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“All changed, changed utterly: a terrible beauty is born.”
Yeats, Faster 1916

“O Mort, vieux capitaine, il est temps! levons Pancre!
Ce pays nous ennuie, 6 Mort! Appareillons!

Si le ciel et la mer sont noirs comme de ’encre,

Nos coeurs que tu connais sont remplis de rayons!

Verse-nous ton poison pour qu’il nous réconforte!
Nous voulons, tant ce feu nous briile le cerveau,
Plonger au fond du gouffre, Enfer ou Ciel, qu’importe?
Au fond de I'Inconnu pour trouver du nouveau!”
Charles Baudelaire, Le Voyage, Les Fleurs du Mal

“L’inspiration, c’est une invention des gens qui n’ont jamais rien créé. Nous entretenons
la légende pour nous faire valoir, mais entre nous, c¢’est un bluff. Le poéte ne connait
que la commande.”

Jean Anouilh
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Résumé

Ce manuscrit présente plusieurs études des désintégrations de mésons B° et BY en trois
corps non-charmés, dont un méson K?. Ces études portent sur les données enregistrées
par 'expérience LHCb pendant le RunI du LHC, correspondant a une luminosité intégrée
de [L£=3 fbht.

Une premiére analyse consiste en une mesure des rapports d’embranchement des modes
Bgvs—> KSthh/_, ot h(") désigne un kaon ou un pion. Les précédentes mesures par LHCb
des rapports d’embranchements de ces modes de désintégration, rapportés a celui du mode
B® — K77, sont mis a jour. De plus, le but principal de cette analyse est de rechercher
le mode BY — KK+ K™, pas encore observé par les analyses précédentes. Les rapports
d’embranchement relatifs sont mesurés :

BB Kintn)
B(BY— Kdntn)
B(B"— KOK*r¥)
B(B°— Kdntn—)
B(BO KOK*n¥)
B(B— Kirtn—)
B(B'— KKK~
B(B’— Kirtn—)

= 0.26 £ 0.04(stat.) & 0.02(syst.) £ 0.01(fs/fa),

= 0.17 £ 0.02(stat.) £ 0.00(syst.),

= 1.84 £ 0.07(stat.) £ 0.02(syst.) £ 0.04(fs/fq),

= 0.59 + 0.02(stat.) £ 0.01(syst.),

(1)

Une premiére observation de B?— KKK~ est rapportée, avec une significance globale
de 3.70.

Une analyse non-étiquetée de saveur et indépendante du temps du plan de Dalitz de la
désintégration BY — K2K K~ est présentée, en utilisant I'approche isobare. Les rapports
d’embranchement quasi-deux-corps des désintégrations B® — K%¢°, B° — K0 f,(1525),
B® — K?f0(1710), et BY — K{x. sont mesurés. Ils sont compatibles avec les mesures
précédentes de BaBar, a I’exception de B®— K0 f,(1710).



Abstract

This dissertation presents several studies of the decays of both B® and B? mesons to
charmless three-body final states including a K meson. They use the data recorded by
the LHCb experiment during Run I of LHC, corresponding to an integrated luminosity of
[£=3"

A first analysis consists of the measurement of the branching fractions of By, —
KOh*h'~ decays, where h() designates a kaon or a pion. Preceding LHCb measurements
of branching fractions for all decay channels, relative to that of B® — K{ntr~, are
updated. Furthermore, the primary goal of this analysis is to search for the, as yet,
unobserved decay B? — KYKTK~. The relative branching fractions are measured to be:

B(B?— Kdrtr™)
B(B'> Konin ) = 0.26 & 0.04(stat.) £ 0.02(syst.) £ 0.01(f;/f4),
(BO KOK:E $)

B Korim) = 0.17 4 0.02(stat.) 4+ 0.00(syst.),

B

B(

B(B— K'K*r qE)
B

B

= 1.84 £ 0.07(stat.) & 0.02(syst.) £ 0.04(fs/fa),

= 0.59 + 0.02(stat.) £ 0.01(syst.),

B(B°— Kdrtn—)
(2)

A first observation of B — K?K* K~ is reported with a global significance of 3.7 0.

A flavour-untagged, time-independent Dalitz-plot analysis of B® — KKK~ is pre-
sented, using the isobar approach. The quasi-two-body branching fractions of B — K2¢°,
B® — K0f,(1525), B®— K?fy(1710), and B® — K%y, are measured. They are compati-
ble with previous measurements from BaBar, except for B — K? f,(1710).
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Introduction

The study of of b-hadron decays to hadronic final states with no charmed particles allow
for a rich array of studies. A few examples are the measurements of branching fractions,
CP asymmetries, weak and strong phases; they probe the dynamics of weak and strong
interactions. The typical branching fractions of these modes are below 107° and thus
their analyses are feasible only with large data samples and the use of powerful tools to
reject background. The LHCb experiment at the CERN Large Hadron Collider (LHC) is
an adequate experimental environment for these analyses, offering the possibility to study
decays of light B mesons, B, mesons and b baryons.

This dissertation describes two analyses of B}, — KCh™h'~ decays, where h() rep-
resents a kaon or a pion, that were performed with the 3fb~! dataset collected by the
LHCDb experiment during the years 2011 and 2012, at centre-of-mass energies of 7 and
8 TeV, respectively. The decays under study are dominated by loop transitions, that may
have contributions from particles beyond the standard model. The measured observables
are therefore probes for new physics. A first analysis consists in the measurement of the
six branching fractions of these modes, relative to that of B’ — K7 "7~. This includes
a search for the mode B? — KK K™, that has never been observed before. A second
study is the first amplitude analysis (or Dalitz-plot analysis) of the mode B®— KKK~
from LHCb. It contains a measurement the branching fractions of intermediate states that
intervene in the decay, using the isobar approximation. This is the first such study of
this mode in LHCb; it will be pursued in steps of increasing complexity with the growing
dataset, and will become more and more sensitive to new physics observables.

This dissertation is organized as follows. Section 1 shortly reviews the theoretical
framework, as well as concepts related to the amplitude analysis. It also gives a short
overview of existing results. Section 2 then describes the LHCb experiment and the related
concepts that are useful for the understanding of the analysis work. The presentation
of my work is then separated into three parts. Firstly, Sec. 3 presents an alternative
procedure to simulate background events. This procedure is used in the measurement
of 3378 — KOnth'~ branching fractions. Secondly, Sec. 4 describes the measurement of
the branching fractions of B, — K2h™h'~ modes, along with the search for the missing
B? — KYK* K~ mode. Finally, Sec. 5 presents the untagged, time-independent Dalitz-
plot analysis of the B — KKK~ decay.



Chapter 1

Theory

1.1

Introduction

The Standard Model (SM) of particle physics describes the interaction of fundamental
particles through the strong and electroweak interactions [1-3]. It is an outstandingly
successful theory that predicts nearly all the measurements ever performed with great
precision. There are however some hints that point at a larger theory, the SM being an
effective model of that theory at lower energies:

the SM does not explain the number of fermion generations nor their highly hierar-
chical structure in terms of mass. Instead, masses of particles form the bulk of free
parameters of the SM (13 out of 18);

the SM does not include gravity. In fact, general relativity is even mathematically
incompatible with quantum field theory (QFT). The SM has then to be an effective
theory that cannot be valid at the Planck energy scale;

the SM does not provide a candidate for cold dark matter, whose contribution to
the mass content of the Universe is found to be about fives times larger than that
of ordinary matter [4];

there is no mechanism in the SM that explains the smallness of the mass of the
Higgs boson. Indeed, quantum contributions to the Higgs boson mass from Grand
Unification or Planck-scale particles would make the mass huge, unless there is a
fine-tuning cancellation between the radiative corrections and the bare mass [5].
This problem may be solved by the presence of physics beyond the SM at low mass
scale (1TeV), which would provide a more natural cancellation;

the SM fails to account for the matter-antimatter asymmetry observed in the Uni-
verse.

These issues motivate the search for new physics (NP), and also provide some hints that
it should be accessible at energies close to the TeV scale.



Searches for new physics can be classified in two categories: direct and indirect searches.
Direct searches look for the production of on-shell particles beyond the SM, such as
supersymmetric particles (squarks, gluinos) [4]. Indirect searches focus on deviations of
measurements of observables from a theoretical SM prediction due to the effect of off-
shell NP particles. These searches require both a clean theoretical prediction and a clean
experimental measurement so that possible deviations can be attributed to the effects of
NP; they are better performed on decays where a contribution from NP is expected. In
general, direct searches need an accurate description of the background, whereas features
of the background can be usually inferred from data in indirect searches.

The violation of the C'P symmetry, described in Sec. 1.2, is a feature of the Standard
Model which is strongly related to the matter-antimatter asymmetry in the Universe.!
It depends on few parameters of the Standard Model, thus its predictive power is rather
high. The study of the violation of this symmetry in Bf — KOhth/'~ decays provides
opportunities to perform indirect searches for NP. Indeed, decays of the type 3275 —
th*h'*, where h() are kaons or pions, are dominated by so-called penguin diagrams
that include a loop of virtual particles. Particles of NP could contribute inside of that
loop and cause a deviation of some observables from the SM prediction. Additionally,
these decays also provide a relatively clean experimental context in the LHCb experiment,
where sample purities larger than 90% can be achieved.

Section 1.2 details the Standard Model description of the CP violation, and Sec. 1.3
presents some general concepts of amplitude analysis. Finally, Section 1.4 presents an
overview of the motivations and experimental context of the study of By, — KChTh'~
decays.

1.2 Violation of the CP symmetry

The violation of the CP symmetry, described in Sec. 1.2.2 is a key factor to understand
the matter-antimatter asymmetry of the Universe. Indeed, the required conditions so that
a model could allow for a matter-antimatter asymmetry, denoted Sakharov conditions |7],
are

e the existence of an interaction that does not conserve the baryon number;
e the existence of an interaction that violates both the C' and CP symmetries;
e non-thermal equilibrium.

The baryon number is not conserved in some non-perturbative electroweak processes, for
instance the processes called sphalerons [8]. The existence of such processes relies however
on the existence of a CP violation at the perturbative scale.

'As described in the following, CP violation is a key ingredient to explain this asymmetry, but this
CP violation is too small by 9 orders of magnitude to explain the matter-antimatter asymmetry of the
Universe [6].



1.2.1 Introduction to symmetries

Symmetries play a fundamental role in modern physics, as they constitute the building
blocks of any Lagrangian theory. They can be continuous or discrete. Continuous sym-
metries are families of symmetries that depend on a continuous parameter. For instance,
U(1) is a group of the continuous, global symmetries that describe rotations in a plane.
It can be defined as

{t, e U(1);y — y x €}, (1.1)

where y is a complex number and « is a real number.

Continuous, global symmetries can be extended into gauge symmetries, where the
parameter is itself a function of the position in space and time. For instance, the gauged
version of the global U(1) symmetry would be

{ta € U(1);y(x) = y(x) x ™}, (1.2)

where x is a position in space-time, y(x) is a complex operator, and «(x) is a real function.
The Standard Model is a gauge theory of the SU(3)c ® SU(2)r, ® U(1)y group. This
underlying structure constrains the particle content of the theory and the interactions
between these particles.

The strong interaction is described by the underlying SU(3)¢ symmetry, where the C
stands for “colour” charge of the interaction. Properties of that symmetry group naturally
yield the gluon self-interaction, which is the underlying cause for the confinement of quarks
into colourless hadrons.

The electromagnetic and weak interactions are described by the underlying SU(2);, ®
U(1)y symmetry, where the L stands for “left-handed” and the Y for the hypercharge.
The left-handed aspect of the SU(2);, symmetry is what explains the nonexistence of
right-handed neutrinos, and thus the violation of parity (see Sec. 1.2.2) by the weak
interactions. The SU(2);, ® U(1)y symmetry is spontaneously broken at the current
Universe energy density, leaving only the residual U(1) symmetry that is responsible for
electromagnetic interaction and whose mediator is the massless photon . The mechanism
of that symmetry breaking, where the vacuum expectation value of one of the scalar fields
of the theory is nonzero, is known as the Higgs mechanism. This mechanism gives rise
to the masses of fermions and of the gauge bosons of the weak interaction, W* and
ZY and has been confirmed by the discovery of the Higgs boson by the ATLAS and
CMS experiments in 2011 [9,10]. The weak interaction is the only one known to couple
different flavours. In the quark sector, it couples up-type quarks (u,c,t) and down-type
quarks (d,s,b).

Discrete symmetries do not depend on a continuous parameter, and cannot be gauged.
They are however interesting in the building of a model as they correspond to conserved



quantum numbers, through the Noether theorem (also valid for continuous symmetries).
The conservation of these quantum numbers in a process governed by an interaction that is
invariant under the corresponding symmetry allows to build selection rules. The following
section describes three of these discrete symmetries, C', P, T, as well as the CP and CPT
products.

1.2.2 The C, P, and T symmetries
The charge-conjugation operator C'

The charge-conjugation operator C' transforms a particle to the corresponding antiparticle.
This antiparticle shares all the properties of the original particle, except for reversed
electric, flavour, and colour charges. The Lagrangians of the electromagnetic and strong
interaction are invariant under C', unlike the Lagrangian of the weak interaction.

The parity operator P

The parity operator is defined as the reversal of all the spatial coordinates of a 4-vector,
while the time component is conserved. It conserves all the charges of the particle and its
spin. The angular momentum L is conserved, which means that the sign of the helicity
of the particle, defined as

_Lp

H= NN
p|

(1.3)

is reversed. Hence P transforms left-handed (H = —1) particles into right-handed (H = 1)
particles, and inversely. The helicity is strongly related to the chirality of the particle,
which defines its transformation under P.2 In contrary to the helicity, however, chirality
does not depend on the reference frame in the case of massive particles.

Following the observation that parity is conserved by the electromagnetic and strong
interactions, weak interaction was initially thought to conserve that symmetry. However,
Lee and Yang [11] raised concern that the weak interaction could be sensitive to the
chirality of particles (“chiral interaction”). This was confirmed by the observation that
S decays only emit left-handed neutrinos [12|. More generally, only left-handed particles
(and right-handed antiparticles) interact via the weak interaction.

The T operator

The time-reversal operator 1" is complementary to the parity operator P, as it transforms
(t,x) into (—t,x). It is conserved by the electromagnetic and the strong interactions. The
first direct observation of the violation of the T' symmetry by the weak interaction has
been performed in the study of the B system [13].

2The helicity and the chirality are equal for massless particles.



The CP and CPT operators

The previous results on C' and P operators could mean that the product of the C' and
P operator, denoted CP, is conserved by weak interactions as this operator transforms
left-handed neutrinos into right-handed antineutrinos [14]. The first demonstration of CP
violation in nature has been obtained through the study of the mixing of neutral mesons
such as the K° [15] and the B° [16]

The CPT theorem states that the Lagrangian of the SM must be invariant under
the CPT product. This is related to Lorentz invariance and locality. Searches for CPT
violation have for now not found any significant violation.

Under the assumption of the CPT theorem, any observation of violation of the T" or
the CP symmetry results in the violation of CP or T, respectively. This has led to the
first observation of time-reversal symmetry violation in the neutral kaon system, under the
assumption of CPT [17]. Additionally, measurements of the T-violation have constrained
the violation of CP by the strong interaction to smaller than 10717 [18]. This constitutes
the strong CP problem, as the strong interaction could in principle violate CP. We
consider in the rest of this dissertation that the strong interaction if C'P-conserving.

Section 1.2.3 describes the mechanism of CP violation in the mixing of neutral mesons,
along with the different types of CP violation in the Standard Model.

1.2.3 Neutral mesons mixing and CP violation

We consider a neutral meson |P%) such that |[P°) % |P9), decaying to a final state f.
There are three different bases that can be used to describe the |P%)-|PY) system:

e |P% and |P%) (flavour eigenstates);

. %(|PO) +|P0)) and %(\P% — |PY) (CP-eigenstates);

e |P) and |Py) (eigenstates of the Hamiltonian).

In the two eigenstates of the Hamiltonian, I. and H stand for “light” and “heavy”, re-
spectively. The weak Hamiltonian conserves CP if and only if the eigenstates of the
Hamiltonian are also eigenstates of CP.

The effective Hamiltonian H, describing the evolution of an initial state containing a
mixture of |P%) and |P9) (and ignoring final states), can be written as

H=M- %F, (1.4)

where M and I' are hermitian matrices defined as

myy  Mio 'y T
M= T= (! . 15
(mTz m22) (Flz r 22) (15)



The CPT invariance requires that the diagonal terms of these matrices are equal. The
introduction of the matrix I' in the Hamiltonian removes its property of hermiticity, which
is linked to the conservation of probability. This allows to introduce the lifetime of the
states described by this Hamiltonian, as the square of the wave-function that describes
them is decreasing exponentially with time.

The Schrédinger equation that governs the time-evolution of a wave-function is

RILIO)
dt

= H|U(1)). (1.6)

The integration of this equation applied to the | P, i) states yields

|Pun(t)) = | Py e (Mun=gTea)t (1.7)

where (M n — %FL,H) are the corresponding eigenvalues of the Hamiltonian. The terms
p and ¢ are defined as the (nonvanishing) coefficients that allow to change the basis

|PL) = p|P%) + q|PY),
| Pa) = p|P°) — q| PY), (1.8)

where |p|? + |g|? = 1. Conversely, these coefficients can be used to write

P = 2ip<|PL> T |Pa)),

PY) 2—1q<\PL> ~\Pu)). (1.9)

We remarkt_hat ifp=gq= %, |PL) and |Py) are exactly equal to %(\P% + |P%)) and
|P%) — | PY)), and CP is conserved.
Finally, combining Eq. 1.9 and 1.7, the time-evolution of |P°) and |P%) states writes

1
i

IPOY(t) = £1(8)] P°) + gf_u)@,

_ o (1.10)
|PO)(t) = f+(t)|P°) + 5f—(t)|P°>,
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Table 1.1 — Experimental average for Am and AT in different neutral-meson systems from [19].

B’ mixing parameters

Amg(ps™) 0.510 £ 0.003
AT'y/Ty 0.001 £ 0.010
lq/p| 1.0009 + 0.0013
BY mixing parameters
Amg(ps!) 17.757 £ 0.020 = 0.007
AT, /T, 0.124 = 0.009
lg/p| 1.0038 £ 0.0021
where
Fu(t) = % (e—i(ML—%FL)t + e—i(MH—%FH)t) , (1.11)

We define the quantities

Am:mH—mL,AT:TL—FH, (]_]_2)
and obtain
1 ) )
folt) =3 <e—’mLte—%FLt [1 + e—’Amte—%A“D . (1.13)

This function governs the mixing in the |P°)~|P9) system.

The Am and AI' parameters can be predicted from SM calculations, and experimen-
tally measured. Table 1.1 summarizes the current world averages for the BY and B? meson
systems [19].

We consider the decay of the |P%) meson to a final state f, associated with the ampli-
tude A;.* The parameter

g Af
Ap==——= (1.14)
T pA;
contains the information about CP violation in that decay. Indeed, if the modulus of As
is not 1, or if its imaginary part is not vanishing, CP violation in the |P%) — f decay

occurs. Defining the three observables

3In the following, the conjugate decay of |ﬁ> to f is associated with the amplitude 717.
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Cr= / 1.15
23(Ay)
S 1.16
2R(\s)
AT f
ALY = — 1.1
/ 143" (117)
(1.18)

the decay rate of |PY) as a function of time writes

e

7F\P0>t
['(t) i |:COSh (%) + A?F sinh (%) + (Cfcos (Amt) — Sysin (Amt)) |,

i (1.19)

where 7 = (Bthn) =1 T poy = Ditln and AT = Ty, — T'. It is necessary to perform a
time-dependent analysis of a decay in order to measure all the CP-violation effects with
precision, as well as to determine the flavour of the neutral meson that decays (“tagging”).

In the case where several channels contribute to the total amplitude, the amplitudes

A and A of the total decay can be written

A= ZAiei(qﬁi—&)’ﬁ — ZAiei(qﬁHéi)’ (1.20)

where the sum runs over the channels contributing to the amplitude and A; is the magni-
tude of the contribution of each channel. The phases ¢; and §; are the CP-conserving and
CP-violating components of the phase corresponding the each channel, respectively. The
effect of the CP symmetry can only induce a difference in phase, not magnitude, in each
channel taken separately. However, in the presence of two or more contributing channels,
the difference in the pattern of interference induced by the C'P-violating phase can result
in CP violation in the decay.

Three types of CP violation sources can be distinguished, with different physical in-
terpretations.

CP violation in decays

In presence of several contributions to the amplitude that both have a relative CP-
conserving phase and different C'P-violating phases, the rate of a decay and its conjugate
may be different. Indeed, in the case of two contributing diagrams,

A= Alei(¢+51) +A26i(*¢+52)’7[: Alei(¢*51) +A26i(*¢*52)’ (1.21)
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where the relative CP-conserving phase between diagrams 1 and 2 is 2¢, and 4, » is the CP-
violating phase between these diagrams. If both the C'P-conserving and the C'P-violating
phases are not 0, the decay rates related to A and A are different.

This is the only possible type of CP violation in decays of charged mesons or baryons.

CP violation through mixing

As underlined before, CP violation can be induced by the mixing of neutral mesons.
Considering for instance Eq. 1.8, CP is violated in the mixing of neutral mesons if and
only if [E] 7 1. As shown in Tab. 1.1, this ratio is consistent with 1 in the case of the BY

and BY mesons.

CP violation in interference between mixing and decay

Another type of CP violation is associated to the interference between mixing and decay
processes of neutral mesons to the same CP-eigen state. Contrary to the CP violation in
decay, it does not require several channels to contribute to the amplitude, as the inter-
ference happens between the mixed and unmixed amplitudes. This type of CP violation
occurs in case that the imaginary part of \ takes a nonzero value. The parameter that
outlines this measurement is contained in the term S.

Direct and indirect CP violation

CP violation can be alternatively classified into direct or indirect CP violation. Direct CP
violation corresponds to CP violation through decay, whereas indirect CP violation refers
to CP violation through mixing or through the interference between mixing and decay.
As shown in Tab. 1.1, the CP violation in the mixing of the B meson can be neglected in
most cases, and thus “indirect CP violation” often refers to interference between mixing
and decay when considering decays of the B® meson.

1.2.4 The CKM matrix and the KM mechanism

As described in Sec. 1.1, flavour eigenstates are eigenstates of the electroweak interac-
tion. They are however not necessarily eigenstates of the strong interaction, or of the
Hamiltonian. This section describes how the change of basis between eigenstates of the
electroweak interaction and of the Hamiltonian introduces an irreducible phase in the SM,
and thus to CP violation, when three or more quark generations exist.

We consider the change of basis between the quark eigenstates of flavour and of the
Hamiltonian by the matrices U and UP’;, defined such as

T
Mmass = (U[Jf> MﬂavourU}J; (122)
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where M s and Mgayour are the matrices that describe quark currents in the mass basis
and the flavour basis, respectively. The idea of different bases to describe the mass
and the weak eigenstates was first proposed by Cabibbo [20]. The motivation was to
explain the suppression of the decay of strange particles, and thus the long lifetime of
these particles. The GIM mechanism is an extension of this concept that requires the
existence of a second-generation up-type quark, the ¢ quark [21]. Tt allows to forbid any
flavour-changing neutral current at tree-level in the Standard Model.

A 2 x 2 unitary matrix V can be described by a single real parameter. Starting from
the original 2 x 4 real parameters (e.g. magnitudes and phases), unitarity relations state
that

(i, 5), Y ViV = 655, Y(i,0), Y ViV = 65 (1.23)
K k

which removes 4 parameters. Finally, phases between quark currents are physically mean-
ingless, thus removing 2N — 1 = 3 parameters, leaving only one real parameter. The
comparison with real orthogonal matrices leads to defining this parameter as an angle ¢,

and so . -
_ ( cosfc  sinfc
V= (— sinfc  cos GC) ’ (1.24)

This idea has first been proposed with the two lightest quark generations, this angle
fc being named the Cabibbo angle. Kobayashi and Maskawa have proposed to extend
this idea to three quark generations and showed how this resulted in the introduction
of a physical phase in the SM, responsible for CP violation [22].* Indeed, an extension
of the discussion above shows that a 3 x 3 unitary matrix can be described by 4 real
parameters, one of which being an irreducible phase. The 3 x 3 basis-changing matrix
in the case of three quark generations is called the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. The 2008 Nobel prize of physics was awarded to Kobayashi and Maskawa after
precise measurements of CP violation showed that it was indeed consistent with their
description.
The CKM matrix is written as

Vud Vus vub
Vo = (U U = [ Vg Vs Vo | - (1.25)
Vie Vis Vi

It is important to note that, due to the fact that flavour-changing neutral currents (FCNC)
are forbidden at tree-level in the SM, up-type quarks are only paired with down-type
quarks, and inversely. Following the discussion on the number of degrees of freedom,
this matrix can be parameterized by three real parameters and one imaginary parameter.
These three angles are defined as 612(= 0¢) , 613, and 3. For each angle 6;;, its cosine
and sine are noted ¢;; and s;;, respectively, and the CKM matrix may be written as

4This irreducible phase is equivalent to a violation of CP, as this symmetry is anti-linear.
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$12823 — C12C23513€" —C12523 — S12C23513€" C23C13

where ¢ is the irreducible phase. Since the term s is small, this form of the CKM
matrix can be written as an expansion of A = s15 &~ 0.22, and three parameters that are
close to unity: A = 3%, p = %233 cosd, and n = %233 sind. This yields the Wolfenstein
parameterization [23]

1—\2/2 A AX3(p —in)
Vory = - 1—\%/2 AN? +0O(\h. (1.27)
AN —p—in) —AN 1

Finally, the

ﬁ=p<1—§),ﬁ=n(1—§) (1.28)

terms can be defined to yield the Buras parameterization [24] which is is valid at O()\?)

