571 ESO358-051 12.46  13.59 1356  0.50 62. 118 134, 2125 F
13602  NGC1425  9.51 10.69 10.63  0.46 65. 354  391. 2592 F
13687  NGC1436  10.44  11.37 1144  0.63 52 201 254, 2404 F
13809 ES0358-063 10.19  11.23 11.25 024 82 285  288. 2459 F
13854 ES0302-009 12.98  14.60 1432 021 86. 142 142, 2153 F
13998 ES0359-003 12.63  14.14 1391 042 68. 112 121. 2082 F
14071  NGC1484  11.95  13.19 1310 024 82 162 164 2214 F
34971  UGC06399 12,59  14.09 1387 028 78. 167  170. 2232 U
35202  UGC06446  12.37  14.16 1379 0.63 52 125  158. 2198 U
35676 ~ NGC3726  9.26 10.27 10.30 058 56. 263  316. 2500 U
36343  UGC06667 1210  13.55 1335 0.4 90. 173  173. 2238 U
36699  NGC3877 921 10.17 10.23 024 82, 347  350. 2544 U
36825 UGC06773 12,93  14.70 1434 044 66. 89 97. 1987 U
36875  NGC3893  9.49 10.31 1044  0.66 50. 283  369. 2567 U
36930  UGC06792 / 14.10 / 0.21 8. 163 163. 2213 U
37036 NGC3917  10.26  11.49 1141 024 82 273 276, 2440 U
37038  UGC06818  12.95  14.40 1420 035 73. 141  147. 2169 U
37290  NGC3949  9.98 10.93 10.99  0.63 52. 252 318 2502 U
37306 NGC3953  8.61 9.53 9.61  0.50 62. 404  457. 2660 U
37418 UGC06894 13.80  14.96 1491 0.6 90. 121  121. 2083 U
37466  NGC3972 1091  11.97 1198 029 78. 258  264. 2422 U
37525  UGC06917  11.43  12.90 1269 059 55. 178  216. 2334 U
37542  NGC3985  11.62  12.60 12.65  0.62 53. 150 187. 2273 U
37553  UGC06923  12.27  13.66 1350 042 68. 139  150. 2176 U
37617  NG(C3992 851 9.55 957 055 58 459 538 2731 U
37691  NGC4013  9.32 10.00 10.20  0.22 85 388  390. 2591 U
37697  NGC4010  10.90  11.78 11.88  0.17 90. 248  248. 2394 U
37735  UGC06983  11.78  13.06 12.95  0.66 50. 171  223. 2348 U
37832  UGC06992 1279  13.97 13.91 045 66. 128  140. 2147 U
38283  NGC4085  10.71 1148 11.64 024 82 268 270. 2432 U
38302  NGC4088  9.00 9.79 9.94 039 70. 331 352 2547 U
38356  UGC07089 1210  13.45 1331 022 85 137 138 2139 U
38370  NGC4100  9.41 10.42 1045 031 76. 374  385. 2586 U
38375 UGC07094 13.21  14.35 1432 036 72. 80 84. 1924 U
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PGC Name Lo [B6la" Chlay®. b/a Tnc Wae Wi, i S
38392 NGC4102 9.66 10.36 10.55 0.57 57. 298 355. 2.551 U
38795 NGC4157 9.09 9.72 9.95 0.19  90. 387 387. 2.588 U
38951 UGC07218 13.50 14.72 14.64 0.53  60. 89 103. 2.012 U
38988 NGC4183 10.93 12.30 12.15 0.17  90. 227 227. 2.356 U
39237 NGC4218 12.34 13.41 13.41 0.61 54. 116 143. 2.157 U
39241 NGC4217 9.26 9.92 10.13 0.27 79. 383 390. 2.591 U
39344 UGC07301 13.73 15.16 14.97 0.16  90. 139 139. 2.143 U
40537 NGC4389 10.74 11.58 11.70 0.66  50. 154 201. 2.303 U
29727 1C2556 12.33 13.58 13.49 0.55 58. 214 251. 2.400 An
29895 1C2558 / 13.52 / 0.61 54. 154 190. 2.280 An
29898 1C2559 12.01 12.97 13.03 0.41 69. 256 275. 2.439 An
29993 1C2560 10.12 11.11 11.15 0.46  65. 376 415. 2.618 An
30308 NGC3223 9.36 10.06 10.25 0.69 48. 415 562. 2.750 An
30534 ESO317-023 11.12 11.70 11.96 0.47 64. 363 403. 2.605 An
30716 ESO375-026 11.57 12.29 12.47 0.20  90. 332 332. 2.521 An
30774 NGC3250C / 12.14 / 0.37 T1. 348 367. 2.565 An
31053 NGC3258C / 13.20 / 0.67  49. 194 256. 2.408 An
31058 ES0436-032 / 13.77 / 0.51 61. 253 288. 2.459 An
31094 NGC3258D / 12.34 / 0.42 68. 219 236. 2.374 An
31273 NGC3281D 11.92 12.94 12.97 0.22 85. 255 256. 2.408 An
31493 ES0437-014 10.83 11.67 11.79 0.31 76. 364 375. 2.574 An
31761 NGC3347A 11.07 11.99 12.07 0.34 74. 322 335. 2.526 An
31875 NGC3347B 11.25 12.55 12.43 0.26  80. 327 332. 2.521 An
31926 NGC3347 9.74 10.86 10.84 0.36  72. 401 421. 2.624 An
31995 ESO318-004 10.69 11.70 11.73 0.23 83. 382 385. 2.585 An
32039 ES0437-056 11.89 12.95 12.96 0.64 52. 239 305. 2.484 An