1—X%/2—)\1/8 A+ O\ AN (p —in)
Vorkm = | = A+ AN [1=2(p+1in)] /2 1-=22/2 =1 (1+442%)/8 AN+ O(\®)
AN (1 — 5 — i) AN AN L= 2(p+in)] /21— AZNA/2

(1.29)

1.2.5 The unitarity triangles

The unitarity of the CKM matrix can be formulated as

LiLi =Y ViVik =4y,

(1.30)
CrCy =Y ViV =y,

where L;;) and Cj(;) are the i"* (j) line and column, respectively. These unitarity
constraints yield 9 equations, among which six involve different lines or columns®:

5As the CKM matrix can be written using only four terms, these equations are highly redundant.
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VaidVaus + VigVes + VigVis = 0,
ViaVar + VgV + VgV = 0,
VsV + V. Ve + ViV = 0,
wdVud + ViVus + VgV = 0,
taVud + VigVus + VgV = 0,
taVed + VigVes + ViV = 0.

These constraints can be represented by triangles in the complex plane, denoted by “uni-
tarity triangles”. Most of them include terms of different orders in A, thus corresponding to
flat triangles. Equation 1.32 and 1.35, however, only include terms that are proportional
to 3.

The triangle defined by Eq. 1.32 is often called “the” unitarity triangle, as it has been
the focus of many measurements. Indeed, the three sides of this triangle are all of order
A3, compared to other triangles that are flatter. Alternatively, it is referred to as the
BY unitarity triangle. Tts sides are normalized by V.V, and its internal angles are thus
defined as:

Vi 1—p—in

a=arg [ ——2 td):ar (—7,)—1—(9)\2, 1.37
(gl ) e (<122 o) (137
=arg | ——2— | =arg| ———— | + O(\Y), 1.38
g g( 1 Vid S\1-p—in *) (1.38)

VAV .
= ang (<320 ) —arg -+ i) + OO (1.39)

Vcbvcd

Figure 1.1 shows a sketch of this unitarity triangle specifying the angles and the expres-
sions of the lengths of its sides [19].

The angles and the sides of the triangle can be measured experimentally, to constrain
the location of its apex.® These different constraints set by the measurements must overlap
in at least one region of space so that the unitarity of the CKM matrix is respected. Fig-
ure 1.2 shows the status of the constraints on this unitarity triangle, from the CKMfitter
collaboration [19]. These constraints arise from the measurement of physics observables
by several experiments. They include

e the measurement of e and €, (CP-violating parameters of the neutral kaon system)
[26];

e the constraint on Amg,, measured first by the UA1 [27] and ARGUS 28] collabora-
tions; current world average is dominated by B-factories and LHCb;

6The freedom to set the origin of the referential and its orientation can be used to set two of the tree
apexes of the triangle to 0 and 1, leaving only one apex to be determined.
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(0,0) (1,0

Figure 1.1 — Sketch of the unitarity triangle defined by Eq. 1.32, from [19].

e the constraint on Amy, firstly measured by CDF [29]; LHCb [30] is dominating the
current world average’;

e the measurement of 8 performed in b — ccs modes by BaBar [31], Belle [32], and
LHCb [33];

e the measurement of the angle o, measured in time-dependent analyses of b — uud
decays such as B— nw, B— pp, and B— pm;

e the constraint on ~, set with the best precision in charmed B tree decays, and
measured by CDF, BaBar, Belle, and LHCb. It is one of the least known parameters
of the B? unitarity triangle.

The mixing phase between the B? and the BY is noted ¢,, and is equal to

VisVi,
gbs = _2/88 = arg (_ t*) ) (140)
VesVay

where 3, is one of the angles of the BY unitarity triangle defined by Eq. 1.33. The LHCb
experiment disposes of a large sample of BY mesons that allows it to improve constraints
on this triangle.

1.2.6 B oscillations and the 3 angle

As discussed in Sec. 1.2.3, flavoured neutral mesons (K°, DY, B and B?) oscillate when
they propagate. The short-range terms related to these oscillations can be described at
first order by box diagrams like those shown in Fig. 1.3. Long-range terms and upper or-

"The ratio Amy /Amg is cleaner than the individual observables, as it cancels some hadronic uncer-
tainties.
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Figure 1.2 — Constraints on the apex of the unitarity triangle defined by Eq. 1.32 from the
CKMfitter collaboration [25]
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Figure 1.3 — Second-order weak interaction Feynman diagrams that give rise to the mixing of
the B® meson. The virtual loop in both diagrams is dominated by the top-quark.

ders are neglected. The contribution from virtual quarks inside of the loop are dominated
by the top-quark. It is then a very good approximation to consider the amplitude to be
proportional to Vi V5 /Vi;Via, whose phase is equal to —23 at O(A\*). This expression also
yields that |¢/p| = 1+ O()\*), thus strongly suppressing CP violation in the mixing of BY
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mesons.

The angle S can be extracted from various channels that allow to measure the inter-
ference between the mixing and the decay of B® mesons. Considering a B® — f decay,
where f is a CP eigenstate and only one process contributes to the amplitude, no direct
CP violation is possible and

Sy =sin (arg (Af)) = sin (arg (; jf)) = 1y sin 23, (1.41)
!

where 7y = %1 is the eigenvalue of the f final state. The observable Sy can be extracted
from an analysis that measures I'(¢) (time-dependent analysis).

Decays of the form BY — K?(K?)(cc) are dominated by the tree-level transition b— ccs
and thus allow for a clean measurement of the angle S by means of a time-dependent
analysis. This allows to extract a clean measurement of # in modes where no significant
contribution from NP processes is expected. This value can then be compared to the
value of § from modes that include a virtual loop.

Charmless B? decays involve an underlying b — ¢gs transition. They are strongly
suppressed at tree level as the only tree-level contribution involves a b — w transition,
that is suppressed by a factor A2 in branching fractions compared to a b— ¢ transition.
Figure 1.4 shows a compilation of the CKM angle £ and of S as of 2014 [19], in the
b— ccs and the b— ¢gs transitions, respectively. These two averages are compatible, but
most of the b— ¢gs measurements are smaller than measurements in b— ccs modes.

1.3 Amplitude analyses concepts

1.3.1 Three-body particle decays and the Dalitz plot

The differential cross-section associated with the decay of a particle of mass M and mo-
mentum P into n particles of momenta p; and energies E; is

(27T)

dl’ = |M[* d®,,(P;py...pn), (1.42)

where
n

d’p;

4 %
d® (P JLRRY pn _5 sz ]I 27T 32E (143)
is the phase-space element of volume, and the scattering matrix M contains all the infor-
mation related to underlying dynamics (such as resonances or hadronic factors). Conser-

vation of momentum is ensured by the Dirac function §.
In the case of three-body decays, the previous equation becomes
1

I'= @) 16M2 | M |* dEydEsdad(cos §)dry (1.44)
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Figure 1.4 — World average of 8 from [19], extracted from b — ccs decays (left) and b — q¢gs
decays (right). The world average from b— ccd is also indicated in the right hand-side figure.

where F; and FEj5 are the energy of particles 1 and 3 in the rest frame of the mother particle.
The angles «, 8, and v are the Euler angles that define the plane where momenta of the
daughters are contained. Here, the initial twelve degrees of freedoms are reduced to five
when the conservation of momentum and the masses of the three final-state particles is
taken into account.

In the case of the decay of a (pseudo-)scalar particle into three (pseudo-)scalar particles,
the process is isotropic. This means that the dependency on angles can be integrated out,
further reducing the number of degrees of freedom from five to two. Equation 1.44 becomes

1

=G 8M M dE dEs. (1.45)

This equation can be rewritten as

1
I'= (2 E 32M3 |/\/l| dm?3,dmss, (1.46)
where the m,; masses are the invariant masses of the particle pair 5. This amplitude only
depends on two variables, which allows to represent the whole phase-space on a single
plane. A graphic representation of this plane is called a Dalitz plot [34].
The conservation of momentum and the mass of the mother particle set constraints on
the Dalitz plot. Figure 1.5 shows a typical Dalitz plot along with kinematical boundaries.
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Figure 1.5 — Typical Dalitz plot, along with kinematical boundaries [4].

The physical region corresponds to the gray area, limited by boundaries where all particles
are collinear. The corners of the physical region correspond to the case where one of the
particles is at rest.

As shown in Eq. 1.46, the only possible source of non-uniformities over the Dalitz
plot is the scattering matrix M. Such non-uniformities typically arise in the presence of
quasi-two body (Q2B) decays (see Sec. 1.3.3).

1.3.2 The square Dalitz plot

An alternative representation of events that is sometimes easier to manipulate is the
square Dalitz plot [35]. Its coordinates m’ and ¢’ are defined as

) 1 mij _ mirjnin
m’ = —arccos [ 2—————-— 1, (1.47)

m mP* — m!

1
91 = —Qij, (148)
where mg?ax(mm) designates the maximum (minimum) mass of the ij pair

m = M —my, (1.49)
mﬁ?m = (m; +m;), (1.50)
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Figure 1.6 — Jacobian of the transformation from the usual Dalitz plot to the square Dalitz
plot. [36]

where M is the mass of the mother particle and m; ;; is the mass of the daughter 7, 7,
or k. The angle 0;; is the helicity angle of a given ij system, which is defined between
the momenta of the particles k£ and 7 in the ij rest frame. These coordinates are defined
between 0 and 1, and the change of coordinates between the regular Dalitz plot and the
square Dalitz plot is defined as

dmj;dm3, — | det J|dm'de’, (1.51)
w11 OMyi 0 cos B
[det J| = 4 |p; | IPk| 5— —55 (1.52)

J being the Jacobian of the transformation. The momenta pj; = |/E} —m;; and p; =

VE? —m? are defined in the ij rest frame. Figure 1.6 shows the distribution of this
Jacobian over the square Dalitz plot.

This representation is especially useful in charmless B decays, as they populate areas
of the Dalitz plot close to its boundaries, due to the small mass of intermediate resonances
compared to the mass of the B meson. Additionally, from a technical point of view, the
square shape of this plot allows to bin the plane more easily.

A major difference between the usual Dalitz plot and the square Dalitz plot is that
the square Dalitz plot area is not proportional to the element of phase space. This means
that structures over the square Dalitz plot are not necessarily related to any dynamics,
unlike in the usual Dalitz plane. This is illustrated by Fig. 1.6, as the Jacobian can be
interpreted as the shape over the square Dalitz plot of a flat, phase-space, component.
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Figure 1.7 — Sketch of a Dalitz plot including several Q2B decays, represented in different colours.
The red strip corresponds to a scalar resonance. The green and dark blue points correspond to
vector resonances, while the magenta and light blue correspond to tensor resonances. A spin
3 resonance is also shown, in yellow. Interference regions are clearly visible where resonances
overlap, such as the red and green ones.

1.3.3 Quasi-two body decays

A decay A— B+ C + D can proceed via an intermediate state R that decays for instance
into B and C. The decay A— (R— B + C)D is called a “quasi-two-body” decay, where
D is sometimes denoted as the “bachelor” particle.

A Q2B decay appears as a strip over the Dalitz plot with a mean and a width that are
related to the mass and the width of the resonance, respectively. The variations of the
magnitude along the strip provide information about the spin of the resonance. Figure 1.7
shows an example of a Dalitz plot with several Q2B decays with different spins of the
resonances.

1.3.4 The isobar model

The amplitude of a three-body decay can be modelled in different ways. The isobar
approach approximates the total amplitude as

N
A= Zfi;, (1.53)

where the sum runs over N coherent contributions and

(=) -
Ay = G F, (m2,m2,) (1.54)
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are the partial amplitudes that are characterized by their lineshapes F), (m3;, m?k) [37-39].

The &, coefficients are complex numbers.

Under the assumption of heavy-quark factorization, the lineshape F), (m?j,mﬁk) is
only related to strong dynamics. Hence this does not contain any information about CP
violation®, and is not decay-dependent.

The isobar coefficients @, can be parameterized in several ways. In the analyses that

are detailed in this dissertation, they are parameterized as
U = Cn(1 £ by, )l $nEon) (1.55)

where ¢, and J,, are the strong and weak phases, respectively. This parameterization has
been proposed by the BaBar experiment in Ref. [40].

The coefficients a,, are not physical as, for instance, all the magnitudes in a given model
could be multiplied by a factor without changing the description of data. Fit fractions of
resonances are defined as

II (140 + [AL[*) dmdy i,

FF, = —
If (1A + [A]") dmdm3,

(1.56)

Each Q2B branching fractions is related to the fit fraction of the corresponding resonance
by
B(A— RD) = FFr x B(A— BCD). (1.57)

Similarly, interference fit fractions between two resonances ¢ and j can be defined as
I (Ands, + A" ) dmiydms,

FF,, =2Re |2 — . (1.58)
If (AP + [A]") dmydm3,

The sum of fit fractions F'F,, is not necessarily unity, because of interference. In the
contrary, the relation
Y FFy,=1 (1.59)
n<m
is fulfilled.
The parameters of the coefficients a,, can also be used to define C'P-violating observ-
ables C,, and S,, for resonance n as
2b,,

C, = T2 (1.60)

and
12

S, = e Sin(2Befr ), (1.61)

n

8CP violation by the strong interaction is negligible.
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where

Betin = B+ 0. (1.62)
The angle Beg, quantifies the interference between mixing and decay for a given Q2B
decay. The observable S,, is meaningful only for CP-eigen Q2B decays such as B®— K{¢.

1.3.5 Resonance dynamics

Resonance dynamics are contained in the F,, (mfj, m?k) terms of the isobar decomposition.
This term can be decomposed as

F, (m;,m5.) = Xo(|p*|r) X (lalr)Tu(L, p, q) R (), (1.63)
where:

e ; and j are the daughters of the resonance;

m;; is the mass of the decay products of the resonance;

L is the angular momentum of the resonance;

p* is the momentum of the bachelor particle, evaluated in the B rest frame;

e r and 7’ are the Blatt-Weisskopf barrier radii;

e p and q are the momenta of one of the resonance daughters and of the bachelor
particle, respectively. They are both evaluated in the rest frame of the resonance.

We review in the following the definition and the physical meaning of the terms X7,
T,, and R,.

Blatt-Weisskopf momentum barrier factors X

The maximum angular momentum L of a strong decay is limited by the momentum and
by a distance that is comparable to the “radius” of the resonance. The Blatt-Weisskopf
momentum barrier factor ( [41]) depends on these two variables, and reweights the am-
plitudes in order to enforce the global conservation of angular momentum. The value of
this factor depending on the angular momentum L of the resonance is

L=0;Xr(z=|p|lr) =1;

1+ 22
L=1X(z=[plr) =4/ 1+zg;
9+ 322+ 25
L=2X0e = ol =\ [go e or

where zj is the value of the z = |p|r variable when the invariant mass of the two daughter
particles is exactly the mass of the resonance. In the following of this dissertation, we
take the radii values as v’ = 0 and r = (4 £ 2.5) (GeV/c?)~! from Ref. [40].
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Zemach tensor T,

The Zemach tensor 7,, describes the angular distribution of the resonance daughters [42].
It depends on the resonance angular momentum L following;:

L=0,T, =1; (1.64)
L=1,T, =4p.q; (1.65)
L=2T,= 2 [3(p-a)’ - (plla)?)]. (1.66)

(1.67)

This terms explains the variations of the amplitude along a resonance, as seen in Fig. 1.7.

The resonance lineshape R,

Hadronic resonances are defined as poles of the scattering matrix S, which describes the
unitary operator that relates the asymptotic initial and final states. They appear in
several ways, for instance as an increase in the total cross-section when s approaches the
square of the mass of the resonance. The amplitude can be expanded in several ways
around such a pole.

The Breit-Wigner formalism is well-suited to model the amplitude near an isolated
pole that is far from the opening of any threshold. It is a first-order Taylor expansion of
the amplitude around the pole. The associated lineshape is defined as

! (1.68)
m2 — mfj —im,Ii;(q)’ '

R (mi;) =

where r is a resonance decaying into the particles ¢ and j, and ¢ is the momentum of the
resonance in the mother rest frame. The mass-dependent width T is

Lij(g) =T, ( kLl )MH (;: ) X7(4,9), (1.69)

|Qr| ij

where I',. is the intrinsic width of the resonance and q, is the value of ¢ when m = m,.. It
is worth mentioning that a sum of close Breit-Wigner distributions breaks the unitarity
of the S matrix. In the case of overlapping or broad resonances, other parameterizations
can be used, such as the Gounaris-Sakurai for the p° resonance [43]. One of these param-
eterizations is the Flatté formula ( [44]) that describes the amplitude of a resonance close
to a threshold, such as the f°(980) (close to the K K threshold)

1
s (1.70)

R, (my;) = ; ’
(M) mr_mij_z(plg%+mgg)

where ¢? + g2 = m,I',. The g; are coupling constants that are measured experimentally.
The p; factors are phase-space terms that contain the information about the different

23



masses of the final states. In the case of the f,(980), they are written

pL= prn = (1 - (27:2’)2) (1.71)
P2 = prK = % <1 - (22?)2) + <1 - (QZC(O)?) (1.72)

The K-matrix formalism ( [45]) describes the scattering process by decomposing the 7
matrix as

T = (I—ipK)"'K, (1.73)

where p is the phase-space matrix, and K is a Lorentz-invariant matrix defined as

/@ij _ Z N \/mafa7i(m)mafa7j(m) ’
N N T

where the sum runs overs all resonances «. This construction explicitly enforces the
unitarity of the T operator. Additionally, this expression yields the same result as a Breit-
Wigner in the case of a single resonance in a single channel. The K-matrix formalism
is best defined in the case of scattering. It can be transposed to the case of three-body
decays under the assumption that there are no interactions between the bachelor particle
and the daughters of the resonance.

(1.74)

1.3.6 Nonresonant amplitude

The nonresonant amplitude is not related to any pole of the S matrix, and covers the
whole phase space. It is especially important to consider in the case of B decays as the
phase space is large, and as resonances cover a small portion of it (even more so in the
case of charmless B decays, as charmless resonances have a small mass compared to the
B mass). As a result, while the typical nonresonant contribution to charmed decays is of
the order 10%, it can be as large as 90% in B— KKK decays ( [46]). This nonresonant
amplitude is poorly understood theoretically, and may even be the result of the presence
of several broad resonances. Several parameterizations of the nonresonant amplitude have
been used by different analyses from different collaboration, including a flat distribution,
an exponential distribution, and a polynomial. These parameterizations have usually been
defined in an ad hoc manner. For instance the use of a flat nonresonant distribution was
motivated by the presence of signal events in the centre of the Dalitz plot.

In the context of the factorization approach, a large scalar contribution is expected
in B— KKK [47]. However, as discussed in the following, a large additional P-wave
contribution has been observed by the BaBar experiment in these modes.
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Table 1.2 — Summary of favoured (“Fav.”) and suppressed (“Sup.”) BY ,— K2h* h'~ decays. The
suppression factor is equal to A%, where A & 0.22 is the sine of the Cabibbo angle.

Final state

By s meson Kortn~ Kot K~ KYK*n~ KYKTK~
B Fav. Sup. Sup. Fav.
B? Sup. Fav. Fav. Sup.

1.4 The study of By, — KJh"h™ decays

Decays of B and BY mesons to KOh*h'F are a privileged sector to perform indirect
searches for NP. They have been studied for years in different experiments such as BaBar,
Belle, and now LHCb. This section presents the general properties of these decays, with
an emphasis on the B’ — KK ™K~ decay, along with a state of the art.

1.4.1 B ,— Kbk~ decay amplitudes

The By, — KOh*h'~ decays proceed through b — qgu tree-level transitions, as well as
q — qqd and b — ¢gs penguin transitions, where ¢ = d or s. Figure 1.8 shows all the
possible dominant diagrams that contribute to a three-body decay of a heavy meson,
where () denotes the heavy quark, 7, C, A, £, and P stand for “tree”, “colour-suppressed
tree”, “annihilation”, “exchange”, and “penguin”, respectively. As discussed in Sec. 1.2.4,
b— u transitions are suppressed with respect to b— ¢ transitions by a factor A\?, where
A &~ 0.22 is the sine of the Cabibbo angle. This results in the suppression of tree-level
diagrams in these decays, relative to the penguin amplitudes. The following discussion
thus focuses on the properties of penguin amplitudes.

Depending on the nature of the mother particle and on the number of kaons in the
final state, a B}, — KJh™h'~ decay proceeds via the Cabibbo-favoured b— ¢gs transition
or the Cabibbo-suppressed b— ¢qd transition, as shown in Table 1.2.

In B-meson decays, it is a good approximation to factorize the weak and strong parts
of the decay, due to the large mass of the b quark compared to Agcp.

The B — K?KTK~ decay contains the B® — K2¢(1020) contribution, which is a
particularly good channel to study time-dependent CP violation. Indeed, it is dominated
by a b— sss transition that proceeds via a gluonic b— s penguin. There is no tree con-
tribution to this channel (“tree pollution”), which means that deviations of the measured
value of the CKM angle § compared to that performed in b — c¢s transitions such as
B°— J/y K? can be an indication to NP.

The K?K* K~ final state is not a CP-eigenstate. Indeed, for a given orbital angular
momentum L of the KK~ system,

CP|K!KYK™) = (1) |KYKTK™). (1.75)
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Figure 1.8 — Quark diagrams for three-body decays of a heavy meson. @ denotes the heavy
quark. The dominant diagrams in BY— KSKJFK’ are P; and P.

One of the uses of a Dalitz plot analysis of this mode is to separate the different partial-
wave contributions in order to measure C'P-violating observables in a CP-eigen final state.

1.4.2 Previous studies of B}, — K'h"h'~ and B), — K!KTK~ de-
cays

The work described in this document is part of decade-long efforts by several collaborations
to study 3375 — th+h/_ decays. The main goal of the analyses described in the next
section is to refine previous measurements and to gather more information in the specific
LHCDb environment. It lays the groundwork for future flavour-tagged, time-dependent,
analyses of these modes in LHCb.



Legacy from B factories

The B’ — K27tm~ and B®— KKK~ decays have been studied by BaBar ( [40,48]) and
Belle ( [49,50]). Both experiments have measured the branching fractions of these decays
and performed a flavour-tagged time-dependent analysis that extracted [.g in several Q2B
modes. Additionally, BaBar has reported the observation of the B® — K!K*rF decay
in [51] with a total significance of 5.20.

Studies of three kaons final states from BaBar and Belle have shown that they are
dominated by a large nonresonant component. This nonresonant amplitude cannot be
described with a flat phase-space shape, and BaBar has shown that it can be described as
a sum of S-wave and P-wave contributions. One of the main goals of the time-integrated
amplitude analysis described in Sec. 5 is to provide more insight on this component.

Analysis with LHCb data (1fb™")

The LHCb experiment has reported in [52] a measurement of the Bd075 — K% h'~ branch-
ing fractions, relative to the B — K%7" 7~ branching fraction, as well as a glimpse of
the Dalitz-plot distribution of signal events. The observation of the B — K!K*7T mode
from BaBar was confirmed, and the B? — K777~ and B? - K!K*7F modes were
observed for the first time.
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Chapter 2

Description of the LHCb experiment

The LHCb detector is placed at one of the interaction points of the Large Hadron Collider
(LHC), presented in Sec. 2.1. The detector, described in Sec. 2.2, is designed in order to
take advantage of the large amount of bb and c¢ pairs produced near the beam axis in
the conditions of the LHC. The system of particle identification is shortly discussed in
Sec. 2.3.

The large number of collisions and their short spacing in time (50ns in 2010-2012,
then 25ns) requires a trigger system, described in Sec. 2.4. Finally, modern high-energy
physics relies on accurate simulations of physics and detector response, and I describe in
Sec. 2.5 the software environment for Monte-Carlo productions in the LHCb experiment.

2.1 The Large Hadron Collider

The LHC is the largest and most powerful accelerator in the world in terms of centre-of-
mass energy, and is located at the Conseil Européen pour la Recherche Nucléaire (CERN),
in Geneva. It is the final point of a chain of accelerators located at CERN, shown in
Fig. 2.2. It accelerates bunches of protons from 450 GeV to energies of 3.5, 4, or 6.5 TeV,
depending on the data-taking period. This acceleration is performed using 16 radio-
frequencies (RF) cavities located along the 27 km tunnel. The accelerator is also designed
to accelerate beams of lead ions during dedicated runs.

The programme of the LHC is separated into several parts called “Runs” by long
shutdowns (LS), during which the characteristics of the accelerator remain rather stable.
The LHC accelerator physics programme is divided in Runs separated by long shut-downs
(LSD) during which both the accelerator and the detectors can be maintained and/or
upgraded. The data-taking during 2011 and 2012 is designated as “RunI”, and the data-
taking period starting from 2015 is designated as “RunII”. Data used in this thesis was
entirely acquired during Run [. Figure 2.1 shows the running plan for the LHC in the next
few years, including planned upgrades for the experiments.

Nominal proton beams are composed of bunches of 1.2-1.4.10!' protons separated
by 50(25) ns in RunI(IT). A beam can contain up to 2,808 bunches of protons, and can
remain stable for over 8 hours. The beams are steered by 1,232 superconducting (1.3 K)
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Figure 2.1 — Plan for the LHC in the next few years. Long shutdowns are indicated as “L.S”. The
upgrade of the LHCb experiment is planned during “LS2”.
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Figure 2.2 — Acceleration complex of the LHC. The four main experiments are also shown along
the LHC.

Niobium-Titanium dipole magnets, cooled by superfluid helium, each of them creating a
field of up to 8.3T. Quadrupole and octupole magnets are also used to focus the beam
and correct chromatic aberrations.

The two beams collide in 4 interaction points along the LHC, and seven experiments
are located at these points. The ATLAS and CMS experiments use giant general-purpose
detectors (GPDs) with a barrel-like geometry to study the product of collisions that have
a large transverse momentum pp. This physics programme includes the study of the
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Figure 2.3 — Differential branching fraction of bb pair production at the energies of the LHC
during the 2011 data-taking, and angular acceptance of GPDs (CMS and ATLAS, marked in
yellow) and LHCb (marked in red).

Higgs boson that these experiments discovered in 2012 [9, 10|, of the top quark, and
searches for New Physics (NP) particles produced on shell. These two experiments, and
CMS in particular, also have sensitivity to processes relevant for flavour physics, such as
BY— utp~ [53,54].

The other experiments being operated at the LHC are LHCb (described in Sec. 2.2),
ALICE, TOTEM, LHCf, and MoEDAL. Figure 2.3 compares the angular coverage of the
ATLAS, CMS, and LHCb detectors, illustrating the different purposes of these experi-
ments.

2.2 The LHCDb detector

The LHC accelerator is the world most intense source of b and ¢ quark pairs. The LHCb
detector is designed to take advantage of the localization of these pairs by covering only
the forward regions near the beam axis. Figure 2.4 shows the diagrams responsible for
heavy-quark pair production at the LHC.

The LHCb detector, shown in Fig. 2.5, is designed as a single-arm forward spectrom-
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Figure 2.4 — Dominant diagrams for bb and ¢ pair production at the energies of the LHC: (left)
qq annihilation; (middle) gluon separation; (right) gluon fusion.

eter. This geometry covers an angular acceptance of 15-300(250) mrad in the bending
(non-bending) plane of the magnet.! A right-handed coordinate system is defined with
the z-axis parallel to the beam axis in the direction from the VELO towards the muon
stations, and the y-axis pointing upwards. In this arrangement the magnetic field bends
trajectories in the zz plane. Additionally, the terms “upstream” and “downstream” are
often used to designate the relative position of two points with respect to the interaction
point.

! This is equivalent to a pseudorapidity coverage of 2 < n < 5. The pseudorapidity 1 is defined as
n = —log(tan 6/2), where 6 is the polar angle with respect to the beam axis.
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Figure 2.5 — Overview of the LHCb detector. The z axis is along the horizontal, while the y axis is along the vertical. The interaction
point is located on the left, inside of the VELO subdetector. The beam pipe and the contours of the pit are filled with gray. Upstream
and downstream directions correspond to the left and the right, respectively.
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Figure 2.6 — Number of primary vertices as a function of the luminosity.

2.2.1 Beam conditions at the LHCDb interaction point

The LHCb detector has been designed to operate at a nominal luminosity of 2 x
1032 cm?s7!, which is lower than the maximum that can be provided by the LHC. Indeed,
as shown in Fig. 2.6, larger instantaneous luminosities induce an increased number of
multiple pp inelastic collisions. These multiple pp inelastic collisions increase the amount
of data recorded by the detector, but induce larger occupancies and thus less accurate
reconstruction. They also increase the amount of radiations absorbed by the detector.
The luminosity for the LHCb experiment can be tuned by changing the beam focus at
its interaction point independently from the other interaction points. This allows LHCb
to maintain its optimal luminosity for the whole duration of a fill, as shown in Fig. 2.7.
The luminosity has been increased to 3.5 x 1032 cm?s™! and 4.5 x 1032 cm? s~ ! in 2011 and
2012, respectively.

2.2.2 The magnet

The LHCb dipole magnet [55] is located between the TT and tracking stations. It gen-
erates a magnetic field that is perpendicular to the beam axis, so that the trajectory of
all charged particles that pass through is curved. The curvature radius of the trajectory
allows for a measurement of the track momentum. In order to achieve a 0.5% relative
precision on p up to 200 GeV/c momenta, the integrated bending power is equal to 4 Tm
for tracks of 10 m length.

The magnet is composed of two saddle-shaped aluminium coils maintained by an iron
yoke, as shown in Fig. 2.8. An important feature of the LHCb magnet is the ability to
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Figure 2.7 — (Left) Example of the evolution of instantaneous luminosity of the lifetime of a fill
for different experiments. (Right) Integrated luminosity in fb~! per year of data taking.

Figure 2.8 — Layout of the LHCb magnet.

reverse the polarity of its magnetic field.> This allows to cancel out detection asymmetries

such as the charge detection asymmetry [56].

2.2.3 The tracking system

The goal of the tracking system is to measure the trajectories and momenta of charged
particles (“tracks”) in the detector acceptance. It is composed of the VELO and of two
ensembles of stations located upstream and downstream from the magnet. These ensem-
bles are the TT and the T1-3 stations. The T1-3 stations are composed of two distinct

subdetectors: the Inner Tracker (IT) and the Outer Tracker (OT).

2The two polarities are referred to as MagUp and MagDown.
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Figure 2.9 — (Left) Resolution of the impact parameter of a track with respect to a vertex as
a function of the momentum p of that track. (Right) Resolution of the impact parameter of a
track with respect to a vertex as a function of the inverse of the transverse momentum pp of
that track.

The vertex locator (VELO)

The VErtex LOcator (VELO) provides precise measurements of charged track coordinates
close to the interaction region, which are used to identify the primary vertices and the
displaced (secondary) vertices.?

The information on detached vertices is used to enrich the b-hadron content of the
data written to tape, as well as in the LHCb offline analysis in order to measure particles
lifetimes and to reject backgrounds. Indeed, the main source of background for most
analyses is the combinatorial background, where one or several tracks are matched to the
wrong decay vertex.

The ability of the VELO to differentiate between the multiple primary and secondary
vertices is strongly related to its resolution of the impact parameter (IP) of tracks with
respect to these vertices. This parameter is defined as the smallest distance of approach of
a track to the vertex, and is expected to be zero for tracks originating from this vertex. The
resolution of the VELO on the impact parameter of a track relative to a vertex depends
on the transverse momentum pr of that track. Figure 2.9 shows the performances of the
VELO as a function of the p and pr of a track [57].

The detector is divided in two halves, each consisting of 21 modules mounted around
and downstream of the interaction point and perpendicular to the beam as shown in
Fig. 2.10. The number of modules is chosen such that tracks that are inside the acceptance
of the rest of the tracking system (and originate up to 10 cm downstream of the interaction
point) traverse at least 3 modules. Each module is equipped with silicon strips oriented
in the r and ¢ directions to measure the azimuthal and radial coordinates of charged

3Primary vertices are the vertices of the pp interaction. Conversely, vertices formed by the decay of
particles (e.g.B® mesons) are called secondary vertices.
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Figure 2.10 — Top: cut view of the VELO; the rest of the LHCb detector is located downstream
(on the right). Bottom: view of a VELO module in closed (left) and open (right) positions.

particles. The pitch within a module varies from 38 um at the inner radius of 8.2 mm,
increasing linearly to 102 um at the outer radius of 42 mm. Figure 2.11 shows a projection
of a module with its r and a ¢ silicon strips.

Two additional stations are placed upstream of the interaction point. They are used
to aid the instantaneous measurement of luminosity. To protect the detector while LHC
beams are not squeezed at the IP, the two VELO halves are retracted 35 mm from the
beam axis, as shown in Fig. 2.10.

Tracking Turicensis (TT) stations

The Tracker Turicensis® (TT) detector is located upstream from the magnet, after the
RICH1 subdetector. This station is composed of four planar layers 150 cm wide and
130 cm high, covering an active area of 8.4m?2. These layers are arranged in a “x—u—v—x"
layout, with vertical (x-layers) and rotated by stereo angles of +5° and -5° (u and v-layers,
respectively) readout strips. The structure of these planes is illustrated in Fig. 2.12. This
layout allows the TT to resolve the x and y position of the hits in the stations.

4This geometry is chosen to enable fast pattern recognition in the trigger.
5The Tracker Turicensis was formerly known as the Trigger Tracker.
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Figure 2.11 — Silicon strips used to measure the r (left) and the ¢ (right) coordinates in the
VELO.
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Figure 2.12 — Sketch of the TT subdetector. The two inner layers are tilted by a stereo angle of
£5° (u/v-layers) in order to provide information on the y coordinate.

The planes which comprise the TT are manufactured using silicon micro-strip tech-
nology similar to that used in the VELO, with a strip pitch of 183 um and 500 wm thick
p-+-on-n sensors.
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Figure 2.13 — (Left) View of a tracking module. The inner tracker covers the central region,
while the outer tracker covers the rest of the angular acceptance. (Right) View of an IT module.
Dimensions are given in cm and refer to the sensitive surface covered by the IT.

Tracking stations T1-3

The tracking stations T1-3 are located downstream from the magnet. Each of them is
composed of four substations organized in a x—u-v-x layout, described in Sec. 2.2.3. In
order to avoid uncovered regions in the acceptance, the top and bottom modules are
staggered 4 mm in the z-axis and 3 mm in the x-axis, with respect to the lateral ladders.
Each of these substations is divided into an inner tracker (IT) and an outer tracker OT,
as shown in Fig. 2.13.

The central regions near the beam pipe feature large occupancies and require a fine
granularity. The IT is positioned in the three downstream tracking stations T1-T3, and
uses a silicon micro-strip technology. It is separated into single and double lines of seven
staggered silicon ladders. Figure 2.13 shows a projection of this subdetector.

The remaining area has a significant reduction in the occupancy, allowing a coarser
granularity. Therefore, the OT detector covers this large acceptance (total area of 5x 6 m?)
utilizing a drift-tube technology. The OT acceptance extends from the outer boundaries
of the inner tracker up to the nominal LHCb coverage. It is designed in four layers of
arrays of gaseous straw tubes 2.4 m long and 4.9 mm in diameter. Each of these modules
contains two monolayers of drift tube as shown in Fig. 2.14. The gas is composed of
a mixture of Ar (70%) and CO, (30%). Both these characteristics enable the detector
to achieve a fast drift-time across the drift-tubes under 50 ns, which is the performance
required for the tracking algorithm.

Types of tracks in LHCb

The quality of a track in LHCb depends on the subdetectors used in its reconstruction.
Four types of tracks are defined in LHCb: Long, Down, T, and Muon. Figure 2.15 shows
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Figure 2.14 — a (Left) View of the OT. The T2 station is in open position. (Right) Ilustration
of the OT layer and zoom on the arrangement of straw tubes (distances are given in cm). [58]

these different types, with the exception of Muon tracks, which also have hits in the muon
chambers.

A track is reconstructed as Long if it crosses at least three VELO stations. As K?
mesons fly a typical distance of 1m, some of them do not decay inside of the VELO
acceptance and thus their pion daughters are reconstructed as Down tracks. Three types
of K? mesons are defined in LHCb, depending on the track type of their daughters: Down-
Down, Long-Long, and Long-Down. As the resolution of the momenta of Down tracks is
worse than the resolution of Long tracks, the resolution of the mass of Down-Down K
mesons is worse than for Long-Long K mesons.

2.2.4 The RICH1 and RICH2

The ring imaging Cherenkov (RICH) stations are located upstream (RICH1) and down-
stream (RICH2) of the magnet. These stations are filled with a radiative material of
refractive index n that emits a ring of Cherenkov light whenever a high-energy particle
traverses them. All photons are emitted at an angle

(2.1)

where [ is the ratio between the particle velocity and the speed of light. A precise
measurement of this ratio and of the particle momentum (performed by the tracking
system in the case of charged tracks) allows to extract the mass of the particle, and then
to identify it.

The choice of the refractive index of the material determines the momentum range
in which the detector efficiently determines the mass of the particle. Figure 2.16 shows
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Figure 2.15 — Types of track in LHCb, along with the magnetic field as a function of z [58].
Muon tracks that only leave hits in the muon stations are not shown.

the Cherenkov angle as a function of momentum for two different refractive indexes. The
RICH1 subdetector uses two different refractors, SO, (n=1.03) and C4F;y (n=1.0014).
The RICH2 subdetector uses only CF4 (n=1.0005) as a refractor.

The full coverage of the nominal momentum range 2-100 GeV/c is achieved through
the use of different technologies in the RICH1 and the RICH2. Upstream from the magnet,
low-momentum particles associated to a large angular aperture are covered by the RICH1
detector momentum acceptance 2-60 GeV/c. Particles that have a larger momentum or
a smaller aperture are covered by the RICH2 momentum acceptance of 15-100 GeV/c.
Different momentum ranges correspond to the choice of different refractive indexes. While
RICH1 covers the LHCDb tracking acceptance, RICH2 has a reduced angular acceptance
of 120 mrad (horizontal) and 100 mrad (vertical), as it is dedicated to the PID of particles
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Figure 2.16 — (Left) Cherenkov angle as a function of the particle momentum for different radi-
ators and particles. (Right) Reconstructed Cherenkov angle for isolated tracks, as a function of
track momentum in the C4F;g radiator [59]. The Cherenkov bands for muons, pions, kaons and
protons are clearly visible.

with high momenta, which are mainly at small angles.

Figure 2.17 shows the layout of the two RICH stations. Particles pass through the
middle of the detector, and emits Cherenkov light that is reflected by the mirrors located
on the sides. The photons are finally collected by hybrid photo-detectors (HPDs) located
outside of the LHCb acceptance.

The RICH system provides good particle identification over the entire momentum
range. The average efficiency for kaon identification for momenta in the 2-100 GeV/c
interval is 95%, with a corresponding average pion misidentification rate of 5%. Around
30 GeV/c the identification probability is close to 97% and the misidentification probability
roughly 5%.

2.2.5 Calorimeters

The LHCb calorimeter is located downstream of the T1-3 and RICH2 stations, and con-
sists of the electromagnetic calorimeter ECAL and the hadronic calorimeter HCAL. It
provides information about the energy and the position of all particles, including neutral
particles (7°) that do not leave a trace until that point. Two additional systems, PS
and SPD, are dedicated to the detection of neutral particles. This strategy is designed in
order to separate electrons and pions (charged or neutral), which requires a longitudinal
separation of the showers. The electromagnetic calorimeter (ECAL) is designed to stop
electrons and photons, and the hadronic calorimeter (HCAL) is designed to stop hadrons.

Calorimeter systems perform a destructive detection of the particle. This detection is
performed by converting the energy of the incoming particle in a shower of particles that
excite a radiator medium, whose nature depends on the type of particles that are detected.
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Figure 2.17 — Schematic cross section of the RICH1 (left) and RICH2 (right) detectors. [60]

This radiator medium then emits UV photons that are collected by the detector. The
total amount of collected light is proportional to the energy of the incoming particle.

The SPD and the PS

The PS and SPD consist of two identical planes of scintillator pads with a 15 mm thick
lead plane in between that corresponds to 2.5X| for electrons and photons, but only to
6% hadronic interaction lengths. This allows to gain information about the nature of
incoming particles, in particular on the -y/e separation. Figure 2.18 shows the typical
longitudinal shower profile for different kind of particles.

Additionally, the SPD hit multiplicity information is used in the hardware trigger as
it is correlated to the multiplicity of the event.

The electromagnetic calorimeter ECAL

The electromagnetic calorimeter is responsible for measuring the energy of incoming elec-
trons and photons. It is a shasklik-type sampling calorimeter of thickness 25X, composed
of 66 layers of lead plates and scintillating tiles; the scintillating light is collected by photo-
multipliers. The cell size varies from 4 X 4 cm in the inner part of the detector, to 6 X 6 cm
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Figure 2.18 — Sketch of the typical repartition of showers depending on the nature of the incoming
particle. “Pb” refers to a lead plate that converts photons to cascades of charged particles.
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Figure 2.19 — (Left) Segmentation of the ECAL. (Right) Segmentation of the HCAL. The beam
pipe region is filled with black, and is outside of the acceptance of both calorimeters.

and 12 x 12cm in the middle and outer parts. Figure 2.19 shows these different segmen-
tation schemes. The cell granularity corresponds to that of the SPD and the PS, aiming
at a combined use in /e separation.

The hadronic calorimeter HCAL

The hadronic calorimeter is designed to absorb the entire energy of incoming hadrons. It
is organized as a succession of 26 layers of thin iron plates and scintillating tiles arranged
parallel to the beam pipe. Figure 2.19 shows the segmentation of the two calorimeters.

2.2.6 Muon chamber

The five muon chambers are responsible for the identification of muons and for providing
a fast-response detection of high-pr muons in the trigger system. Four of them consist of
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Figure 2.20 — Schematic view of the (left) side of the LHCb muon detector and the (right) two
mechanically independent station halves with the four regions (R1-R4) indicated.

multi-wire projection chambers (MWPC). The first muon chamber is located upstream
from the calorimeter systems in order to improve the resolution of the transverse momen-
tum of muons, as calorimeters induce multiple scattering. It is equipped with a triple gas
electron multiplier (GEM) that is more resistant to the increased radiation in this region.
The other muon chambers (M2-5) are located downstream from the calorimeter systems.
A 80 cm-thick layer of iron absorber is placed in front of each of these chambers in order
to reduce backgrounds, and another is placed in front of M5 for the same purposes.

After the hadronic calorimeter, most hadrons and electromagnetic (e, ) particles have
been absorbed. Inversely, muons mostly pass through the whole detector without being
absorbed, due to their low rate of energy loss dE//dz. Hence, the matching of a track to
a deposit in the muon chambers increases its probability to be associated with a muon.
This information is used in particle identification.

Figure 2.20 shows the layout of the muon chambers. The segmentation of the readout
is finer in the regions near the beam axis, as these correspond to higher occupancies.

The information from muon chambers is used as a veto in the analyses described in fur-
ther parts of the document. Indeed, the muon identification provided by the information
from these chambers allows to veto out muon misidentification with a large efficiency.

2.3 Particle 1identification in LHCDb

The identification of particles in the LHCb experiment relies on information from most of
its subdetectors, such as:

e Cherenkov radiation angle from the RICH (charged particles only);

e track measurement in the muon chambers (muons);
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e deposited energy in the ECAL, associated with the track momentum (electrons);
e information from the PS and SPD (neutral particles).

Additionally, a cluster formed in the calorimeters that is not associated with a track can
be attributed to a v or a m°. As all analyses described in this document use charged pions
and kaons as final-state particles, we only describe in the following the techniques relative
to these particles.

Two approaches are used in LHCb for the identification of particles. The first method,
named DLL, computes the difference of likelihood between a mass hypothesis and the
pion hypothesis for each subsystem, and combines them linearly. The second method,
named ProbNN, uses information from all subdetectors as inputs to a multivariate method
that outputs a single probability for each hypothesis. It takes the correlations between
subdetectors responses into account, as well as additional information. The training of
this multivariate method is performed on inclusive simulated B events. Its performance
depends on the blending of MC samples used (tune).

2.4 Trigger system in the LHCb experiment

The LHC accelerator operates at a bunch-crossing frequency of 40 MHz. Due to the lower
luminosity settings at the LHCb interaction point and to the detector geometry, the rate
of visible interactions was 15 MHz for 2012 data-taking conditions.® At a luminosity of
2 x 1032 the bunch crossings with visible pp interactions are expected to contain a rate
of about 100kHz of bb-pairs. However, only about 15% of these events will include at
least one B meson with all its decay products contained in the spectrometer acceptance.
Furthermore the branching ratios of interesting B meson decays used to study for instance
CP violation are typically less than 1073, The role of the LHCb trigger system is to reduce
the rate down to 5kHz while enriching the samples with events that are interesting for
LHCb analyses. The trigger is also required not to bias interesting observables too much,
which is especially challenging in the case of particle lifetimes.

Figure 2.21 shows the overall structure of the LHCb trigger system during Runl,
along with the rates associated to each level. The trigger is divided in two levels: the
hardware trigger (level-0 trigger or L0), and the software trigger (high-level trigger or
HLT). The structure of the trigger system in LHCb has been overhauled for RunII, with
the suppression of the hardware trigger.

2.4.1 The hardware trigger (LO trigger)

The purpose of the L0 trigger is to reduce the LHC beam crossing rate of 40 MHz to the
rate of 1 MHz with which the entire detector can be read out. The logic of the L0 trigger
takes advantage of the fact that the dominant source of transverse momentum and energy

6 An interaction is defined to be visible if it produces at least two charged particles with sufficient hits
in the VELO and T1-T3 to allow them to be reconstructible.
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Figure 2.21 — (Left) Overview of the LHCb trigger system in 2012, along with the allowed rates
for each line. (Right) Detector subsystems involved in the LO trigger decision.

in the LHCb acceptance comes from the decays of heavy particles and resonances. A
partial read-out of the muon chamber information and of the calorimeter information is
processed in order to estimate the transverse momentum of single/di-muon candidates and
the highest Er cluster, respectively. Both quantities are then compared to a pre-defined
threshold. The rates of each decision line in 2012 data-taking conditions are shown in
Fig. 2.21, along with a sketch showing the subdetectors involved in the decision.

In parallel with this filtering, the information from the SPD is also read in order to
estimate the total number of tracks in the event, respectively. This allows to veto events
that would have too many tracks and that would be triggered due to large combinatorics.
These events would also occupy a disproportionate fraction of the data-flow bandwidth
or available processing power in the HLT.

The LO trigger is operated synchronously with the 40 MHz bunch-crossing frequency,
using custom-made electronics.

2.4.2 The software trigger (HLT trigger)

The High Level Trigger (HLT) is designed as a series of C++ algorithms that reduces
the output rate to approximately 3.5 kHz and 5kHz in 2011 and 2012, respectively. This
corresponds to the nominal event rate for being permanently stored. The HLT architecture
is divided in two stages: fast partial event reconstruction with an inclusive selection
(HLT1) in order to reduce the rate to 40 and 80kHz for 2011 and 2012, respectively;
complete event reconstruction with final trigger selection (HLT2).

With the additional information available, the strategy of a single track trigger is
implemented in HLT1 using information on the quality of the track and the displacement
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from the primary vertex. Further improvements on the tracking search are obtained by
reducing the phase-space boundaries to consider only tracks with transverse momentum
above the required threshold conditions. In particular, an inclusive approach for beauty
decays has been designed, which comprises a large fraction of the output bandwidth. The
strategy of this approach is to select a high transverse momentum, significantly displaced
track, and a significantly displaced vertex containing this track and 1-3 other tracks [61].
This design triggers efficiently on B decays with at least two charged daughters.

2.4.3 Trigger conventions

Another important consideration is the association of a trigger object with a signal track.
An event is classified as trigger-on-signal (TOS) if the signal under study triggers the event,
whereas trigger-independent-of-signal (TIS) categorizes the trigger objects not associated
to the signal. This separation is especially relevant when the main trigger line for an
analysis introduces a bias on the variables of interest that has to be studied.