41010 ES0322-017 13.62 15.11 14.89 0.40 69. 147 157. 2.196 Ce
42181 NGC4575 10.93 11.56 11.79 0.62 53. 263 328. 2516 Ce
42245 ES0322-040 / 12.82 / 0.68 48. 248 332. 2.521 Ce
42271 ES0322-042 12.15 13.36 13.29 0.31 76. 226 233. 2.367 Ce
42369 NGC4603A 11.66 12.47 12.61 0.39 70. 270 287. 2.458 Ce
42510 NGC4603 9.84 10.67 10.80 0.64 52. 353 450. 2.653 Ce
42640 NGC4603D 11.62 12.56 12.63 0.62 53. 235 293. 2.467 Ce
42880 ES0O381-014 13.28 14.48 14.41 0.21 86. 213 213. 2.329 Ce
43073 NGC4672 11.10 12.00 12.09 0.24 82. 353 356. 2.552 Ce
43282 ES0268-044 12.27 13.01 13.18 0.47 64. 247 274. 2.438 Ce
43717 ES0323-027 11.25 12.16 12.24 0.53  60. 335 387. 2.588 Ce
43893 ES0323-038 / 12.19 / 0.49 63. 263 295. 2.469 Ce
44695 ES0269-028 13.34 14.47 14.44 0.38 T71. 225 238. 2.377 Ce
45573 ES0269-052 13.93 15.52 15.25 0.17  90. 213 213. 2.328 Ce
70702 1C1474 12.67 13.06 13.42 0.49 63. 255 287. 2.457 Pe
70803 UGC12451 13.57 15.03 14.83 0.24 82. 172 174. 2.240 Pe
70880 NGCT7562A 13.09 14.88 14.51 0.25 81. 199 201. 2.304 Pe
70927 PGC070927 13.31 15.52 14.93 0.64 52. 180 230. 2.361 Pe
70981 NGC7593 12.55 13.36 13.50 0.63 52. 239 302. 2.479 Pe
71034 UGC12494 13.33 14.67 14.53 0.31 76. 208 214. 2.331 Pe
71049 UGC12501 13.13 14.15 14.18 0.21 86. 258 259. 2.413 Pe
71051 1C5309 12.16 13.13 13.18 0.49 63. 270 303. 2.482  Pe
71055 NGCT7608 12.24 13.22 13.27 0.27 79. 279 284. 2.453 Pe
71087 NGC7610 12.28 13.31 13.33 0.61 54. 241 298. 2.474 Pe
71155 UGC12535 13.47 14.27 14.41 0.23 83. 187 188. 2.275 Pe
71159 PGCO071159 13.45 14.61 14.56 0.43 67. 148 161. 2.206 Pe
71181 NGC7631 11.40 12.48 12.48 0.42 68. 366 395. 2.597 Pe
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PGC Name I [B6la® Chlay®. b/a Tnc Wae Wi, i S
71260 UGC12562 1430  15.72 1554 027 79. 153  156. 2192 Pe
71262  UGC12561  13.87  15.29 1511 032 75. 184  190. 2279 Pe
93031 PGC093031 15.15  16.47 16.34 021 86. 139  139. 2144 Pe
31001  ESO501-002 12.28  13.54 13.44 020 90. 420  420. 2623 H
31154 ESO436-034 11.06  11.70 11.93 023 83. 533  537. 2730 H
31217 NGC3285  10.18  11.17 11.21 051 61. 545 621. 2793 H
31238 ES0436-038  / 15.13 / 0.57 57. 190  227. 2355 H
31242 ES0436-039 11.92  12.50 12,76 0.20 90. 412 412, 2615 H
31293  NGC3285B / 12.90 / 0.63 52. 241  304. 2483 H
31355 ESO501-022  / 15.99 / 023 83 170 171. 2233 H
31360 ESO437-004 11.78  12.62 12.74 050 62. 322  364. 2561 H
31513  NGC3312  9.52 11.20 10.88  0.34 74. 584  608. 2784 H
31557 ESO501-051 10.46  11.62 11.57 059 55. 501  608. 2784 H
31590 ESO437-018 12.80  13.60 13.74  0.33 74. 300 311. 2493 H
31593  ESO437-019 12.00  12.87 12.98  0.70 47. 288 395 2597 H
31626 ESO437-022 12.94  14.17 14.09 027 79. 284  289. 2461 H
31642 ESO437-025 12.32  13.21 13.31 037 71. 245 258, 2412 H
31677 ESO437-030 10.79  11.76 11.81 022 85. 428  430. 2633 H
31683 ESO501-068 11.92  13.06 13.03 032 75. 323 334, 2524 H
31690 ESO437-031 13.15  14.43 1432 0.62 53. 203 254. 2404 H
31730 ES0437-033  / 12.30 / 0.68 48. 252  337. 2527 H
31732 ESO437-034 14.21 16.12 1568  0.39 70. 170  181. 2257 H
31738  ES0437-035 12.34  13.27 13.34 037 71. 236 249, 2396 H
31805 ESO501-075 11.36  12.36 12.40 050 62. 322  364. 2561 H
31822 ESO437-040  / 14.16 / 0.19 90. 172 172. 2236 H
31829 ESO501-078  / 14.11 / 0.22 85. 253  254. 2405 H
31951 ESO501-082 11.90  12.84 12.91 042 68. 383 414. 2616 H
31981 ESO437-054 1320  13.62 13.96 021 86. 275 276. 2440 H
2747  UGC00485 12.00  13.20 13.13  0.11 90. 344  344. 2537 Pi
2865  UGC00501  12.21 13.09 1319 017 90. 375 375 2574 Pi
2809  UGC00509 13.88  15.27 15.11 0