2.5 Monte-Carlo simulations in LHCb

The simulation of a physics event in LHCb is divided in several phases, integrated in
the GAUDI framework. Firstly, the underlying physical event and its interaction with
the LHCb detector is simulated inside the GAUSS framework. The digitization of hits
in the subdetectors and the building of the raw dataset is then modelled by the BOOLE
package. The reconstruction of tracks from this raw dataset is then modelled by the
BRUNEL package. Finally, the DAVINCI package simulates the further offline analysis
steps, such as the building of physical variables from tracks. Figure 2.22 shows the data
flow of simulated events in LHCb.

In this section, I focus on the GAUSS and DAVINCI parts of the framework. I also
detail several sources of data/MC discrepancies that are relevant to the analyses discussed
in this document.

2.5.1 The GAUSS framework

The GAUSS package simulates pp collisions in LHCb and the detector response to the
products of the collision. It operates in two phases that can be run sequentially or inde-
pendently.

The first phase consists of the event generation of pp collisions and the decay of the
B-mesons in channels of interest for the LHCb physics programme. It is interfaced to
PyTHIA for the event production and to a specialized decay package, EVTGEN, for the
B-meson decay. The generator phase of GAUSS also handles the simulation of the running
conditions, the smearing of the interaction region due to the transverse and longitudinal
sizes of the proton bunches and the change of luminosity during a fill due to the finite beam
lifetime. Single and multiple pp collisions are produced according to the chosen running
luminosity. Other event generator engines can be interfaced in this phase if required.
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Figure 2.22 — The LHCb data processing applications and data flow. Underlying all of the
applications is the Gaudi framework and the event model describes the data expected. The
arrows represent input/output data

The second phase of GAUSS consists in the propagation in the LHCb detector of the
particles produced by the generator phase. The simulation of the physics processes that
the particles undergo when traveling through the experimental setup is delegated to the
GEANT4 toolkit. The behaviour of the GEANT4 simulation engine in terms of detectors
to simulate, physics models to use, details of the Monte-Carlo truth to be provided, is
controlled at run time via job options configuration.

The behaviour of the generator phase and of the detector response is regularly studied
using reference decay channels for which LHC disposes of a large high-purity dataset. The
correction of some variables in the Monte-Carlo production in order to match data better
is called “tuning”. It is especially relevant to the generator phase, where the output of
PyTHIA and other hadronization tools is closely scrutinized.

As the second phase is the most CPU-intensive, it is possible to specify a set of
requirements (“generator-level cuts”) to the first phase, in order to veto out events that
have no chance to be reconstructed by LHCb, for instance, a signal event with a charged
track outside of the LHCb acceptance.

2.5.2 The DAVINCI framework

The DaVinci package manages the creation of physical objects such as tracks from the
output of GAUSS or from the detector response to real data-taking. Additionally, DaVinci
contains tools to tag the flavour of particles, or to refit events taking constraints such as
masses or vertices into account. This allows, for instance, to constrain the masses of all
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Figure 2.23 — Distributions of the number of tracks in B — K27T7~ events. Simulated events
are represented in blue, while signal events from data are represented in red.

particles to be the “true” mass when considering a Dalitz plot.
The DaVinci package is implemented in such a way that Monte-Carlo productions and
real data are treated the same way.

2.5.3 Data/MC discrepancies

Despite regular tuning and an overall excellent performance, the LHCb Monte-Carlo pro-
duction does not match data perfectly, for several reasons. I describe in the following
several sources of data/MC discrepancies that are relevant to the analyses described in
this dissertation.

Our understanding of strong interaction and hadronic physics is limited, and the sim-
ulation of the underlying event is only an approximation. As a result, the kinematical
spectrum of the products of pp interactions and the number of these products is different
in Monte-Carlo and data. The response of several subdetectors, such as the RICH and
the calorimeters, is correlated to the track multiplicity in the event. Figure 2.23 shows the
different distributions in track multiplicity of events in data and Monte-Carlo. The track-
finding efficiency of LHCD is correlated to momenta and to the track multiplicity, and
so differs between data and simulation. The kinematical dependency of that difference
means that it depends a priori on the Dalitz plot.

As mentioned in Sec. 2.2.4, performances of the RICH detectors depend on the re-
fractive index mn of their radiator. This index is highly sensitive to temperature and
pressure changes through the whole year, a change that is impossible to match perfectly
in Monte-Carlo. Additionally, the performances of these subdetectors depend on the track
multiplicity in the event and on the kinematics of particles. The PIDCalib tool is used
to reweight Monte-Carlo productions to match the efficiency of a given selection on PID
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variables. The weights are calculated using a reference data sample and the dependence
on track multiplicity and the kinematics of the given particle is taken into account.

20



Chapter 3

Fast Monte-Carlo method for
background studies

In this chapter, T describe a fast simulation method that I have developed to model the
partially reconstructed backgrounds in By, — KJhTh™ modes. I present the strategy of
the method in Sec. 3.1, and then present the study of a fully simulated sample of one of
these backgrounds in Sec. 3.2. I show the results of exporting this study to another sample
of partially reconstructed background in Sec. 3.3. I discuss in Sec. 3.4 the modelling of
acceptance effects by means of selection criteria, and finally present the results of a full
fast MC simulation in Sec. 3.5.

3.1 Strategy of the fast MC method

Partially reconstructed background in Bg,s — K2h*th™ modes consists of events such
as X — K°hTh~Y, where Y is not being reconstructed (e.g. it is soft or out of the
acceptance). It can originate from a variety of channels with different mother particles,
missed particles, or intermediate resonances.

Studying and modelling the partially reconstructed background is usually done by
generating large samples of fully reconstructed Monte-Carlo (MC) events, which is CPU-
consuming. As described in Sec. 2.5, the simulation of the detector is the most expensive
part of the generation of simulation samples in terms of CPU. We thus aim at modelling
the effects of the detector on the distribution of invariant masses without simulating the
whole detector.

The detector affects the distributions of physical variables because of its finite resolu-
tion, and because of its finite acceptance. The proposed fast Monte-Carlo method consists
of smearing generator-level variables event by event, to account for resolution effects on
invariant masses, after applying some requirements on the generator-level distributions in
order to account for the acceptance effects.

For most kinematic variables, the distributions of variables at generator-level and
reconstruction-level are barely distinguishable. We study the resolution of a variable X
by means of the distribution of
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AX - X - Xtrue- (31)

In the case of a variable at reconstruction level X,.., the resolution quantifies the detector
effect on the variable. We attempt to obtain a choice of variables to smear with a para-
metric function modelling their resolutions, in a way that ensures that resolution effects
on all the invariant masses are fairly well taken into account.

For obvious reasons, we prefer having a set of variables for which the resolutions are not
correlated. Resolutions of the components p,, p, and p, of the three final-state-particles
momenta do not have these properties (x, y, and z are the usual LHCb coordinates defined
in Sec. 2.2). We therefore use the resolutions of 1/p,, the polar angle 6, and the azimuthal
angle ¢, along with the resolution of m K- Once we extract the resolution distributions,
we use them to smear the corresponding variables, and compute the resulting invariant
masses.

We investigate the results of extracting resolution functions from one channel, and
applying them on another. Indeed, the partially reconstructed background of Bg,s —
KOh*h'~ is composed of channels of various types. They can differ by their topologies,
or by the missing particle. For instance, the following modes contribute to the partially
reconstructed background of By, — K{ntn™:

o BY— (K*%— K% (p°— nt7r~), P=VV topology, missing 7° (massive calorimet-
ric object);!

!The P,V, and S letters stand for pseudo-scalar, vector, and scalar, respectively.
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e B'— K2(n— ntr7), P — PS, S»PPP topology, missing 7;

e BY— KY7T7~, nonresonant, missing v (massless calorimetric object);

e BY— K?(n'— mtn~ ), resonant, missing ;

o B'— (K*— K21 ")ntn~, P VPP topology, missing 7" (massive track).

The invariant-mass distribution of each of these modes is modelled by an ARGUS
distribution convoluted with a Gaussian. The ARGUS distribution is parameterized as

F(ms e, s,mo) = N (1 - (ﬁ)2>c.e‘%s2(l‘ﬁ_§), (3.2)

mo mo

where the parameters ¢, s, and mg are the curvature, slope, and threshold mass, respec-
tively, and NV is a normalization factor.

3.2 Study of a B~ (K*'— K{n%)(p"— n"n~) sample

We extract the resolutions from a fully simulated sample of roughly 20,000 Monte-Carlo
events of B® — (K*® — K279 (p° — mt7x~). This section only presents the study of
events with Down-Down K reconstruction, as defined in Sec.2.2.3. The results also hold
for events with a Long-Long K? reconstruction.

For each particle in each event, we extract Ay, A¢’ and Al/pz’ along with Ang,

and fit them with analytic functions. These are then used to smear the generator-level
variables, to obtain fast Monte-Carlo distributions. These distributions are not complete
fast Monte-Carlo distributions, as we apply here the smearing procedure on the generator
level of a fully reconstructed sample. We control the results obtained by comparing the fast
Monte-Carlo and reconstruction-level distributions of invariant masses. We also compare
the distributions of Ax for the reconstructed sample X,.. and for the fast Monte-Carlo
sample Xpsinmc-

Figure 3.2 shows the distributions of Ay, A¢, and Al/pz for the 7™ with respect to its
p. momentum. The three variables show a strong dependence on p,. We account for this
dependence by handling twelve intervals of p, that contain roughly the same number of
events, and fitting Ay, A¢, and Al/pz in each of them. Figure 3.2 shows the distribution

of Ang along the p,(K?) axis. The resolution of m(K?) depends on the momentum of

the K2, but this dependence is ignored in the following as it is smaller than the dependence
of other resolutions with respect to the momentum.
We model the distributions of Ay, A¢, and Al/p by a sum of two Gaussians in each
z

interval. Figure 3.3 shows the results of a fit to the resolution distributions obtained for
7 in a single p, interval. The fit is overall satisfactory.
To generate fast Monte-Carlo distributions, we proceed as following:
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obtain ng,fastMC o ng,true + Ang ’

e for each particle, determine in which p, interval it lies, and generate a random value
according to the corresponding PDFs to get Ap’, Aqbl, and Al/p *; we then obtain

HgastMC = Hérue + A027 (b%astMC - gbérue + A¢Z? and 1/pi7fastMC - 1/pi,true + Al/pzl’
e deduce the fast MC values of momenta, Mcontn's MKy MK and myy,.

Figure 3.4 shows a comparison of the reconstructed and fast Monte-Carlo distributions
of Mop+ ! - These do not agree perfectly well, but given the small amount of partially re-
constructed background events in our modes of interest, it is good enough for our purpose.
In the same figure, we also compare the reconstructed and fast Monte-Carlo resolution for
LN TSR The shape is sensibly the same, but the fast Monte-Carlo distribution is slightly
narrower. Possible explanations include imperfections of the used resolution functions or
missed correlations between variables.

Figure 3.5 shows the distributions of background events over the Dalitz plane in recon-
struction level and fast MC. It also shows the distribution of the difference between the
two former distributions, divided by the standard error on the difference. In the follow-
ing, this distribution is referred to as the distribution of pulls between reconstructed and
fast Monte-Carlo distributions. These pulls are small and show no overall structure, thus
showing that the agreement between the reconstructed level and the fast Monte-Carlo is
rather good.

r # | 2000F 2
i 7 i it
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Figure 3.4 — Left: Distributions of M goptp for reconstructed (blue) and fast MC (red) B? —
K*9p0 events. Right: Resolutions of m KOt H for reconstructed (blue) and fast MC (red) B® —
K*0p0 events.
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struction of the K?. Left: Reconstructed events. Middle: Fast MC events. Right: Pulls between

the two distributions.

3.3 Study of the resolution model applied to other chan-
nels

We apply the resolution functions extracted from B? — K*0p° decays, using the same
procedure and p, intervals as in Sec. 3.2, to a variety of partially reconstructed samples.
The fully simulated and fast Monte-Carlo distributions of m KOh+h and AmK0h+h' are then
compared, as well as the distributions of events over the Dalitz plane. As inSSec. 3.2, this
is not a complete fast Monte-Carlo distribution, as we still use the generator level of a
fully reconstructed sample.

In this section I discuss the results of this procedure applied to a sample of B® —
K%(n' — mtn~~) decays. This channel appears as a background in the K7™~ spec-
trum, and the missed particle is massless, which makes this contribution dangerous to
our analysis. In Annex C, I summarize the results of the same procedure applied to other
channels of partially reconstructed decays.

Figure 3.6 shows the distribution of 7+, near the threshold for reconstructed and
fast MC events, as well as the resolution distributions for m.o,,/. The distributions agree
quite well for 1m o1, with a well-reproduced behaviour at the threshold. As before, the
distribution of Anghﬂ, is slightly narrower in the fast MC case. Figure 3.7 shows the

distributions of events over the Dalitz plane for reconstructed and fast MC events, along
with the distribution of the pulls between these two distributions. The distributions are
similar, and the pulls are rather small and show no structure. Overall, the result we
obtain with this channel are satisfactory.

3.4 Study of generator-level reconstruction effects

The generator-level distributions that we smeared in Sec. 3.2 and Sec. 3.3 are not those
that are directly produced by the GAUSS generation. They contains events that pass the
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trigger, reconstruction, and a step called “stripping”, all of which modify the generator-
level distributions of invariant masses and momenta. In this section I discuss the possibil-
ity of accounting for these effects by applying selection criteria on variables available at
generator level. To do so, we use the same samples as in Sec. 3.2 and check the consistency
of our procedure on the samples used in Sec. 3.3.

3.4.1 K reconstruction mode

Firstly, we have to determine if a K? in the generator level would be reconstructed as
Down-Down or as Long-Long. For this purpose, we study four variables: the z position
of the K? end vertex, the radial coordinate r of this vertex in the LHCb usual coordinate
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Table 3.1 — Selection criteria applied on events to assign them to Long-Long reconstruction.

A min, > 30mm & z(K? end vertex) < 650 mm

B r(K{ end vertex) < 35 mm

C z(KY? end vertex) < 250 mm

D O(K?Y) < 0.07rad

E 2(K?) < 300mm || (2(K?) + 1.2xmin,) > 550 mm
Total cut A&LB& (Cl(IC& D)) &E

Table 3.2 — Summary of DD-LL requirements on all channels under study. Efficiency is defined
as the portion of events from the corresponding K reconstruction mode that pass the criterion;
power is defined as the proportion of events from the other K reconstruction mode that do not
pass the criteion.

Channel Efficiency (%) Power(%)
B — K*0,° 98.7 99.7
B°— K% 98.9 99.5
B~ KOntn 08.4 99.7
B — K2/ 98.8 99.7
Bt — K*trtg~ 98.0 99.6
BY— K*%¢ 98.5 99.7
BT — K**¢ 98.6 99.8
BY— K*¢ 98.4 99.6

system, the polar angle 6 of the K?, and a variable named min,. This variable accounts
for the fact that a track can be reconstructed as Long only if it crosses at least three
VELO stations (see Sec. 2.2.3). To design the selection criteria on these variables, we
consider the VELO as a cylinder of radius r = 35 mm.

Figure 3.8 shows the distribution of the K? end vertex, 6, and min, for Down-Down
and Long-Long reconstruction in fully simulated B — K*p" events. We can achieve a
good separation between the two samples with rather simple requirements presented in
Table 3.1.

These requirements are then tested on all other available channels, and the results
are shown in Table 3.2. Here, the efficiency is defined as the percentage of Long-Long
events that pass these requirements, and the power is defined as the percentage of Down-
Down events that do not pass these requirements. Both the efficiency and the power are
consistently high for all channels, and do not vary significantly between them.
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3.4.2 Reproduction of the generator-level distributions

We generate with GAUSS 20,000 events of each of the following modes: B° — K*0p°,
B — K%, B®— KM/, B - K%rtn~v, B = K*%¢, and BT — K**¢. The selection
applied to these GAUSS samples are presented in Table 3.3. Most of them are described in
Ref. [62], but some values are changed to obtain a higher efficiency of the fully simulated
samples.? We also add requirements on (B) and on the B-meson flight distance. These
do not affect the efficiency of fully simulated samples, and improve the agreement between
P, Gauss(B) and p. ru(B).

Figure 3.9 shows a comparison between the distributions of MR, MK Ma, and
p.(B) at generator level for fully simulated samples and our GAUSS samples of BY — K*0p°
events. The invariant mass distributions are similar, while the p,(B) fully reconstructed
distribution is shifted towards higher values. This could come from a x? selection on
the B vertex, as this variable is correlated with the momentum of the B meson. The
momentum of the B meson affects our smearing procedure, as resolutions depend on p..

We account for this effect by reweighting the p,(B) distributions. Figure 3.10 shows
the distributions of the weights calculated for all channels of which we generated a GAUSS

2This readjustment is necessary because the selection criteria quoted in Ref. [62] are applied to
reconstruction-level variables, which are affected by the resolution.
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Table 3.3 — List of generator-level selections

Down-Down ‘ Long-Long
p.(B) > 25GeV/c
pr(B) > 1.5 GeV/c
> pr>3GeV/e

daughters
Prdaugh > 800 GeV/c for at least 2 B-meson daughters
cos(DIRAgB) > 0.999
pr(hl) > 250 GeV/c
pr(h2) > 250 GeV/c

ngdaughters > 2 GGV/C

p(KY) > 6 GeV/c | n/a
O(K?Y) > 0.01 rad
0(KJ) < 0.35 rad
6(h()) > 0.01 rad
0(h)) > 0.4 rad
Zngndvertex < 2400 mm n/a
Zngndvertex > 100 mm n/a
Rngndvertex > 15 mm n/a

B-meson flight distance > 1.5mm | B-meson flight distance > 1 mm

sample. For a given bin i and channel j, we define the weight w;' as following:

i
i Nj,full Nj,Gauss
Wi = X

Nj,Gaussi  full 7W1th Nj,(Gauss,full) = Z N;,(Gauss,full)' (33)
Within uncertainties, all these weights are compatible. We can then reweight our
generator-level distributions using weights from all our fully simulated samples.

3.5 Complete fast Monte-Carlo test on B’ — K*0p’

In this section I present a comparison between fast Monte-Carlo events and the
reconstruction-level in fully reconstructed Monte-Carlo events. We generate 50,000
BY — K*99° events using GAUSS first stage (see Sec. 2.5.1), with generator-level cuts
on the production angle of the daughters, to ensure that they are in the LHCb accep-
tance. We also apply a selection on m o+, forced to be larger than 4800 MeV/c?. We
apply the generator-level cuts described in Sec. 3.4.1 and in Table 3.3 to our generated
sample; we apply weights as described in Sec. 3.4.2.

Prior to the smearing, we combine all the fully reconstructed samples used in Sec. 3.2
and Sec. 3.3 to extract new resolution functions. The larger number of events allows to
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Figure 3.9 — Distributions of m gy, (top, left), M0 (top, right), mpp (bottom, left), and
p.(B) (bottom, right) for fully simulated (blue) and generated (red) events of B — K*0p° at
generation-level. The agreement between centre-of-mass distributions is satisfactory, but the
z momentum distributions do not agree well between fully simulated samples and generated
samples.

divide the p, axis into 24 intervals and the fit is of better quality. We then smear the
generator-level variables as described in Sec. 3.2.

The resulting MM cop+ b and Angh+h, distributions are shown and compared to the
fully simulated distributions for the same channel in Fig. 3.11 with Down-Down and
Long-Long K? reconstruction. The level of agreement between the two distributions is
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good enough for our purposes. Figure 3.12 shows the distribution of the Dalitz plane in
fast Monte-Carlo events, and in fully simulated events, as well as the pulls between these
two distributions. The pulls are larger than in Sec. 3.3, but overall satisfactory given the
small amount of partially reconstructed background events that we expect.

3.6 Conclusion

In the case of the partially reconstructed background of By, — K{h*h'~, it is possible
to account for resolution effects on invariant masses by smearing event-by-event the 6, ¢,
1/p. of each reconstructed particle, along with the KU mass. The functions we use to
smear these variables can be extracted from only one Monte-Carlo sample, and exported
from one channel to another, regardless of the missed particle or the type of reconstructed
hadron.

We also demonstrated that we can emulate the acceptance effects on our samples by
using selection criteria on variables available at generator level only, and by reweighting
the resulting sample. This opens the possibility to generate a large amount of events
with GAUSS, and to obtain sensible distributions of invariant masses both in Down-Down
and Long-Long K reconstruction modes. This procedure can be useful in modelling
backgrounds coming from a large variety of channels, such as the partially reconstructed
background.

However, this procedure still suffers from inaccuracies in several levels. Firstly, the
functions we use to fit resolution distributions are not perfect, and there are dependencies
that we did not take into account, for instance between the distributions of A¢ for the

62



Now I
o.oeﬁi #&H 0_06; ﬁ

0.041 + 0.04 # N
i | - + e
0.02- + 0.02] g ﬂt
i ¥ I < i i !
ol e bt 0 +rt#r
5000 5100 5200 5300 -40 -20 0 20
Kghh' mass [MeV/c?] AMy [MeV/c2]
T + + 0.1 J(
}#ﬁ 4 ; N%
0.05 0.05- # i
I ) I . ﬁ
TI oA t
! I # r#i ‘
oL fti? beae e 0 *—tif'if R R #ﬁ*
5000 5100 5200 5300 -40 -20 0 20
Kshh' mass [MeV/c?] Am, [MeV/cZ]
Figure 3.11 — Distributions of UL (left) and Angh+h, (right) for full (blue) and fast (red)

Monte-Carlo methods, with Down-Down (top) and Long-Long (bottom) K2 reconstruction mode.

two charged tracks, which could explain the AmK0h+h’ behaviour in Sec. 3.2 and Sec. 3.3.

The generator-level cuts could be improved using Monte-Carlo samples disposing of the
whole generator-level information, which would improve the agreement between invariant-
masses distributions shown in Fig. 3.11 and in Fig . 3.12. The weighting procedure would
greatly benefit from a careful study and larger samples. Finally, this procedure has only
been tested on charmless backgrounds. The different topology of open-charm decays
could require another set of generator-level cuts. Overall, this method provides sufficient
modelling power for reconstruction effects on invariant masses for the analyses described
in this dissertation.
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Chapter 4

Measurement of the branching fractions
/
of the Bg s th+h ~ modes

In this chapter I describe the measurement of the branching fractions of the By, —

KOh*h'~ modes. In Sec. 4.1, I shortly present the analysis strategy. I then review in
Sec. 4.2 the formalism and methods employed in the mass fit and in the extraction of
the signal shapes over the Dalitz plot. The different event species considered in each
mass spectrum and their modelling are described in Sec. 4.3. The results of the mass
fit to data are shown in Sec. 4.4, and the results of the toy studies used to validate the
model are shown in Sec. 4.5. I then present the different sources of systematic uncertainties
originating from the mass fit in Sec. 4.6. Finally, I discuss the extraction of the distribution
of signal events over the Dalitz plot in Sec. 4.7, and present the measurements of the
branching fractions in Sec. 4.8.

4.1 Analysis strategy

The first LHCb analysis of the By , — K{h™ h'~ modes, performed with 1fb~* of 2011 data,
was published in 2012 [63| and updated in 2013 [52]. The present analysis integrates the
additional 2fb™! of data from 2012, disposes of more simulated samples, and makes use of
more refined analysis techniques on several points. Our aim is to update the measurements
of the branching fractions of the modes previously observed, along with observing the
BY — KYK*K~ decay for the first time. In order to avoid any experimenter bias in
this search, we blind the region of the B? — KKK~ signal in the mass fit. Finally,
the result of the mass fit performed in this analysis is one of the key inputs to the three
Dalitz-plot analyses performed on the Cabibbo-favoured signal modes.

We consider separately four different final states: KCKTK—, KIKtn—, KonTK—,
and K{7*7~. However, due to experimental differences, we have to simultaneously fit, 24
different spectra in total. Firstly, we have to split our data between the Down-Down and
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Long-Long K? reconstruction modes', described in Sec. 2.2.3, as the shapes and yields
of the different event species are expected to differ between these two configurations.
Secondly, we have to consider separately the 2011 data and two different data-taking
periods in 2012, due to the difference in the trigger configuration between these periods
described in Sec. 2.4.

Each of these mass spectra contains signals events from B® and B? decays, as well as
several species of backgrounds. In the case of components that are well separated from the
signal, such as the charmed background described in Sec. 4.3.2, we use a veto to remove
most of their contributions. We describe in the following the different strategies adopted
for the remaining backgrounds.

The combinatorial background, described in Sec. 4.3.5, is first suppressed using some
preselection criteria that have a high efficiency on signal. It is then further suppressed us-
ing Boosted Decision Tree (BDT optimization) methods, trained using Monte-Carlo as the
signal reference and events from the upper-mass sideband (m(K°h*h'F) > 5450 MeV/c?)
as the combinatorial background reference. In order not to bias the Dalitz plot, the
variables used as an input to the BDT method are mainly topological variables. These
methods produce an output variable for which the signal and combinatorial background
distributions are well separated, as shown in Fig. 4.1. We then apply a selection on this
variable so that the resulting signal and combinatorial background yields maximize the
figure of merit

N(Sig)
\/N(Sig) + N(Bkg)

FoM = (4.1)

for all observed signal modes. N(Sig) and N(Bkg) are the number of signal and back-
ground events after the selection is applied. For the unobserved B? — KKK~ mode,
we use the Punzi figure of merit [64]

FoM = Coig (4.2)
5 + N(Bkg)

with a = 2, where €4, is the signal efficiency, estimated by means of Monte-Carlo samples.
We use two different sets of requirements on the BDT output variable for each spectrum,
depending on the signal component that we use to calculate the figure of merit. Indeed,
considering different signal components for the parameter N (Sig) will result in different cut
values as cross-sections are different between B and BY signals. Selection cuts optimized
using a figure of merit calculated with the Cabibbo-favoured mode will be referred to as
“loose”, whereas those calculated with the Cabibbo-suppressed mode will be refereed to
as “tight”.

"We do not dispose of a dedicated stripping line for Long-Down K? candidates.
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Figure 4.1 — Left: distribution of the output variable of a BDT method for signal Monte-Carlo
events (red) and upper-mass sideband events (blue). Dashed histograms represent the distri-
bution of the BDT output variable in training samples, while dots represent the distribution
of the BDT output variable in test samples. Right: value of the figure-of-merit calculated on
B’ — KYK*K~, 2011, Down-Down signal for different BDT selection cut values. The maximum
is chosen as the cut value for the loose BDT selection in that sample.

We apply a selection on particle identification variables (PID cuts) to reduce the
contributions from misidentified signal events, or cross-feeds, with criteria of the type

(PROBNN(Pi/K) — PROBNN(K/Pi) > «). (4.3)

These likelihood-based PID classifiers are described in Sec. 2.2.4. The threshold « is
optimized for each spectrum, using the same figure of merit as in the corresponding BDT
cut optimization. The value of « is therefore different between the loose and the tight
optimizations. The values of o are also chosen in such a way that no event can contribute
to two different spectra.

Partially reconstructed background events, already discussed in Sec. 3, peak at a
lower reconstructed K2h*h'T invariant mass than signal events. In order to reduce the
number of partially reconstructed background events, we include in the fit events with a
reconstructed KOh*h'F mass between 5150 MeV/c? and 5800 MeV/c?.

The efficiency of the trigger, stripping, and selection criteria is not constant over the
Dalitz plane. We estimate its distribution using Monte-Carlo simulations, corrected for
data/MC discrepancies in the tracking and the trigger efficiencies. The total efficiency is
taken as the factorized product of three components

tot _ 6genesel|gen6PID|(sel|gen)

€ (4.4)

I
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where €2°" is the efficiency of the generator-level cuts in the Monte-Carlo, e is the
trigger, selection, and stripping efficiency, and ”PI(selleen) s the PID efficiency, estimated
using the PIDcalib tool discussed in Sec. 2.5.3. The “|” symbol states that the efficiency
is calculated using samples that passed the selection corresponding to the phases on the
right of the symbol. These efficiencies are corrected for differences between data and
Monte-Carlo in tracking and trigger efficiencies. This is done in LHCb by a standard
recipe based on kinematics-dependent correction tables. Unfortunately, a problem was
very recently discovered in the tables used in the correction of the trigger efficiency and
is now under study in the collaboration. The results presented in this dissertation will be
consequently updated before the final publication.

We perform a simultaneous unbinned maximum likelihood fit to the 24 reconstructed
B mass spectra in order to extract the signal yields. We also perform a second fit, letting
only the signal and combinatorial background yields to vary, in order to extract sWeights.
These sWeights allow to estimate the distribution fpo SHthw/_(m’,G’) of signal events

over the Dalitz plane as

S sW(e)

ecdata
- W, (45)
ecdata «(e)

where sW (e) and €(e) are the sWeight associated to the event e and the signal efficiency
of the event e, respectively. We estimate the total efficiency of signal events

= // DP fBS,ﬁthw’—(mla 9/)€Bg,sﬁth+h'—<m/7 0')dm’ ¢, (4.6)
sq

where the integration is performed over the square Dalitz plot variables m’ and 6’, de-
scribed in Sec. 1.3.2. The efficiency-corrected signal yield of a particular channel is then

T tot

faog oKW - T € ° NBg’SaKglﬁh'*v (4.7)
where NBS KO is the yield from the signal fit. The branching fraction of each signal
mode is then

Ncorr
/ BY —KOhth'—
B(BY,— KOhth ~) = — 50 2 (4.8)
’ E'Upwbg'fd,s
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where f, ¢ is the fraction of b quarks hadronising to B or BY mesons, L is the integrated
luminosity, and o, ;5 is the cross-section of bb pair production in LHCb. The two last
parameters cancel out when we consider ratios of branching fractions of thih'jF modes,
and the uncertainty on the f;/f; ratio is smaller than the uncertainty on f; and f

individually. Therefore, we aim at measuring the ratios

corr

B(BY,— KO H=) . VB o wonen-
B(B'— Kdntr—)  fy N

BO—K{ntr—

(4.9)

My personal contribution to this analysis is detailed in the following, and is focused
on the extended maximum likelihood fit to data, and on the extraction of the signal
distribution over the Dalitz plane.

4.2 Tools and formalism of the B-meson invariant mass
fit

4.2.1 The unbinned maximum extended likelihood fit

Maximum-likelihood estimation is a widely used method of fitting parameters of a model
to some data. For a variable z, we consider a model f, function of a parameter 6.2 Given
a set of measurements x;, the likelihood of the model is

N

L(©O) =[] f(=:.0), (4.10)

i=1

which is a function of 6. The maximum-likelihood estimator 6 for 6 is then the value of 6
that maximizes the likelihood.? Maximum likelihood estimators are generally asymptoti-
cally unbiased and efficient for large data samples.

In the case where several event species are present in the model, the number N; of
events in each event species is itself a random variable. In the general case, it follows a
Poisson distribution with the observed number of event parameter [V, o

f(V;) = =4——e"i. (4.11)
’ Ni,O!
2All the following assertions and formulae extend naturally to the case where there are several param-
eters and/or variables.
3 As this value also maximizes the logarithm of the likelihood, it is often preferred to work with the
logarithm.
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Including this term in the model f(z,#), and defining Ny = > N;o and N = > N;, the
extended likelihood is defined as ' Z

_N No
6N

L(0: Ni) = S [T £ G 03 N0, = In(L) = N i (f (2,63 0)) (4.12)

In this expression, the normalization term Ny! of the Poisson law was dropped, as it does
not change the estimator for 6.

4.2.2 Gaussian constraints

One of the advantages of the likelihood estimator is that it is possible to “plug in” an
external knowledge about some parameters by adding a term to the log-likelihood function.
This effectively constrains the parameter by adding a penalty to the likelihood. We often
choose so-called “Gaussian constraints” that result in the likelihood

_(6-6p)?

L')=L0O)xe *i | (4.13)

where 6, is the central value of the constraint and oy is its uncertainty. Gaussian con-
straints are often used to allow a proper convergence of a fit where the sensitivity to one
or several parameters is poor.

4.2.3 The ;Plots method

Subtracting background from distributions in physics analyses can be performed in sev-
eral ways. The jPlots method [65] uses the covariance matrix extracted from a fit to a
discriminating variable X to disentangle the signal and background distributions of some
control variables Y;. This covariance matrix is extracted from a fit in which only the yields
of the different event species present in the dataset are varied.

Let a model with Ng event species, each with a yield noted N, and a normalized PDF
noted fx. The ;Plots method defines for each event e and event species n the weight

> Vi (X,)
sPe)="1 (4.14)

Ngs
> Nifu(Xe)
=1

where V,,; is the covariance between the yields of species n and j. The estimated distribu-

tion of each control variable Y; for the event species n is denoted sM,,(Y;) and is defined
by
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N,sM,(Y;)0Y; = > sP,(e). (4.15)

eClY;—8Y;,Y;+6Yi]

In the presence of species with fixed yields, Eq. 4.15 becomes

NosMy(Y).0Y = > sPy(e) + cu. Mo (Y), (4.16)

eClY —8Y,Y +48Y]

where My(Y') is the distribution of the variable Y for the ensemble of species with fixed
yields. The parameter ¢, is extracted from the covariance matrix of the fit and is

Ns
tn=No=> Vs, (4.17)
7=1

where N,, and V,,; are defined as in Eq. 4.14. The parameter Ng is the number of species
with varying yields.

The RooFit implementation of the ;Plot method does not allow to fix a part of the
yields in the fit. We discuss in Annex A the pitfalls of the current implementation and
propose a new implementation that we use in the following.

4.3 The B-meson invariant mass fit model

In this section, we review the different event species present in our dataset and their
models in the mass fit.

4.3.1 B° and B? signal

The signal is modelled by a double Crystal-Ball distribution, which is the sum of two
Crystal-Ball distributions [66], defined by

t=m—p,
| exp(—t*/207) ift/o>—a (4.18)
) = {<%|>nexp<—a2/2><n;2 ~49 iftfe<—a

This distribution combines a Gaussian-type core, parameterized by p and o, and a
radiative tail, parameterized by « and n. Depending on the sign of «, the tail can be on
the left or on the right of the Gaussian core. Figure 4.2 shows an example of a Crystal-
Ball distribution with a tail on the left, superimposed with a Gaussian distribution for
comparison.
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Figure 4.2 — Example of a Crystal-Ball distribution centered around 5280 MeV/c?, with a tail on
the left (solid line). The distribution drawn with a dashed line is a Gaussian with the same p
and o (normalization has been changed accordingly).

The two Crystal-Ball distributions of each signal component share their Gaussian
parameters, and have their tails on opposite sides. The left-hand side tail accounts for
radiative energy loss, while the right-hand side tail accounts for small stochastic dispersion.
The fraction of the distribution with the tail on the left is denoted f, for a total of 7
parameters per signal component. Considering that there are two signal contributions
per spectrum (B? and BY mesons), we have to constrain some of the parameters in the
fit to data. For that purpose, we first perform a simultaneous fit to fully simulated signal
Monte-Carlo samples, using the following fit model:

e The turnover point oy and the tail parameter ng of the left-hand side tail are different
for each reconstruction mode and data-taking period, but are the same for the B°
and BY mesons, as well as for Down-Down and Long-Long candidates.

e The parameters oy and n; of the right tail are the same in all the modes, data-taking
periods, and B meson types. They are thought to be related to tracking effects, and
all the modes under study have similar kinematics at first order.

e The fraction f is assumed to be the same for the B and B? mesons, and the Down-
Down and Long-Long reconstruction modes, but is taken as different in the different
reconstructed modes.

e The parameters p of both BY and B? are free to vary in the fit and are the same
for all reconstruction modes and invariant masses.
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e The width of the K077~ decays is varied in the fit and two (multiplicative) scale
factors for the widths of the KK*n¥ and KK K~ decays are also free to vary in
the fit. The ratio of the widths of Down-Down and Long-Long candidates is assumed
to be the same, in order to reduce the number of free parameters. The ratio of the
widths of B® and B? is also assumed to be common between all reconstruction modes
and data-taking periods.

Fits to Monte-Carlo samples are shown in Fig. 4.3, and the results are satisfactory.
In the fit to data, we fix all the tail parameters and the fractions, but let the Gaussian
parameters ;1 and o vary, as well as the multiplicative factors.

4.3.2 Charmed contributions

Sub-decays with charmed intermediate states, such as B — (D°— K*7~)K?, have differ-
ent physics properties than the signal and are backgrounds to our analysis. Furthermore,
they do not interfere with our signal because of the long lifetime of the charmed mesons.
As such decays generally have larger branching fractions than our signal we veto them
out. We thus apply a selection on the invariant mass of the daughters of the charmed
hadron. Figure 4.4 shows this contribution in data events reconstructed according to
the K?K ™7~ mass hypothesis and that passed the trigger requirements, along with the
distribution obtained from simulated B® — KJK*7T signal events.

We also have to take into account misidentification of one of the daughters. For
instance, B — (D° — K*77)K? decays can also contribute to the K77~ spectrum,
and are also vetoed there.

4.3.3 A background

Another source of background comes from A baryons misidentified as K2 mesons, as the
proton from the A decay has been wrongly identified as a pion. Figure 4.5 shows the
distribution of K77~ data events on the proton PID of one of the K? daughters and
the mass of the K? using a proton hypothesis for this K0 daughter. A clear peak near
the A mass is present, indicating the presence of the A baryon background in data.

We veto out this contribution by imposing that an event is either outside the
Im(K? as A) — m(A)| < 10 MeV/c? window, or the PID variable ProblNNp of each of the
pion daughters is inferior to 0.05 unities. The efficiency of this requirement is estimated
on MC, and shown to be around 99%.

4.3.4 Beauty baryons backgrounds

The mass of beauty baryons is larger than 5600 MeV/c? and if a proton is misidentified
as a pion or a kaon, may fall into our considered mass range. We apply an additional
selection criterion on the proton PID, required to be inferior to 0.5 unities for both h™
and h'~, in order to veto these backgrounds out.
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Figure 4.3 — Results of mass fits on simulated signal samples (2011)(Down-Down), using the loose
BDT optimization, shown in logarithmic scale. KIK*K~, K{K*tn~, K7 K~ and K{ntn~
are shown from top to bottom, while B? decays are shown on the left and B? decays on the
right.
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Figure 4.5 — Left (Right): Distributions of selected data events on the reconstructed K mass,
calculated using proton mass hypothesis on the 71 (77) with respect to the proton PID of the
same particle.

4.3.5 Combinatorial backgrounds

The dominant source of background in the analysis is the random combination of tracks
from several decays. In the LHCb experiment, we do not dispose of a dedicated Monte-
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Carlo simulation for such contributions. However, we could use specific stripping lines
looking for KYh*h't candidates. These candidates can only come from random combi-
nation of tracks or other sources of background that we did not consider here, and are
expected to be kinematically close to the combinatorial background. These stripping lines
have been prepared but could not be included in this iteration of the analysis.

We consider two different shapes for the combinatorial background: exponential and
linear. Both yield similar results, and we choose the linear shape as a baseline for our
analysis. We add two multiplicative factors to the linear shape to account for differences
between Long-Long and Down-Down reconstruction modes and between invariant mass
spectra. The slopes for different data-taking periods are considered independent.

4.3.6 Cross-feeds

Cross-feeds are the contributions to a mass spectrum K2h*h'T originating from a signal
decay By, — KJh*™h"T, where h" is misidentified as an h’. These contributions typically
lie near a signal peak, and thus are dangerous to the fit as they can be absorbed in the
tails of signal distributions. We model them by double Crystal-Ball distributions, and fix
all of their parameters (including the parameters p and o) to their value extracted from
the fit to Monte-Carlo. Figure 4.6 shows the results of some of these fits.

Even with fixed shape, these contributions are too close to the signal to be prop-
erly accounted for by an unconstrained fit. We thus constraint their yields using known
efficiencies and the yield parameters of the signal yield from which they originate

N(B°— K2n*h'F as KPhh") = N(B® — K%h*h' F)f(B® — K°h*h'F as K%hh"), (4.19)

eclleen (B0 — KIh*h'™)

0 0p+17’ 01,1./7\ __ PID|sel&gen 10 01,1,/ 01,1,/
B = KON as KO) = &P (B0 KON s KO s s,

(4.20)

The width of the Gaussian constraint on the parameter f(B°— KYh*h'F as K¢hh")
is derived from uncertainties on the relevant efficiencies.

4.3.7 Partially reconstructed backgrounds

We already discussed the nature and general properties of partially reconstructed back-
grounds in By, — KOhth'~ decays in Sec. 3.1. Table 4.1 shows the categories of partially
reconstructed backgrounds that contribute to each reconstructed invariant mass. We
model the shapes of these contributions using the fast Monte-Carlo method described in
Chapter 3, and fix all their shape parameters in the fit to data.

As these contributions are expected to be small and as their distributions overlap, we
constrain the yields of each partially reconstructed background category using
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Figure 4.6 — Results of the fit of the reconstructed invariant mass of the misidentified signal
decays, using the loose optimization of the BDT on 2011, Down-Down simulated signal samples.
Top: on the left, B - K{K+K~ as K{K*rT; on the right, B — K{nt7~ as KOK*nT.

Bottom: on the left, B — KK*7T as K77 ~; on the right, B - K{K*7rT as KIKtK~.

Table 4.1 — Categories of partially reconstructed backgrounds included in each invariant mass
spectrum.

Category KXrtn~ KJK*nF KYKTK-
Charmed(B) Yes Yes Yes
Charmless(B°) Yes Yes Yes
Charmed(B?) Yes Yes No
Charmless(B?) Yes Yes No
Missing v(B°, NR) Yes No No
Missing (B, resonant) Yes No No
N(Cat) = N(Sig)h(Cat)B(Cat), (4.21)
1 ¢(Sig)
h(Cat) = 4.22
(Cat) = BiSia) e(Cat)’ (422)



Table 4.2 — Values and statistical uncertainties on yield parameters extracted from the fit to data
(loose BDT optimization)

2011 2012(pre-June) 2012(post-June)

N(B'— K'K'K )(DD) 281+19 181 +15 671 £ 30
N(B'— KOK*K-)(LL) 222417  119+12 344 + 20
N(B'— KOK*K-)(DD) 23+9 246 25+ 13
N(B'— KOK*K-)(LL)  7+8 645 8+ 7
N(B'—= K'K*n)(DD) 52%12 11 73+ 14
N(B°— K'K*tn~)(LL)  37+8 29 + 8 30 £ 9
N(B°— K'K*x~)(DD) 152415 92 + 12 255 + 19
N(B'— K'K*x~)(LL) 91411 51 +8 118 + 13
N(B'— KK «7)(DD) 52+ 12 A7 £ 11 91 £ 16
N(B'— K'K~nt)(LL) 2647 21 £ 8 56 + 10
N(B'— K'K-=*)(DD) 181417 113+ 14 307 4 22
N(B'— K'K-n*)(LL) 115412 4949 143 + 14
N(B'— K'ztx)(DD) 803%+36 553 =+ 30 1410 + 46
N(B'— Klntx=)(LL) 471427 286+ 19 654 + 30
N(B— Kntx=)(DD)  65+18 16 + 15 83+ 22
N(B'— Ktz )(LL) 23412 15+ 8 42 4 14

where B(Cat) is the estimated inclusive branching fraction of the category, and Sig refers
to the Cabibbo-favoured signal mode of the corresponding K¢h*h'F spectrum. The pa-
rameter h(Cat) is Gaussian-constrained using information from Monte-Carlo simulation,
under the assumption that the efficiencies of all the decays within a category are roughly
equal. In order to account for the lack of precise knowledge of the efficiencies on partially
reconstructed backgrounds, we multiply the width of the constraint by a factor two.

Except for radiative decays B® — Kon"7~vy and B®— K21/, the branching fractions
B(Cat) are not known. We use information from the PDG to obtain an estimate of
the minimum of each inclusive branching fraction. We then perform a fit to data while
fixing the parameter h(Cat as KJh*h'T) in order to extract an estimate of this branching
fraction, and then fix it to the value obtained from this fit.

4.4 Results of the mass fit

Table 4.2 and Table 4.3 show the results of the fit to data on the loose and tight BDT
optimizations, respectively. Figure 4.7-4.10 show the corresponding fits for the 2011 data-
taking period. All spectra are satisfyingly modelled.

A naive, statistical only significance of the B? — K{K*TK~ observation can be ob-
tained by performing a fit fixing all B — KK ™K~ yields to 0, and mesuring the differ-
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Table 4.3 — Values and statistical uncertainties on yield parameters extracted from the fit to data

(tight BDT optimization)

2011 2012(pre-June) 2012(post-June)
N(B'— K'K*K-)(DD) 122+11  129+12 200 & 17
N(B°— KOK*+*K-)(LL) 149 + 12 7148 140 + 11
N(B'— KOK*K-)(DD) 543 243 5+ 4
N(B'— KOK*K-)(LL)  4+3 1+2 142
N(B'= K'K*7n)(DD) 349 20+ 8 IS E11
N(B°— K'K+r~)(LL)  28+7 23 + 6 24+ 7
N(B— K'K*z~)(DD) 118+ 12 65 + 10 222 + 18
N(BY— KOK+7)(LL)  78=+10 40+7 7349
NB'= K'K 77)(DD) 42£10 31L8 T4E 13
N(B'— KOK-n+)(LL) 2246 22+ 7 A1+8
N(B"— K'K-7*)(DD) 139414  90+11 268 + 19
N(B'— KOK-n+)(LL) 91410 42+8 102 + 11
N(B = K77 )(DD) 514+£25 392+ 23 808 £ 34
N(B°— KOn+n-)(LL) 386423  239+17 441 + 23
N(B®— K%ntr~)(DD)  43+10 16 £ 8 86 + 14
N(BY— KOntn-)(LL)  21+8 15+ 6 38 + 8

ence in NLL. This method yields

Anpr, = —7.70 (loose)

which correspond to a significance of 3.9 and 3.10, respectively. This difference in signif-
icance may be related to the fact that crossfeed events are relatively more abundant in

the tight spectra than in the loose spectra.
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Figure 4.7 — Result of the simultaneous fit to data (Down-Down, 2011) with the loose BDT
optimisation. KIKTK~, KOKTn~, K{7TK~ and K{7t7~ are shown from top to bottom,
while the left plots show the result on a linear scale and the right on a logarithmic scale.
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Figure 4.8 — Result of the simultaneous fit to data (Long-Long, 2011) with the loose BDT
optimisation. KIKTK~, KOKTn~, K{7TK~ and K{nt7~ are shown from top to bottom,
while the left plots show the result on a linear scale and the right on a logarithmic scale.
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Figure 4.9 — Result of the simultaneous fit to data (Down-Down, 2011) with the tight BDT
optimisation. KIKTK~, KOKTn~, K{7TK~ and K{7t7~ are shown from top to bottom,
while the left plots show the result on a linear scale and the right on a logarithmic scale.
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while the left plots show the result on a linear scale and the right on a logarithmic scale.
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4.5 Validation of the mass fit model

A fit model can be tested by means of pseudo-experiments. Performing the fit to these
samples allows to check the sensitivity to certain parameters, their covariance, and the
convergence properties of the model. For each parameter # and each pseudo-experiment
1, we define the bias

Ai(0) = 6, — 0; (4.23)
and the pull statistic

pi(0) = A(0)

(a 0_1(0) Y

where 6, is the value used to generate the toys, 6; is the value extracted from the fit

to pseudo-experiment i, and o;(f) is the uncertainty on 6;. In the case of an unbiased

estimator that properly covers uncertainties, the pull statistic is expected to follow a

standard Gaussian with mean 0 and width 1. Deviations of the mean from 0 indicate a

bias in the fit, while deviations of the width from 1 indicate an incorrect coverage of the
uncertainty.

We test the invariant-mass fit model by means of 500 pseudo-experiments. They are
generated using the fit model with all parameters set to the value extracted from the
fit, except for the yields, which are varied according to their Poisson distribution. We
summarise in Table 4.6 and in Table 4.7 the results of the fit validation procedure. When
the deviation from the standard Gaussian is significant, we correct the measured value of
a parameter 6 with

(4.24)

ecorr = 00 - @ (425)
and its uncertainty 6(6) with
5(0)
0(0) corr = 4.26
Oeor = 5 0(@)) 420
A systematic uncertainty
A6
Suyet(6) = % (4.27)

is associated to this correction.

Figure 4.14 shows the pull distributions for 2011 KK+ K~ signal yields using the
loose BDT optimization. Tables 4.4 and 4.5 detail the signal yields for which a bias larger
than 20 was observed in the loose and tight BDT optimizations, respectively. The width
of the pulls distribution is always consistent with the unity expectation.
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Figure 4.11 — Residuals distributions for yields of K77~ 2011 signals. Top: B — K{rtx~
signal, bottom: BY— K97t~ signal. Left: Down-Down, right: Long-Long.

Table 4.4 — Signal yields for which a bias was observed in the loose BDT optimization, along
with the bias. They are corrected for in the final results and accounted for in the uncertainties.

Signal yield Bias

BY— K)K*r~ (Down-Down)(2011) 1.74+0.5
B°— K27t 7~ (Down-Down)(2012a) 3.3+ 1.4
B’ — K{nt7~ (Down-Down)(2012b) 5.2+ 2.0
B’ — Klnt7~ (Long-Long)(2012a)  1.7+0.8
B — K{ntr~ (Long-Long)(2012b) 3.1+ 14
B?— K)K*r~ (Down-Down)(2011) 1.7+0.7

T
T
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Figure 4.12 — Residuals distributions for yields of K7™ K~ 2011 signals. Top: B’ — KK r™
signal, bottom: BY— KOK 7t signal. Left: Down-Down, right: Long-Long.

Table 4.5 — Signal yields for which a bias was observed in the tight BDT optimization, along
with the bias. They are corrected for in the final results and accounted for in the uncertainties.

Signal yield Bias

BY— KJ7tm~ (Down-Down)(2012b) 3.3+ 1.6
B~ KOK+ K~ (Down-Down)(2012b) 2.6 = 0.7
B?— K!K*7r~ (Long-Long)(2011) 09+0.5
B?— K!K*7~ (Long-Long)(2012a) 0.9+£0.3
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4.6 Estimation of systematic uncertainties

Systematic uncertainties can arise from different sources, such as biases or assumptions
made on model parameters. We consider two types of systematic uncertainties related to
the fit model.

The first type is related to parameters that are fixed to values determined from sim-
ulated events. We extract these systematic uncertainties by performing several hundreds
of alternative fits to data, varying all the fixed parameters according to the correlation
matrix of the fit to simulated samples. The distribution of differences between yields in
the nominal fit and alternative fits is fitted using a Gaussian distribution. The systematic
uncertainty on a yield X is then

Ay = (g)Q + o2, (4.28)

where 1 and ¢ are the mean and the width of the Gaussian. The fixed parameters of the
fit model are:

e signal model: the tail parameters of the CB functions (ap, ng, &, =), and the
fraction of the two functions, f;

e partially reconstructed background model: the two parameters of all the ARGUS
functions. The threshold is varied within 1 MeV/c? of its nominal value;

e cross-feeds model: all the parameters for each considered event species.

The second type of systematic uncertainties related to the fit model originates from
the choice of the models used in the nominal fit. Toy experiments are used to estimate
the systematics due to these effects: a pseudo-dataset is generated according to the result
of the fit of an alternative model to data; the pseudo-dataset is then fitted with both the
nominal model and the alternative model. The distribution of the differences of the yields
of the two fits is fitted with a Gaussian function. The associated systematic uncertainty
is then estimated as in Eq. 4.28.

Both the partially reconstructed background and the cross-feed shapes suffer from a
large statistical uncertainty due to small Monte-Carlo samples, and it is believed that the
toy exercise described above covers any reasonable variation of the shapes. Hence, the un-
certainty due to the choice of the model will be estimated for the signal and combinatorial
background models only. We consider the following alternative models:

e signal: the Cruijff distribution, defined as

tL=m— K,
7 exp(—t?/(20% + ait?)) ift/o <0 (4.29)
m) =
exp(—t?/(20% + ait?)) ift/o >0

is taken as an alternative description of the signal;
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Table 4.6 — Systematic uncertainties on signal yields related to fixed parameters of the signal
shapes (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B— KKTK~ 0.3 0.2 0.2 0.1 0.8 0.5
BY— KOK*m~ 0.1 0.1 0.1 0.1 0.2 0.1
B’— K)K—n™ 0.1 0.1 0.1 0.1 0.2 0.1
BY— Kdntm~ 1.1 0.9 0.8 0.4 1.7 0.9
BY?— KKt K~ 0.1 0.1 0.0 0.0 0.2 0.2
BY— KOK*m~ 0.3 0.2 0.2 0.1 0.4 0.2
BY— KVK—m™ 0.3 0.2 0.2 0.1 0.5 0.3
BY— Kntm~ 0.4 0.3 0.2 0.1 0.6 0.3

Table 4.7 — Systematic uncertainties on signal yields related to fixed parameters of the signal
shapes (tight BDT optimization).

2011 2012 pre-June 2012 post-June
DD LL DD LL DD LL
B— KKt K~ 0.2 0.2 0.1 0.1 0.4 0.1
BY— KOK*m~ 0.1 0.1 0.1 0.0 0.1 0.1
B— KVK—m™ 0.1 0.1 0.1 0.1 0.2 0.1
BY— Kntm~ 0.6 0.7 0.6 0.3 1.1 0.5
BY?— KKt K~ 0.0 0.0 0.0 0.0 0.1 0.0
BY— KOK*m~ 0.2 0.1 0.1 0.1 0.4 0.1
BY— KOK—m™ 0.2 0.1 0.1 0.1 0.4 0.1
BY— Kntm~ 0.2 0.2 0.2 0.1 0.5 0.2

e combinatorial background: the exponential distribution as taken as an alternative
to the linear shape;

e common parameters in the combinatorial background model: in the nominal model,
the ratios of the slopes between data-taking periods and K? reconstruction modes
are constrained. We consider an alternative model where all these constraints are
removed.

Tables 4.6 and 4.7 show the estimated systematic uncertainties on signal yields that
originate from fixed parameters in the signal shapes. Tables 4.8 and 4.9 show the
estimated systematic uncertainties on signal yields that originate from fixed parameters
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Table 4.8 — Systematic uncertainties on signal yields related to fixed parameters of the cross-feed
shapes (loose BDT optimization).

2011 2012 pre-June 2012 post-June
DD LL DD LL DD LL
B— KKTK~ 0.2 0.4 0.1 0.2 0.7 0.4
BY— KOK*m~ 0.5 0.3 0.4 0.2 0.8 0.4
B’— K)K—n™ 0.5 0.2 0.4 0.2 0.8 0.4
BY— Kdntm~ 0.9 0.8 1.0 0.4 2.0 0.9
BY?— KKt K~ 0.1 0.1 0.1 0.1 0.3 0.1
BY— KOK*m~ 0.4 0.2 0.3 0.1 0.6 0.3
BY— KVK—m™ 0.4 0.2 0.3 0.1 0.6 0.3
BY— Kntm~ 0.3 0.2 0.2 0.1 0.4 0.2

Table 4.9 — Systematic uncertainties on signal yields related to fixed parameters of the cross-feed
shapes (tight BDT optimization).

2011 2012 pre-June 2012 post-June
DD LL DD LL DD LL
B— KKt K~ 0.1 0.2 0.1 0.1 0.6 0.2
BY— KOK*m~ 0.1 0.1 0.1 0.1 0.3 0.1
B— KVK—m™ 0.1 0.1 0.1 0.1 0.3 0.1
BY— Kntm~ 0.2 0.2 0.2 0.1 0.3 0.1
BY?— KKt K~ 0.1 0.1 0.1 0.0 0.2 0.1
BY— KOK*m~ 0.1 0.1 0.2 0.1 0.2 0.1
BY— KOK—m™ 0.1 0.1 0.2 0.1 0.2 0.1
BY— Kntm~ 0.2 0.1 0.1 0.1 0.4 0.1

in the cross-feeds shapes.

Tables 4.10 and 4.11 show the estimated systematic uncertainties on signal yields that
originate from fixed parameters in the partially reconstructed background shapes.

Figure 4.15 shows fits to simulated signal events using the Cruijff distribution, and
Tables 4.12 and 4.13 show the systematic uncertainties evaluated using this distribution
as an alternative signal model.

Figure 4.16 shows fits to 2011, Down-Down data using the exponential shape to model
the combinatorial background and the loose BDT optimization. Tables 4.14 and 4.15
summarise the systematic uncertainties associated with the choice of combinatorial shape.

In the fit to data, we factorize the parameters of the combinatorial background shapes
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Figure 4.15 — Result of the simultaneous fit of the reconstructed invariant mass on simulated
samples of the signal decays (Down-Down), using the loose optimization of the BDT and a
Cruijff distribution (logarithmic scale). K{KTK~, KOK*7rT and K{ntn~ are shown from top
to bottom, while BY decays are shown on the left and BY decays on the right.
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Table 4.10 — Systematic uncertainties on signal yields related to fixed parameters of the partially
reconstructed backgrounds shapes (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B— KKTK~ 0.1 0.1 0.1 0.1 0.2 0.3
BY— KOK*m~ 0.1 0.0 0.0 0.0 0.0 0.0
B’— K)K—n™ 0.0 0.0 0.0 0.0 0.1 0.0
BY— Kdntm~ 0.1 0.0 0.1 0.1 0.2 0.1
BY?— KKt K~ 0.0 0.0 0.0 0.0 0.0 0.1
BY— KOK*m~ 0.1 0.1 0.1 0.0 0.1 0.1
BY— KVK—m™ 0.1 0.0 0.0 0.0 0.1 0.1
BY— Kntm~ 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.11 — Systematic uncertainties on signal yields related to fixed parameters of the partially
reconstructed background shapes (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL
B— KKt K~ 0.1 0.0 0.1 0.0 0.1 0.0
BY— KOK*m~ 0.0 0.0 0.0 0.0 0.0 0.0
B— KVK—m™ 0.0 0.0 0.0 0.0 0.0 0.0
BY— Kntm~ 0.1 0.0 0.0 0.0 0.1 0.0
BY?— KKt K~ 0.0 0.0 0.0 0.0 0.0 0.0
BY— KOK*m~ 0.0 0.0 0.0 0.0 0.1 0.1
BY— KOK—m™ 0.0 0.0 0.0 0.0 0.0 0.0
BY— Kntm~ 0.0 0.0 0.0 0.0 0.0 0.0

in order to constrain the ratio of their value between years and between K? reconstruction
modes

a( K2hEhF) (period) (K2 mode) = kmodekperioa( KChERT)(2011)(DD). (4.30)

We evaluate the systematic uncertainty associated with this choice by removing these
constraints. Tables 4.16 and 4.17 show this systematic uncertainty on each signal yield.
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Table 4.12 — Systematic uncertainties related to the choice of the shape of the signal distribution
(loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B— KKTK~ 2.2 1.3 1.2 0.8 4.2 1.4
BY— KOK*m~ 4.4 2.3 2.8 1.6 5.5 2.6
B’— K)K—n™ 4.4 1.9 2.7 1.6 5.9 2.7
BY— Kdntm~ 10.8 4.1 5.1 3.0 14.4 5.8
BY?— KKt K~ 0.4 0.4 0.3 0.2 0.7 0.3
BY— KOK*m~ 6.8 3.8 4.4 2.6 8.0 3.4
BY— KVK—m™ 4.9 2.3 2.7 1.6 6.6 2.9
BY— Kntm~ 3.4 1.4 1.8 1.1 5.0 2.3

Table 4.13 — Systematic uncertainties related to the choice of the shape of the signal distribution
(tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL
BY— KIK+tK~ 0.9 2.3 1.1 0.7 1.6 1.5
B~ KOK*r~ 2.8 1.7 1.4 1.1 4.1 1.2
B~ KIK—r+ 2.8 1.4 1.3 1.2 4.5 1.2
BY— Kntr~ 7.3 3.9 3.8 2.5 12.1 4.4
BY— KIK+tK~ 0.2 0.8 0.3 0.5 0.3 0.7
BY— KOK*r~ 4.9 2.9 2.8 1.8 5.8 1.7
BY— KOK—r+ 3.3 1.8 1.5 1.2 5.4 1.4
BY— Kortn~ 2.6 1.5 1.4 1.0 4.6 2.0

4.6.1 Total uncertainties on yields

Tables 4.18, 4.19, and 4.20 show the uncertainties on yield parameters of the signal for
2011, 2012 pre-June, and 2012 post-June, respectively. The uncertainties are dominated
by the statistical uncertainty and the systematic uncertainty related to the combinatorial
shape. In parallel to the increase of the size of datasets, next iterations of this analysis
will thus have to scrutinise the modelling of combinatorial background. The study of
same-sign data samples, formed of K?h*h'" events, would improve this modelling and
reduce the systematic uncertainties related to the combinatorial background.
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Table 4.14 — Systematic uncertainties on signal yields related to the choice of combinatorial
background shape (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B— K)KTK~ 1.8 2.3 1.5 1.3 2.4 1.6
BY— KOK*m~ 2.5 1.3 1.6 1.1 3.4 1.6
B— KVK—r™ 2.5 1.2 1.5 1.1 3.6 1.7
BY— Kdrtm~ 7.5 4.4 5.1 3.1 11.1 5.3
BY?— KKt K~ 0.4 0.5 0.3 0.1 0.9 0.3
BY— KOK*m~ 4.8 2.8 3.5 2.0 6.2 2.5
BY— KVK—m™ 2.9 1.3 1.8 1.1 4.2 1.8
BY— Kntm— 3.9 1.9 2.5 1.2 5.6 2.6

Table 4.15 — Systematic uncertainties on signal yields related to the choice of combinatorial
background shape (tight BDT optimization).

2011 2012 pre-June 2012 post-June
DD LL DD LL DD LL

B’— K)KTK~ 1.6 2.0 1.9 1.2 2.1 5.0
BY— KOK*m~ 1.9 1.3 1.0 1.1 2.9 0.9
B— KVK—m™ 1.8 1.1 0.9 1.2 3.3 0.9
BY— Kntm~ 5.8 5.7 4.4 3.0 9.0 5.0
BY?— KKt K~ 0.3 0.3 0.4 0.2 0.4 0.8
BY— KOK*m~ 3.5 2.6 1.9 1.7 5.5 3.0
BY— KYK—m™ 1.9 1.1 0.9 0.8 3.7 1.7
BY— Kntm~ 2.4 2.3 1.7 1.0 4.7 2.1
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Figure 4.16 — Result of the simultaneous fit of the data (Down-Down, 2011) with the loose BDT
optimization. K{K+tK~, K{K*n¥, K{n* KT and K77~ are shown from top to bottom,
while the left plots show the result on a linear scale and the right on a logarithmic scale.
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Table 4.16 — Systematic uncertainties on signal yields related to the choice of combinatorial
background model (loose BDT optimization).

2011 2012 pre-June 2012 post-June
DD LL DD LL DD LL

B— K)KTK~ 3.5 2.7 2.5 1.9 7.3 2.6
BY— KOK*m~ 4.0 1.7 3.6 1.5 4.4 3.2
B— KVK—r™ 4.1 1.5 3.4 1.6 4.8 3.2
BY— Kdrtm~ 13.2 4.4 7.1 4.6 15.2 10.9
BY?— KKt K~ 1.3 1.2 1.0 0.7 2.7 0.8
BY— KOK*m~ 6.1 3.1 5.1 2.6 7.0 3.7
BY— KVK—m™ 4.0 1.7 3.0 1.4 4.7 3.0
BY— Kntm— 5.4 2.1 3.0 1.9 6.3 5.1

Table 4.17 — Systematic uncertainties on signal yields related to the choice of combinatorial
background model (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B’— K)KTK~ 2.9 10.0 2.3 1.6 3.9 9.8
BY— KOK*m~ 3.5 1.8 1.5 1.1 4.7 1.4
B— KVK—m™ 3.3 1.4 1.4 1.1 5.2 1.4
BY— Kntm~ 8.3 4.0 4.3 3.3 14.3 6.1
BY?— KKt K~ 1.0 4.4 0.8 0.7 1.2 3.9
BY— KOK*m~ 5.3 2.8 2.7 1.8 6.2 2.1
BY— KYK—m™ 3.3 1.5 1.4 1.1 5.3 1.6
BY— Kntm~ 3.4 1.7 1.7 1.4 6.2 2.9
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Table 4.18 — Signal yields for 2011 data samples, along with uncertainties (loose BDT optimization). Comb. shape and Comb. model
refer to systematic uncertainties related to the combinatorial background shape and to common parameters in the combinatorial
background model, respectively.

Yield Stat Bias Sig. CF. PartRec  Comb.  Comb. Sig. Total
model model model shape shape

BY— Kintr~ 803.0 35.6 0.0 1.1 0.9 0.1 20.1 1.0 16.0 44.0
BY— Kdrtn~ 471.3 26.6 0.0 0.9 0.8 0.0 1.0 4.5 5.1 27.5
B'— KK —m™ 52.4 12.4 0.0 0.1 0.5 0.0 6.4 1.8 7.9 16.2
B'— KK —n™ 26.2 7.3 0.0 0.1 0.3 0.0 1.5 0.8 3.2 8.2
B'— KVK+r~ 52.4 12.3 0.8 0.2 0.5 0.1 6.3 1.7 7.7 16.0
BY— KVK*r~ 37.5 8.3 0.0 0.1 0.3 0.0 1.6 0.7 3.9 9.4
B'— K!KTK—  281.1 19.2 0.0 0.3 0.2 0.2 5.7 1.7 3.5 204
B'— KIKTK~ 2224 16.9 0.0 0.2 0.4 0.2 1.8 3.3 1.0 174
BY— Kontm~ 65.4 18.1 0.0 0.4 0.3 0.0 8.0 6.2 4.5 21.2
BY— Kontm~ 23.2 12.0 0.0 0.3 0.2 0.0 1.0 2.6 1.3 124
BY— KYK—7 181.0 16.9 0.0 0.3 0.4 0.1 6.5 4.1 8.9 20.6
BY— KYK—7 115.5 11.9 0.0 0.2 0.2 0.1 1.8 1.5 3.7 12.7
BY— KVKtr~ 152.2 15.1 0.8 0.3 0.4 0.2 7.6 4.5 10.5 20.4
BY— KVKtr~ 91.2 10.6 0.0 0.2 0.2 0.1 2.7 3.1 5.6 12.7
BY— K)KTK~ 22.8 9.4 0.0 0.1 0.1 0.1 2.0 0.5 0.2 9.6

BY— KOKTK~ 6.8 8.1 0.0 0.1 0.1 0.0 1.3 0.7 0.1 8.2
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Table 4.19 — Signal yields for 2012 pre-June data samples, along with uncertainties (loose BDT optimization). Comb. shape and
Comb. model refer to systematic uncertainties related to the combinatorial background shape and to common parameters in the
combinatorial background model, respectively.

Yield Stat Bias Sig. CF. PartRec  Comb.  Comb. Sig. Total
model model model shape shape

BY— Kintr~ 553.1 30.3 1.7 0.9 1.0 0.2 3.3 2.5 4.5 31.0
BY— Kntr~ 286.4 19.5 0.8 0.4 0.4 0.1 3.2 1.5 1.9 19.9
B'— KK —m™ 46.9 10.7 0.0 0.1 0.4 0.1 5.9 0.5 4.7 13.1
B'— KK —n™ 21.2 7.8 0.0 0.1 0.2 0.0 2.1 0.3 2.6 8.5
B'— KVK+r~ 43.9 11.0 0.0 0.1 0.4 0.0 6.3 0.5 4.9 13.6
BY— KVK*r~ 28.7 7.8 0.0 0.1 0.2 0.1 1.9 0.3 2.5 8.5
B'— KYKTK—  180.7 15.3 0.0 0.2 0.1 0.1 0.8 1.8 1.5 15.5
B'— KIKTK~-  119.2 11.8 0.0 0.1 0.2 0.1 1.6 1.9 0.5 12.1
BY— Kontm~ 16.5 15.1 0.0 0.2 0.2 0.1 1.1 3.7 1.2 15.6
BY— Kontm~ 15.4 7.7 0.0 0.1 0.1 0.0 1.4 1.3 0.7 8.0
BY— KYK—7 112.9 13.7 0.0 0.2 0.3 0.1 5.1 2.5 4.7 15.6
BY— KYK—7 48.6 9.1 0.0 0.1 0.1 0.0 2.0 1.3 2.5 9.7
BY— KVKtr~ 92.0 12.1 0.0 0.2 0.3 0.1 7.5 2.3 5.7 15.5
BY— KVKtr~ 50.8 8.5 0.0 0.1 0.1 0.0 2.7 0.7 3.1 9.5
BY— K)KTK~ 1.9 6.4 0.0 0.0 0.1 0.0 0.6 0.3 0.2 6.4

BY— KOKTK= 6.0 4.9 0.0 0.0 0.1 0.0 0.8 0.1 0.1 4.9
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Table 4.20 — Signal yields for 2012 post-June data samples, along with uncertainties (loose BDT optimization). Combl and Comb?2
refer to systematic uncertainties related to the combinatorial background shape and to common parameters in the combinatorial
background model, respectively.

Yield Stat Bias Sig. CF. PartRec  Comb.  Comb. Sig. Total
model model model shape shape

BY— Kintr~ 1409.5 46.0 2.6 1.7 2.0 0.2 13.6 7.7 20.7 52.9
BY— Kntr~ 653.6 30.1 1.5 0.9 0.9 0.1 17.9 1.8 7.1 35.9
B'— KK —m™ 90.6 15.6 0.0 0.2 0.8 0.1 5.6 3.7 10.4 19.9
B'— KK —n™ 55.7 10.5 0.0 0.1 0.4 0.1 5.3 0.9 4.6 12.6
B'— KVK+r~ 72.9 14.1 0.0 0.2 0.8 0.1 5.3 3.5 9.5 18.2
BY— KVK*r~ 29.8 9.0 0.0 0.1 0.4 0.0 5.3 1.0 4.4 114
B'— KYKTK~ 6714 29.9 0.0 0.8 0.7 0.3 10.1 0.2 6.8 32.3
B— KOKTK~  343.8 19.8 0.0 0.7 0.4 0.6 0.4 1.9 1.8 20.0
BY— Kontm~ 83.3 21.6 0.0 0.6 0.4 0.0 5.4 8.5 6.7 24.8
BY— Kontm~ 41.7 13.9 0.0 0.3 0.2 0.0 8.4 3.3 2.6 16.8
BY— KYK—7 306.8 22.1 0.0 0.5 0.6 0.1 5.7 6.1 11.6 26.3
BY— KYK—7 143.4 13.9 0.0 0.3 0.3 0.2 5.0 2.1 5.0 15.8
BY— KVKtr~ 255.3 19.2 0.0 0.4 0.6 0.2 6.1 7.1 12.0 24.5
BY— KVKtr~ 118.2 12.8 0.0 0.3 0.3 0.2 5.5 2.3 5.0 15.0
BY— K)KTK~ 25.5 12.9 0.0 0.2 0.3 0.1 3.8 1.3 0.6 13.6

B’ KVK*K- 75 6.5 0.0 0.3 0.1 0.2 0.0 0.3 0.1 6.6




4.7 Modelling the signal distribution over the Dalitz
plot using Plots

The efficiency of signal events is estimated using Monte-Carlo samples, and varies across
the Dalitz plane. As discussed in Sec. 4.1, we need to estimate the distribution of signal
events over the Dalitz plane in order to properly correct the signal yields for the efficiencies.
For this purpose, we use the ;Plots method described in Sec. 4.2.3.

A special fit is performed in order to extract these ,Plots. Firstly, the mass interval
limit on the left is taken as 5200 MeV/c? instead of 5150 MeV/c? in order to reduce the im-
pact of the partially reconstructed background. Furthermore, the ;Plots method does not
include cases where Gaussian constraints are present in the model. Yields of cross-feeds
and partially reconstructed backgrounds are thus fixed to the value obtained from the nom-
inal fit. As partially reconstructed backgrounds are negligible in the 52005800 MeV/c?
invariant-mass window, we only consider the effect of cross-feeds when correcting the
sPlots following Eq. 4.16.

The distributions of signal and cross-feeds events over the square Dalitz plane depend
on each other, and must thus be determined simultaneously. Indeed, by definition the
distribution M, (m/ ,0 ) of events from a signal mode n over the square Dalitz plane

m) T m

corresponding to the signal mode m is

M, (m!,,0 )= sM,(m., 60 ZSP )+ ¢ Mo, (m),, 6), (4.31)

m?’m m? m m) T’ m

where ¢, is the parameter defined in Eq. 4.16, and M, ,(m, 0, ) is the estimated dis-
tribution of the cross-feeds events that contribute to the invariant-mass spectrum of the
signal n over the square Dalitz plot corresponding to the signal mode m. As there are
cross-feeds in each invariant-mass spectrum, we use the following iterative procedure:

e all distributions M, (m;,,6;,) are set to 0 for i = 0;

e for each step ¢« > 0, we extract the distribution of each signal species n over the
square Dalitz plane corresponding to the signal mode m using

m?m m?»~“m

Ny.sMj (i, 60,,).6 m,,00,, = " sPy(e) + ¢ Mg, (1), 6,,), (4.32)

where N,,, ¢, and sP,(e) are the same variables as defined in Eq. 4.16, sM? is the
estimated distribution of the signal n over the Dalitz plane for iteration ¢, and Méfnl
is the Dalitz-plot distribution estimated in iteration ¢ — 1 of all the cross-feeds that
contribute to the invariant-mass spectrum of the signal mode n;

e the procedure is stopped when the x? calculated between the sM ™! and sM? distri-
butions reaches a predetermined lower threshold for each n and m. In practice, the
convergence of the procedure is fast and this threshold is reached at i =2 or ¢ = 3.

Figure 4.17 shows examples of distributions of sWeighted signal events over the square
Dalitz plot. Table 4.21 shows the total efficiencies of all signal modes for the loose and
tight optimizations, except for BY — KIKTK~.
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Figure 4.17 — Distributions of sWeighted signal events over the Dalitz plot for B® — K{rtx~
(top,left), BY — KI7tx~ (top, right), B — KK+7~ (middle, left), B — K!K*7~ (middle,
right), and B?— KJK* K~ (bottom), in 2011 Down-Down data samples.

4.8 Measurement of the branching fractions

4.8.1 Internal consistency

The measurement of a physical observable such as a branching fraction does not depend on
K? reconstruction mode or data-taking period. In order to check the internal consistency
of the model, we compare ratios of yields in different categories, corrected for efficiencies.
Table 4.22 shows the ratios of the different modes with respect to B® — Kn*7~. They
are obtained separately for the two K reconstruction modes and the three data-taking
periods. The agreement between data categories as indicated by the x? of the combination
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Table 4.21 — Integrated signal efficiencies, using distributions obtained from sWeights in units of
1074,

Signal channel (selection) 2011 2012 pre-June 2012 post-June
DD LL DD LL DD LL
BY— K%+~ (loose) 490  1.89 425 166 457  1.62
BY— K9K*x7 (loose) 3.62 148 323 114 402 139
B KOK*K~ (loose) 293 157 264 150 3.96  1.29
BY— K0r*r— (tight) 318 175 498 146 336 1.08
BY— KOK*r¥ (tight) 324 1.60 417 123 405  1.00

Table 4.22 — Measured ratios of branching fractions corresponding to different data categories.
The denominator is the branching fraction of the B® — K?7T7~ mode. Quoted uncertainties
include statistical uncertainties on yields and efficiencies, along with uncertainties on fs/fs. The
x? of the combination is indicated for each channel.

Branching fraction 2011 2012 pre-June 2012 post-June 2
DD LL DD LL DD LL

BY— Kontm— 1.0 1.0 1.0 1.0 1.0 1.0

BY— Kontm~ 049+ 023+ 010 023+ 031+ 038+ 6.8
0.14 0.12 0.09 0.13 0.09 0.13

BY— KYK*rT 020 015+ 023+ 020 013+ 022+ 96
0.04 0.03 0.04 0.05 0.02 0.04

BY— KOK*r¥ 225+ 223+ 1594+ 150+ 181+ 1.86+ 12.5
0.26 0.28 0.21 0.24 0.18 0.22

B’ — K)KTK~ 062+ 060+ 055+ 049+ 058+ 070+ 7.2

0.05 0.06 0.06 0.06 0.03 0.05

shows some tensions, although the global p-value remains above the percent level. The
largest x?/ndf (2.1) is observed for B — K?K*n¥, and there is no clear trend across the
different channels and data categories.

4.8.2 Combination of branching fractions

The measurements of branching fractions from each data-taking period and K? reconstruc-

tion modes are combined. The central value is the average of all measurements weighted
by

1
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where w; is the weight associated by the measurement in category ¢ and o; is the total
uncertainty associated with that measurement.

The total uncertainty of the combination is obtained by propagating the total un-
certainties of each measurement, excluding the systematic uncertainty related to fs/ fq,
which is 100% correlated between all data categories. The statistical uncertainty of the
combination is computed under the hypothesis of the absence of a systematic uncertainty,
and the total systematic uncertainty is evaluated as

Agys = VAL — Adiass (4.34)

where Ai; and A, are the total and statistical uncertainties of the combination, respec-
tively.
The ratios of branching fractions for each previously observed mode are

B(B?— Kintrn™)
B(B"— Kintn)

= 0.26 £ 0.04(stat.) & 0.02(syst.) £ 0.01(fs/fa),

B Ronr) — 017 002(stat.) £ 0.00(syst.),

B
B )
B(B"— KVK*77)
B
B

S S

= 1.84 £ 0.07(stat.) & 0.02(syst.) £ 0.04(fs/fa),

= 0.59 + 0.02(stat.) £ 0.01(syst.),
(4.35)

4.8.3 B?— K)K™K~ observation significance

The significance of the observation of the B? — KKK~ mode is derived from a likeli-
hood scan of each B? — KKK~ yield in the loose BDT optimization. The distribution
of likelihood is fitted using a bifurcated Gaussian, smeared by a Gaussian to account for
systematic uncertainties. Figure 4.18 shows these likelihood scans for each data-taking
period and K? reconstruction mode.

In order to estimate the significance in each category, we evaluate the difference be-
tween the log-likelihood of the nominal fit and that of a fit where the branching fraction
is set to 0 (this difference is referred to as “likelihood ratio” and can be directly read from
the likelihood scans of Fig. 4.18).

Table 4.23 shows the significances derived from likelihood ratios in each of the corre-
sponding scans. These significances are then summed in quadrature to obtain the global
significance of the B — KK+ K~ observation.*

4Statistical correlations would make this approach invalid. They are however evaluated as below the
percent level, and are thus ignored.
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Figure 4.18 — Likelihood scans of BY — K{K*K~ yields. The blue line indicates the total
likelihood (including systematics), whereas the red, dotted line is statistical only. The dashed,
vertical line indicates the N(B?— K{K+TK~) = 0 hypothesis. Left: Down-Down K reconstruc-
tion mode. Right: Long-Long K2 reconstruction mode. Different data-taking periods are shown
on top (2011), middle (2012 pre-June), and bottom (2012 post-June).

4.8.4 Comparison with previous measurements

All reported branching fractions have already been measured with the 1 fb~* LHCb dataset
from 2011, and the B’ — KK+ K~ branching fraction has been accurately measured by
B factories. We perform a naive comparison with previous measurements neglecting
correlations between datasets for the previous LHCb measurement.’

5These correlations need a specific treatment as the stripping, trigger, and selection are different in
the two analyses.
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Table 4.23 — Significance of B — KK K~ yields for each data category, including systematics.
Global significance is obtained by summing individual significances in quadrature.

2011 2012 pre-June 2012 post-June
DD LL DD LL DD LL
Significance 2.60 0.70 0.20 1.20 2.00 1.20
Global 3.70
= —
LHCb (1 o) _ﬁ.ﬁ —_—— —_—— ——
LHCb (30 ) —*—— HH * -
BSZKS[;ipi (a.u) BdZKSl;pi (a.u) BsZKSl;pi (a.u) BdZKSP:(K (a.u)

Figure 4.19 — Measured branching fractions relative to that of B — K7+~ for each previously
observed Bg s th+h/_ mode, in arbitrary units (a.u). The “PDG” measurement is computed
neglecting correlations between BY — KOK+ K~ and B? — K{7nt 7~ measurements. The central
value is set to the PDG result when existing, otherwise it is set to the weighted average of the
LHCb measurements.

Figure 4.19 shows the comparison between available measurements for signal modes,
except for BY — KYKTK~. The branching fractions are represented in arbitrary units,
and only the size of uncertainties and distance between central values are meaningful. The
agreement, between the two LHCb results is satisfactory for all modes, with the exception
of the B — KKK~ mode. Table 4.24 shows the significances of the difference between
the two LHCD results, assuming a correlation of 30% between the two datasets.
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Table 4.24 — Significance of the difference between the LHCb measurement with 2011 data only
and the current measurement.

B(BY+K¢ntn~)  B(B'5KQK*xT)  B(BKIK*nF)  B(B°5KIK*K-)
B(BOHKg’]T"”]T_) B(BO*)Kgﬂ—-Fﬂ——) B(BO%Kgﬂ"'ﬂ—) B(BO*)KgT(-’_’]T_)

Significance (o) 0.4 2.2 2.1 4.3

4.9 Conclusion

We have observed the B? — K%K+ K~ decay using the 3fb™' dataset from RunT with a
significance of 3.7 0. Once the efficiency of this signal decay is computed, we will report
a branching fraction measurement relative to that of B’ — KJr 7.

The measurements of all previously observed BY, — K2h™h'~ modes have been up-
dated, and is in good agreement with previous measurements, with the exception of
BY - K?K*TK~. Indeed, the measurement of the B® — K?K* K~ branching fraction
with the reference B-factory measurement is good, but it is 4.3 o away from the measure-
ment performed with LHCb 2011 data.
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Chapter 5

Dalitz-plot analysis of B — KSK TK™

In this chapter, I describe the Dalitz-plot analysis of B — KK ™K~ decays. In Sec. 5.1,
I present the strategy of this analysis. I then describe the reoptimization of the selection
criterion on the BDT output variable in Sec. 5.2 and the event species present in the
dataset in Sec. 5.3. The study of background sources and their distributions over the
Dalitz plot is presented in Sec. 5.4, and the modelling of efficiency variation over the
Dalitz plane is detailed in Sec. 5.5. I then present the data fit model in Sec. 5.6, and
the fit validation procedure in Sec. 5.7. The evaluation of systematic uncertainties on the
isobar parameters is discussed in Sec. 5.8, and the results of the fit to data are presented
in Sec. 5.9.

5.1 Analysis context and strategy

The BaBar and Belle experiments have performed a time-dependent flavour-tagged ampli-
tude analysis of B® — K?K K~ decays, and measured the angle .4 in this mode [40,67].
These measurements are consistent with the value of g extracted from b — cés transi-
tions. A particularity of the B — KKK~ mode is that the amplitude is dominated
by a nonresonant component that is not clearly understood. The analysis of this mode
in the LHCb environment will provide another insight into this nonresonant component.
Additionally, a wide resonant structure has been seen by both BaBar and Belle in the
K*K~ spectrum. While Belle modelled it by the f5(1500), the BaBar experiment used a
combination of the fy(1500), the fo(1710), and the f,(1525). In the following, we take as
a reference the BaBar result [40], which includes the resonances shown in Table 5.1 along
with their lineshapes.

We aim at measuring the amplitude of B® — KYK ™K~ decays over the Dalitz plane
using the isobar model described in Sec. 1.3.4. We do not consider CP violation in
the model for this iteration of the analysis. Indeed, performing a CP-sensitive analysis
requires either flavour tagging or the presence of flavour-specific structures such as K**
resonances. The second option is not relevant to this analysis as the baseline model only
includes KK~ resonances and no KY K™ or KYK~ contributions. The size of the current
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Table 5.1 — List of the resonances composing the BaBar result [40] and of their lineshapes.
“Relativistic BW” stands for Relativistic Breit-Wigner.

Resonance Lineshape

¢° Relativistic BW
f0(980) Flatté

fo(1500) Relativistic BW
f,(1525) Relativistic BW
fo(1710) Relativistic BW
Xc0 Relativistic BW

NR(S-wave) Second-order polynomial
NR(P-wave) Second-order polynomial

data sample does not allow the use of flavour tagging. As the dataset is untagged, the B
and B° amplitudes are added incoherently, and the decay rate as a function of the Dalitz
plot is

2

, (5-1)

2
+ ’A(mfxgw’ Micox-)

I(miegges, Migoc-) = ’A(migma Mok

where A and A are the decay amplitudes of the B® and the B°, respectively. Replacing
these amplitudes by their expressions in the isobar model, we get

2 2
I= '(Z Cjei¢ij<m§(gK+7m§(gK)> + (Z@ew"fj(migw’mi%)) (5.2)
J J
The lineshapes F); and fj are related by
Fi(migopess Migoge—) = Fj (Mo Mo pes)- (5.3)
The exchange operator between K™ and K~ has a signature
n= (_1)LK+K7’ (54)

where Ly+g- is the orbital angular momentum between K+ and K~. In the decay of a
pseudoscalar particle to three pseudoscalars, and in the case of a KK~ resonance j, this
signature is

= (=1)%, (5.5)
where S is the spin of the resonance. This means that for a K™K~ resonance j,

Fj(meo s, Migae-) = (= 1)V Fj(mieo e, Micoge-)- (5.6)
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We define

5jk = arg(Fij), (57)

e
Cir = 22 (5.8)
Bjk = @k - ¢jk7 (5-9)
e = (1SS, (5.10)
5.11)

The parameter §,;, is implicitly a function of the Dalitz plot. The C}; and 3;; terms contain
information on the direct and indirect CP violation, respectively.! Developing the sums
and looking only at the interference term between a resonance j and a resonance k, we
obtain

Lig = 2¢;c F Fy [(1 + Cipmyr) cos(djr + 0jx) cos(Br) — Ciwnyr sin(@jr, + djx) sin(B;r)]
(5.12)

2 0 2 0
KK KK~

In the case of the current analysis, we do not expect sufficient statistical power to mea-
sure the Cj, and (3, parameters. Considering the case where no CP violation occurs and
detection asymmetry is negligible (C;, = 1 and §;; = 0), we observe that the interference
term is

where F} . is implicitly function of m7.,,., and m

L, o< (1 + n;1) cos(@jr + 0jx)- (5.13)

This means that in our particular case of an untagged analysis of B® — KYKTK ™,
considering only K™K~ resonances, we are not sensitive to the relative phase between
even and odd partial waves (¢;;). The residual sensitivity originates from CP violation,
possibly, which allows in principle to measure these effects even in an untagged, time-
independent analysis. A similar calculation has been performed in [68,69]. Section 5.6
discusses the adaptations of the baseline model that we implement to address this issue.

The amplitude analysis of B — KKK~ decays uses the following inputs from the
branching fraction measurement:

e the same stripping, trigger requirements, preselection, and BDT training;
e tight PID selection criteria are applied;

e yields of signal and background species are extracted using the same B-meson can-
didate invariant-mass fit model;

e the distribution of cross-feed events over the Dalitz plane is estimated using the
sPlot method described in Sec. 4.2.3.

'In this expression, the possible production or detection asymmetry between B® and B° is absorbed
in a different magnitude convention for ¢, and ¢;. This effect has to be taken into account before any
statement is issued from a measurement of Cjy.
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We reoptimize the BDT selection criteria in order to get better uncertainties on the
parameters of the isobar model. We also estimate the variations of the efficiency across
the Dalitz plane using a similar method to that of the branching fraction measurement.

Using the Laura++ package [70|, we perform an extended maximum likelihood fit to
data events selected in a window of £2.50 around the B invariant mass. In order to
respect the Dalitz-plot boundaries, both the B-meson candidate mass and that of the K
are constrained to their nominal values, and momenta of the daughters are refitted taking
these constraints into account.

Due to the large number of parameters in the fit model and the small sensitivity to some
of them, each fit to data is performed 1000 times with randomized initial parameters in
order to find the best minimum. Multiple solutions could appear in an amplitude analysis
due to many different reasons. In particular, this could happen due to interference between
two broad scalar resonances. In that case solutions typically appear in pairs: one with
larger fit fractions of the two resonances and destructive interference between them, and
another with smaller fit fractions and constructive interference. We consider all solutions
within 4.5 NLL units from the best minimum, and study the associated fit fractions.?

We consider variations of the fit model by adding and removing resonances, or changing
their distribution across the Dalitz plane. We compare the agreement of each model
with the data using the minimum negative log-likelihood and goodness-of-fit estimators.
Details of this procedure are given in Sec. 5.6.

5.2 Reoptimization of the BDT selection

5.2.1 Strategy of the reoptimization

The BDT method described in Sec. 4.1 produces an output variable on which we apply
a selection to reject combinatorial background events. Our goal is to use an optimized
BDT selection criterion that yields the smallest uncertainties on the isobar parameters
extracted from the fit to the Dalitz plane. While there exist widely used optimization
methods adapted to the measurement of branching fractions, this is not the case for
Dalitz-plot analyses. In this study, we first perform simplified Dalitz plot fits to several
datasets obtained with different BDT selections and compare the uncertainties on the
isobar parameters. We then attempt to find a simple figure of merit that yields similar
conclusions in order to facilitate exporting the the results of this study to future Dalitz-
plot analyses of this mode.

In the case of the measurement of the branching fraction of an already-observed mode,
the figure of merit

Ng
\/NS+NB’

24.5 negative log-likelihood units correspond to three Gaussian standard deviations.

FoM(Ng, Ng) = (5.14)
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where Ng (Ng) is the number of signal (background) events, is frequently adopted to
maximise the significance of the measurement. In the case of an unobserved mode, the
Punzi figure of merit

FoM(Ng, Ng) = ——2% (5.15)

is adopted, where €4, is the estimated efficiency of the signal, and a is a parameter to
determine by the analyst. Although in the case of a Dalitz-plot analysis, no such standard
solution exists, the figure of merit

NS

FoM s 0 = TR N

(5.16)
is sometimes used.?

In order to optimize the cut value on the BDT output variable for the Dalitz-plot
analysis, we define a series of lower cuts, Awp, on the BDT variable A (i.e. cutting out
events with A < Awp). We refer to the different values of A\wp as “working points”. They
correspond to values in between those from the loose and the tight optimizations (Apege
and Aygnt, respectively)

)\WP — )\loose 4 O[VVP()\tight _ )\loose>. (517)

The parameter oV¥', which has a different value for each working point, runs between 0

and 1. We perform separate invariant-mass fits on the samples corresponding to each
working point, and extract the number of signal, combinatorial background, and cross-feed
events as described in Sec. 5.3. We then use these yields and isobar parameters extracted
in the BaBar study of the B" - KYKTK™~ mode [40] as a baseline model to generate
pseudo-data distributions over the Dalitz plot for each working point. We finally perform
a simplified amplitude analysis on the pseudo-data corresponding to each working point
using the BaBar results as a signal model, with the following guidelines:

e the same Dalitz-plot distribution of combinatorial background is used for all working
points, as a relaxed BDT selection criterion (described in Sec. 5.4) is applied to
samples from which we extract this distribution;

e Gaussian constraints in the invariant-mass fit model used to extract the yields of
the partially reconstructed backgrounds and cross-feeds are re-evaluated for each
working point, as the corresponding efficiencies vary;

3The optimum value obtained by this figure of merit typically lies between those from Ng/v/Ns + Np
and Punzi-type figures of merit.
4The tight optimization of the BDT is then strictly equal to the working point defined using a"V'¥' = 1.
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Table 5.2 — Values of the parameter a"¥ for each working point, along with the number of
signal events and the proportion of signal events in the signal region. We considered all together
data-taking periods and K? reconstruction modes.

WP0 WPl WP2 WP3 WP4 WP5 WP6 WP7 WP8 WP9
P 0 0.1 02 03 04 05 06 07 08 09
Ns 14742 1438.8 1377.8 1323.2 1271.0 12124 11525 1086.3 986.1 905.0
Ng/Net(%) | 892 904 912 921 930 940 946 952  96.0 96.0

e as we apply tight PID selection criteria for all working points, we use tight PID
efficiency maps;

e selection efficiency maps are estimated using a linear interpolation between the loose
and the tight selection efficiency maps, using the parameter o'V *;?

)

e only the systematic uncertainties related to biases, efficiency modelling, backgrounds
distributions modelling, and the knowledge of the yields of the different event species
are estimated;

e when varying the yields within their uncertainties in order to evaluate the cor-
responding systematic uncertainty, only their statistical uncertainties, which are
dominant, are taken into account.

From this simplified analysis, we extract the total uncertainties on all the isobar pa-
rameters for each working point.

5.2.2 Results of the reoptimization

Table 5.2 shows the values of a™¥ used in the study and the names of the associated
working points. The same table details the corresponding proportion of signal events
and the number of signal events, both extracted from an invariant-mass fit to data. To
obtain these numbers, we considered all together the different data-taking periods and
K? reconstruction modes. As the working points get closer to the tight optimization, the
purity of the samples stabilize while the numbers of signal events continue to diminish.

Figure 5.1 shows the total relative uncertainties on the fit fractions of each resonance,
with respect to values obtained for “WP0”. The main conclusion of this study is that it is
difficult to point a clear overall optimum, as variations are observed between resonances
and as, with the current dataset, uncertainties are large. For instance, we notice that
optima of nonresonant contributions tend to correspond to tighter BDT selection criteria
than those of resonant contributions. Indeed, nonresonant contributions are competing
with combinatorial background over large parts of the Dalitz plane.

5The absolute value of the efficiency of the BDT selection is not linear between the loose and the tight
selection cut values, but only the variations of the efficiency across the Dalitz plane are relevant here.
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Figure 5.1 — Total relative uncertainties on fit fractions of different isobars (see the legend in each
graph) for each of the working points. Uncertainties are scaled with respect to those of “WP(”.
Left: Resonant contributions. Right: nonresonant contributions; where .S and P correspond to
S and P-waves, respectively, followed by the degree of the polynomial term attached to that
contribution. The constant term of the S-wave (“PolNR__S0”) is the fixed reference amplitude
and thus it is not shown here.

Table 5.3 — Values of the BDT selection cuts that are chosen for the different data-taking periods
and K reconstruction modes.

2011 2012 pre-June 2012 post-June
DD LL DD LL DD LL

Selection cut value -0.025 -0.104 0.081 0.01 -0.027 -0.055

Figure 5.2 shows the values of four different figures of merit evaluated for each working
point, relative to the values obtained for “WP0”. As expected, the optimum values for
the Ns/+/Ns+ N and Punzi-type figures of merit are close to “WP0” and “WP9”, re-
spectively.® The figure of merit N2/(Ns + Ng)*? is maximal between “WP1” and “WP3”,
thus pointing to a selection close to the loose BDT optimization. The profile of this fig-
ure of merit and the corresponding optimal selection are the most similar to the profile
of uncertainties shown in Fig. 5.1. The figure of merit that we chose for this analysis is
therefore that defined in Eq. 5.16. Table 5.3 summarizes the corresponding BDT selection
cut values for the different data-taking periods and K? reconstruction modes.

6The loose and tight optimizations of the BDT have been obtained using an approximate invariant-
mass fit model and in each spectrum separately. It explains the fact that the optimum for the Punzi

figure of merit is not “WP9”.
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Figure 5.2 — Values of different figures of merit evaluated in each of the working points. The “BR”
label (black points) refers to the Ng/v/Ns+ Np figure of merit, whereas “Dalitz” (red points)
refers to N2 /(Ng + Ng)*/2. The “Punzi2” (blue points) and “Punzi5” (yellow points) labels refer
the to Punzi figures of merit calculated with a = 2 and a = 5, respectively.

5.3 Yields of the signal and background species

Data events are selected in a invariant-mass window around the B° signal peak. As we do
not perform an extended fit, yields of signal and background species are estimated from
the invariant-mass fit. The estimated number of events N;*4°% for an event species i in
a mass window defined between m,;, and M.y 1S

it —  Jma T ) (5.18)

5800
f s150 Ji(m
where N; is the number of events from the event species 7 extracted from the mass
fit in the whole mass range, defined as the 5150-5800 MeV/c? interval, and f;(m) is the
distribution of the event species i. As mentioned in Sec. 5.1, we define signal mass windows
following

Muyin = b — 2.50, Mpax = 4 + 2.50, (5.19)

where p and o are the values of the corresponding parameters in the double Crystal-Ball
distribution that describes the B®— K?K™K ™ signal.

Table 5.4 shows the estimated number of events for each event species, K reconstruc-
tion mode, and data-taking period. In the following, we neglect events from the partially
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Table 5.4 — Number of events for each event species for the different data-taking periods and K9
reconstruction mode. Purity is defined as the proportion of signal events in the sample. “BY
CF” refers to the cross-feed from BY — KYK*7T events, whereas “B? CF” refers to the cross-
feed from BY — KOK*r¥ events. Similarly, “PR1” and “PR2” refer to charmed and charmless
partially reconstructed backgrounds, respectively.

Year KU rec. mode | Signal Comb. B°CF BYCF PR1 PR2 | Purity(%)
2011 DD 271.5 39.2 6.1 0.0 0.0 0.0 85.7
2011 LL 210.5 39.5 3.8 0.0 0.0 0.0 82.9
2012a DD 176.1 29.9 5.2 0.0 0.0 0.0 83.4
2012a LL 114.9 10.0 2.2 0.0 0.0 0.0 90.3
2012b DD 649.9 88.8 11.2 0.1 0.0 0.0 86.7
2012b LL 330.1 23.1 4.9 0.0 0.0 0.0 92.2

reconstructed background. Due to the blinding of the B — KKK~ yield in the mass
fit, we can only estimate the number of events in the mass window through an educated
guess. Postulating that

N(B?)(Year)(K2)

N(BY) (Year) (K2) = =0,

(5.20)

where ) is the sine of the Cabibbo angle, we find fewer than two events of B — KKK~
in the signal window for all data-taking periods and K? reconstruction modes combined.
We thus ignore this contribution in the following.

5.4 Background distributions

5.4.1 Combinatorial background modelling

The nature of combinatorial background in this analysis is discussed in Sec. 4.3.5. We
expect that events with a B candidate mass larger than 5550 MeV/c? originate only from
combinatorial background,” thus we use the distribution over the Dalitz plot of events
from this sideband to model the combinatorial background distribution.

The small number of upper-mass sideband events limits the understanding of the
combinatorial background. In order to estimate more accurately the distribution of these
events over the Dalitz plot, we relax the BDT selection. We check the dependency of
this distribution with respect to the BDT output value by splitting the dataset in the
upper-mass sideband in ten samples with roughly the same number of events in different

"This threshold is larger than that used for the BDT training as in the KK+ K~ mode cross-feeds
from B? — KOK*7F are not negligible at 5450 MeV/c?.
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Table 5.5 — Values of the BDT output variable used to split the 2011, Down-Down dataset, and
number of events in each dataset.

Minimum BDT value | -0.12 -0.10 -0.09 -0.06 -0.04 -0.01 0.02 0.06 0.12 0.22
Number of events 35 28 32 29 30 37 24 32 32 29

Tight

1.20279 1.38601

1.6
1.4
1.2

Range 9 128277
Range 8
Range 7
133861 14122

Range 6
Range 5

0.8
0.6
0.4
0.2

Range 4

1.28277 1.20279

0 119314  1.167

Range 3

Range2 132879 0

Range 1 0 1.32879

|
Ra”glee?ge

1.22134

Yodngdangdangs

1.33461

Figure 5.3 — Calculated x?/ndf between distributions of upper-mass sideband events from 2011,
Down-Down data samples. Each distribution corresponds to an interval of BDT output variable.

BDT intervals. Table 5.5 shows the BDT selection cut values used to split the dataset and
Fig. 5.3 shows the calculated x?/ndf between pairs of these distributions for 2011, Down-
Down events. As there is no clear trend, we relax the BDT selection to that corresponding
to the loose optimization of the BDT.

Figure 5.4 shows the distribution of combinatorial background events over the Dalitz
plane for all K reconstruction modes and data-taking periods, using the relaxed BDT
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cut value.

5.4.2 Cross-feeds modelling

The sWeighting procedure that is described in Sec. 4.7 can be used to estimate the distribu-
tion of cross-feed events across the Dalitz plane as well. Figure 5.5 shows the distribution
across the Dalitz plot of the two cross-feed species that are present in the mass window,
along with the uncertainties on these distributions for 2011, Down-Down events.

5.5 [Efficiency variations across the Dalitz plot

As discussed in Sec. 4, the efficiency of signal events is not flat across the Dalitz plane, for
instance because of the limited geometrical acceptance of the LHCb detector. This non-
uniformity has to be taken into account in the fit to data, as it results in a distortion of
the observed distribution of signal events over the Dalitz plane. We use a similar approach
as in Sec. 4.1, breaking down the total efficiency into three multiplicative contributions:

e 2" ig the efficiency of the generator-level cuts applied to the Monte-Carlo samples
that are used to evaluate the rest of the efficiencies;

e g js the efficiency of the trigger, reconstruction, stripping, and selection methods.
It is evaluated using signal Monte-Carlo samples, corrected for discrepancies between
simulation and data. Vetoes on charmed contributions are removed if they do not
include a mis-ID hypothesis, as they are taken into account in the Dalitz-plot fit;

o PIDIGelleen) g the efficiency of the PID requirements. It is evaluated by a data-driven
approach on signal Monte-Carlo samples, using the PIDcalib package.

These three contributions are then multiplied together to get the total efficiency

et — Egen€sel|gen€PID|(sel|gen) (521)

In the following section, I detail the calculation of these efficiencies and their uncer-
tainties. Firstly, I present the methods used in the evaluation of uncertainties, then the
extraction of generator-level efficiencies, of the selection efficiency along with all the rel-
evant, corrections of data/MC discrepancies, and finally of PID efficiencies. As there is
no source of stiff variation of efficiency across the Dalitz plane®, we smooth efficiency
histograms using a two-dimensional cubic interpolation (“spline”).

8Vetoes on charmed resonances constitute such a source but are considered independently.
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5.5.1 Uncertainty estimation procedure

We evaluate the asymmetric uncertainty on the efficiency in each bin of the Dalitz plot
independently. In the simple case where the efficiency is

e = b= (5.22)

the uncertainty on the efficiency € can be determined using Clopper-Pearson intervals,
implemented in the TEfficiency package [71]. These intervals provide a coverage of the
uncertainty that is always conservative, thus suitable for the evaluation of systematic
uncertainties. However, this technique does not extend to weighted events, especially if
the uncertainty on the weights has to be taken into account. In that case, we evaluate
the uncertainty as follows:

e create 500 new samples using the bootstrapping method. This method creates a new
sample out of an original one by randomly resampling the events. Event weights
are randomized within their uncertainties;

e evaluate the efficiency histogram for each sample;

e in each bin of the efficiency histograms, fit the distribution of efficiencies in the
500 samples using a bifurcated Gaussian. The upper and lower uncertainties are
assigned to the right and left width parameters values, respectively.

All sources of uncertainties are considered as uncorrelated, and are thus summed in
quadrature to estimate the total uncertainty for a given contribution. Likewise, the total
uncertainty on the efficiency is calculated by propagating the uncertainties on e#°", esellzen,
and ePPlGelleen) assuming no correlation between them.

5.5.2 Acceptance of the generator-level cut

In order to save CPU, we apply in this analysis a generator-level cut requiring that both
the KT and the K~ are generated inside of the detector acceptance. This acceptance is
modelled as the 6 € [0.01rad, 0.4 rad] interval, § being the angle formed between a track
and the z axis. Section 2.5 presented the principle of generator-level cuts.

We generate a sample of 50,000 B® — KKK~ events with no generator-level cut
applied and a flat distribution over the square Dalitz plane. The K reconstruction
mode is not relevant here, nor is the difference between pre-June and post-June trigger
configurations in 2012. The generator-level efficiency in each bin of the Dalitz plot is the
ratio of the number of events that pass the cut

O+ - € [0.01rad, 0.4 rad]. (5.23)
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Figure 5.6 shows the results of this procedure for both 2011 and 2012 conditions, along
with the generated distributions. The non-uniformity of the generated distribution across
the Dalitz plane is a well-known feature of the flatSqDalitz generation, and does not
impact the extraction of efficiencies. Figure 5.7 shows the asymmetric uncertainties on
the generator-level efficiencies, calculated using Clopper-Pearson intervals.

5.5.3 Selection efficiency

The selection efficiency is determined in each bin of the Dalitz plot following

N, sel

Esel lgen _

, (5.24)

=

gen

where Ny, is the number of events that pass the stripping, trigger, preselection, and
BDT selection. Correction factors are applied to account for data/MC differences in the
tracking and trigger efficiencies.

Re-weighting of the MC

Tracking efficiency in LHCb depends, among other variables, on the momentum p and the
pseudorapidity 7 of each particle, along with the number of tracks in the event. These
variables are not exactly modelled by the Monte-Carlo simulation. We use data events in
the signal mass window as a reference for the distribution of these variables in data, and
reweight Monte-Carlo samples to match these distributions. The uncertainty on these
weights is estimated using the bootstrap method described in Sec. 5.5.1.

Tracking efficiency correction

The LHCb experiment disposes of reference tables to correct for data/MC discrepancies
in tracking efficiency of Long tracks. These tables are produced using decays that have
both a large production rate and large branching fractions. Weights depending on a
two-dimensional binning of p and 7 are calculated using these tables.

Figure 5.8 shows the tracking-efficiency corrections that we apply depending on the
Dalitz-plot coordinates. These corrections are close to unity, but show a dependency on
the Dalitz plot.

LOHadron trigger efficiency correction

As described in Sec. 2.4, the trigger system in LHCb consists of three steps: LO, H1t1,
and H1t2. The efficiency of the H1t1 and H1t2 is well modelled in the simulation, but
there are significant differences in the LOHadron_TOS line efficiencies that we use in this
analysis.” Indeed, this line is fired up each time there is a large enough deposit of trans-
verse energy Fr in one cluster of the hadronic calorimeter, and modelling the response of

9There are also data/MC differences in the LOElectron_T0S line, but we do not use it.
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this calorimeter requires an excellent understanding of hadronic showers in thick materials
and of the aging of these materials.

In order to correct the efficiencies for the data/MC differences in LOHadron_TOS effi-
ciency, we split the sample between trigger-on-signal (TOS) and trigger-independent-of-
signal (TIS) samples. We require that events in the TIS sample do not fire LOHadron_T0S
in order to build exclusive samples.

We dispose of tables where the efficiency of the LOHadron_TOS trigger as a function of
the energy of a given cluster formed in the calorimeter. Clusters can be formed by one or
several particles, and also partially overlap. Each cluster i having a probability p(E7;) of
firing the trigger depending on its transverse energy Er;, the total data-driven efficiency
estimation of the LOHadron_TOS trigger is

et = 1= [[(1 = p(Er), (5.25)

(2

whereas the efficiency of the LOGlobal_TIS&!LOHadron_TOS trigger is

e T8 = TT(1 = p(Era)). (5.26)

i

We estimate in each bin of the Dalitz plot the correction factor on LOHadron trigger
efficiency for TIS(TOS) events as

TIS(TOS)

TIS(TOS) _ €dat
kLo - T?sa(TOS)’ (5.27)
emMc
where EEAI(SJ(TOS) is the LOHadron trigger efficiency calculated on Monte-Carlo samples as

the proportion of events that do not pass the LOHadron_TOS trigger.

We consider possible uncertainties originating from limited statistics and from tables
values. Both are estimated using the bootstrap method described in Sec. 5.5.1, and are
summed in quadrature. Figure 5.9 shows calculated corrections for Down-Down simulated
events in the TOS trigger category, where all data-taking periods are considered together,
along with upper and lower uncertainties on these corrections. The correction factor
varies significantly across the Dalitz plot, thus stressing the importance of applying this
correction.

Total selection efficiency

The total selection efficiency is calculated by summing the TOS and TIS contributions
following
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Table 5.6 — Binning on the momentum and transverse momentum of each particle used in the
PIDcalib method.

Variable Binning

D 3000-9300-15600-18515-28325-40097-59717-100000

n 1.5-2.4975-2.7075-3.0575-3.3725-3.7225-4.0025-5.

6sel\gen _ f;(t)% kTOS sel|gen, TOS + — f(?é)as kTIS&'TOS sel|gen, TIS&!TOS (528)
MC MC

where fi(t):(ﬁ?&@os) is the fraction of events in data (Monte-Carlo) for which

LOHadron_TOS is (not) fired, and sclsen TOS(TISETOS) g the selection efficiency calculated
using Eq. 5.24 on the subset of Monte-Carlo samples in which LOHadron_TO0S is (not)
fired.

Figure 5.10 shows the selection efficiency for 2011, Down-Down events, along with
the uncertainties on efficiencies, in the TOS and TIS&!TOS trigger categories. Large
structures that can be seen across the Dalitz plane are expected to originate from stripping
and trigger, while the BDT selection method itself was designed not to bias the Dalitz
plot.

5.5.4 PID efficiency

As described in Sec. 2.5.3, a realistic estimate of the efficiency of a PID requirement
on Monte-Carlo samples can be estimated by the PIDcalib package. This technique
attributes a weight to each event that estimates the expected efficiency of the PID re-
quirement on this event. In each bin A of the Dalitz plot, the efficiency is then

> We
6PID|(sel|gen)(A) _ ecA ’ (529)
NeeA
where w, is the weight attributed by the PIDcalib method to event e.

The PIDcalib method takes into account the dependency of PID efficiency on the
momentum p and pseudorapidity n of each particle, and on the number of tracks in the
overall event. We decide to integrate out the dependency on the number of tracks, and
consider the binning described in Table 5.6.

Figure 5.11 shows the PID efficiency of events of the 2011 data-taking period, in the
Down-Down K reconstruction mode, along with the uncertainties on these efficiencies.
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5.5.5 Total efficiencies

We combine all the efficiencies previously calculated using Eq. 5.21, and propagate the
uncertainties accordingly. Figure 5.12 shows the results of the efficiency calculation for
2011 events reconstructed in the Down-Down mode.

The principal source of uncertainties on the total efficiency is the selection efficiency,
and especially the correction on the LOHadron efficiency.
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Figure 5.4 — Distributions of combinatorial background events over the Dalitz plane. Events
from Down-Down (Long-Long) K{ reconstruction mode are shown on the left (right). Top: 2011
events. Middle: 2012 pre-June events. Bottom: 2012 post-June events.
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Figure 5.5 — Distribution of cross-feed events coming from B — K{K*7~ (top,left), BY —
KIK*7~ (top,right), B — KK~ 7" (bottom, left), and BY — KK~ n" (bottom, right), for
2012 post-June, Down-Down Kg reconstruction mode.
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Figure 5.6 — Left: distribution of generated events over the Dalitz plane. Right: calculated
efficiency of the generator-level cut. Top: 2011 conditions. Bottom: 2012 conditions.
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Figure 5.7 — Left: upper uncertainties on the generator-level efficiency. Right: lower uncertainties
on the generator-level efficiency. Top: 2011 conditions. Bottom: 2012 conditions.
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Figure 5.8 — Tracking efficiency corrections applied to 2011, Down-Down Monte-Carlo samples as
a function of the square Dalitz-plot. Top, left: raw histograms. Top, right: splined histograms.
Bottom: splined upper (lower) uncertainties are shown on the left (right).
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Figure 5.10 — Top: total selection efficiency for 2011, Down-Down events, in the TOS (left) and
TIS&!TOS (right) trigger category. Middle: upper uncertainty on the selection efficiency for
2011, Down-Down events, in the TOS (left) and TIS&!TOS (right) trigger category. Bottom:
lower uncertainty on the selection efficiency for 2011, Down-Down events, in the TOS (left) and
TIS&!TOS (right) trigger category.
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Figure 5.11 — Top: distributions over the Dalitz plot of the PID efficiency as extracted from
Monte-Carlo samples (left), and splined (right). Bottom left (right): upper (lower) uncertainties
on the PID efficiency.
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Figure 5.12 — Top: variations of the total signal efficiency over the Dalitz plot, for 2011, Down-
Down events. Bottom: upper (lower) uncertainties on the total signal efficiency are shown on
the left (right).
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5.6 Data-fit model

The main goal of this analysis is to provide a starting point for future analyses of the
B? — KK*tK~ mode in LHCb, as well as bringing additional information that can be
combined with the latest result from BaBar. The baseline model of our analysis is similar
to that from BaBar, and we present it in Sec. 5.6.1. We aim at improving its description of
the data by adding resonances, removing resonances, or changing their parameterization.
We compare the quality of different models by means of goodness-of-fit methods, presented
in App. B. Section 5.6.2 presents the results of this fit to data.

5.6.1 Baseline model

Table 5.7 details the intermediate resonances composing the baseline fit model, and their
parameterizations.

The nonresonant (NR) component of the amplitude is described as the sum of a S-
wave and a P-wave, both modelled as a second-degree polynomial in the parameter €2,
defined as

0= %(m3+%(mK+ + my- +mgy))- (5.30)

Fits to data using different models and sets of fixed parameter consistently result in

a small (< 0.1%) fit fraction for the first-degree term of the P-wave. In order to improve

the stability of the fit, we remove this component. The nonresonant amplitude is then

the sum of five terms, PoINR(S0), PoINR(S1), PoINR(S2), PoINR(P0), and PoINR(P2),

where the “S” and “P” letters stand for S-wave and P-wave, respectively. The indexes 0,
1, and 2 designate the degree of the polynomial term in 2.

Table 5.7 — Modelling of the resonances used in the model. Masses and widths are given in
MeV/c?.

Resonance Shape parameters Lineshape
@Y m — 1019.455 + 0.020, I' — 4.26 4+ 0.04 Rel. BW
f0(980) m = 965 + 10, g — (0.165 % 0.018) GeV?/c*, gx/gr — 4.21 £ 0.33 Flatté

fo(1500) m = 1505+ 6, ' =109 £ 7 Rel. BW
fo(1710) m— 1720 £ 6, ' = 135 £ 8 Rel. BW
f,(1525) m — 1525 £ 5, T = 7375 Rel. BW
X0 m = 3414.75 + 0.31, ' = 10.3 £ 0.6 Rel. BW
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Figure 5.13 — Distribution of data events from all data-taking periods and K? reconstruction
modes over the Dalitz plot (left) and the square Dalitz plot (right).
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5.6.2 Fit results

Figure 5.13 shows the distribution of data events over the Dalitz plot and the square
Dalitz plot, combining datasets from all K reconstruction modes and all data-taking
periods.

We perform 1000 fits to data using randomized initial values for all parameters, and
show the obtained likelihood values in Fig. 5.14. A clear best minimum is present, and
there are 15 secondary minima within a 30 interval. Table 5.8 shows the isobar parameters
and fit fractions for the best minimum, along with the statistical uncertainties. The sum of
fit fractions is different from 100%, indicating significant interference between resonances,
as expected. Table 5.9 shows the interference fit fractions between all the intermediate
states.

Figure 5.15 shows the fit fractions of all the intermediate states for the best minimum
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Table 5.8 — Isobar parameters and fit fractions for the best minimum, along with uncertainties
as estimated by MIGRAD.

Resonance | Fit fraction (%) c )

& (1020) 14.02 0.70£0.14  0.35 (fixed)
£(980) 28.34 0.9940.19  1.9240.62
fo(1500) 4.50 0.40£0.09  -1.77£0.43
£,(1525) 428 0.3940.10  0.140.39
£o(1710) 1.70 0.24+0.07  -0.19-£0.39
X0 2.87 0.32£0.07  -1.2940.30
PoINR(S0) 20.16 0.84 (fixed) 0.00 (fixed)
PoINR(S1) 9.38 0.57+0.11  -3.30%0.30
PoINR(S2) 2.97 0.3240.13  3.8420.37
PoINR(P0) 23.86 0.91£0.21  1.13 (fixed)
PoINR(P2) 8.41 0.5440.15  -2.29 (fixed)
Sum 120.48

Table 5.9 — Measured interference fit fractions corresponding to the best minimum. The A0O-

10 indexes correspond to, in order, ¢°, f5(980), fo(1500), fé(1525), fo(1710), xc0, PoINR_ SO,
PoINR _S1, PoINR_S2, PoINR_ PO, and PoINR_ P2.

A0 Al A2 A3 A4 A5 A6 A7 A8 A9 A10
A0 | 14.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -7.24 5.69
Al 2834 1.17 0.00 -4.56 0.54 -1.80 -3.57 9.99 0.00 0.00
A2 450 0.00 247 -0.02 392 335 -1.24 0.00 0.00
A3 4.28 -0.00 0.00 0.00 0.00 0.00 0.00 0.00
A4 1.70 -0.11 -1.17 0.56 -1.01 0.00 0.00
A5 287 125 -0.13 -0.14 0.00  0.00
A6 20.16 -1.71 -831 0.00 0.00
A7 9.38 0.59 0.00 0.00
A8 297 0.00 0.00
A9 23.86 -19.02
A10 8.41

and the 15 closest secondary minima. The fit fractions of the ¢° corresponding to different
minima are similar, whereas mirror solutions for the x. and the f,(1710) are clearly
distinguishable. The fit fractions of broad scalars such as the f,(980) and the nonresonant
S-wave strongly vary between the solutions. We thus do not extract a Q2B branching
fraction for these modes.
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Figure 5.15 - Fit fractions (in %) of each intermediate state for the best minimum and the 15
closest secondary minima. Each solution corresponds to an unique marker (colour and form).
The best minimum is marked by a black circle. The fit fraction measured by BaBar is indicated
by the red, vertical line for each resonance.

Figures 5.16 and 5.17 show projections of the fit results on different Dalitz-plot vari-
ables and the pulls distribution over the Dalitz plane, all the K reconstruction modes
and data-taking periods taken together. We notice several localized discrepancies, but an
overall satisfactory agreement, especially for m’ and ¢'.

We also calculate the angular moments, defined as

1

< P(cos(Ox+g-)) >= /dFB(COS(9K+K)dcos(9K+K)), (5.31)

-1
where P, is the [" Legendre polynomial, I" is the differential decay rate, and O+ - is
the helicity angle between K+ and K?. They constitute an alternative representation
to the ordinary DP projection, and provide more information as they probe the angular

distribution of data. Indeed, considering that there is no partial-wave amplitudes of spin
3 or higher, the amplitude writes as

A(mKﬂ«, 0K+K*) :AS(mK+K7, 0K+K7)P0(COS(0K+K7))
+ AP<mK+K7, 9K+K—)€i¢P(mK+K_)P1 (COS<9K+K7))

+ AD(mK+K— , ‘9K+K—)€i¢D(mK+K_)PQ(COS(9K+K—)), (532)
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where Ag pp and ¢p p are real-valued functions of my+x- (¢g is absorbed in the definition
of the phases). Using the orthogonality of Legendre polynomials

1

2
/Pi(cos O+ - ) Pj(cos O+ e )d cos O+ - = 2l——i_15ij, (5.33)
s}
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we can relate the average of angular moments to the amplitude!®

< Py>=

[As* + [Apl* + [ Ap[*

) ;
210

< P >= \/§ASAP COS(¢P) + —-APAD COS(¢P - ¢D);

< Py>=

< P3>=

< Py>=

\/_

AZ + — \/_-AS-AD COS P p;

g\/;APAD cos(ér — p):

N

— Ab

(5.34)

The analysis is not flavour-tagged, and as a result we observe the sum of B® and B° con-
tributions. Assuming no CP violation and as the model only includes K+ K~ resonances,
the partial-wave amplitudes fulfill

As = As
Ap=—Ap
AD:A—Da

(5.35)

where A refers to the B amplitude. As a result, terms that are a product between odd
and even waves cancel out. The < P, > and < P3; > terms only contain such terms, and

1°Dependencies on my+ - have been dropped for clarity purposes.
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Figure 5.18 — Distributions of angular moments as a function of mg+ - in data (red points) and
in a Monte-Carlo sampled from the fit results (blue line) for [ = 0,1,2,3 (top, left; top, right;
bottom, left; bottom, right).

we thus expect a constant distribution compatible with 0 in data.'!

Figures 5.18 and 5.19 show the projection of data events and of the fit result on
these variables for [ < 4 as a function of mg+x- in the entire mass range and in the
my+r- < 2GeV/c? interval, respectively. The agreement between data and the model
is satisfying.

5.7 Fit validation

The stability of the fit model is ensured by means of toy studies comparable to those
described in Sec. 4.5. This procedure also allows to estimate the biases and the statistical

"' This is equivalent to the fact that we are not sensitive to relative phases between even and odd waves,
as < P; > and < P3 > can be interpreted as the mean effect of the interference between even and odd
partial waves.
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uncertainties on fit fractions. Table 5.10 summarizes the isobar parameters for which a
significant bias is observed.

Fit fractions are non-linear combinations of isobar parameters (see Eq. 1.56), and
the estimation of their statistical uncertainty from the fit is difficult. We estimate the
asymmetric uncertainty on fit fractions using the toy studies previously mentioned, by
fitting the resulting distribution of residuals with a bifurcated Gaussian. We check that
the interval defined as such contains 68% of toys, and thus that the uncertainties are
correctly covered. Figure 5.20 show some of these residual distributions, and Table 5.11
shows the resulting uncertainties, along with the measured biases.

Additionally, we perform a likelihood scan of each fit parameter in order to check
their consistency with the uncertainties on isobar parameters. Figure 5.21 shows the
result of this procedure on the parameters of the f3(980) contribution, along with the
uncertainty provided by the nominal fit. Table 5.12 details the uncertainties as obtained
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Table 5.10 — Summary of significant biases of isobar parameters, along with the values obtained
for the best minimum.

Parameter Value Bias
(@) 0.6 -0.1
c(f5(980)) 0.7  -0.067
(f0(980)) 2.4 -0.95
¢( f5(1500)) 0.34  -0.075
(fo(1500)) 1.4 -0.49
c(f5(1525)) 0.27  -0.065
B(f,(1525)) 028  -0.55
c(fo(1710)) 0.23  -0.037
o(fo(1710)) -0.0071  -0.28
c(Xe0) 0.25  -0.051
B (Xeo) 1.3 -0.052
¢(PoINR(S1)) | 0.47  -0.0049
#(PoINR(S1)) | -3.1 -0.62
¢(PoINR(S2)) | 0.42  -0.0037
(PoINR(S2)) | 3.9 0.34
¢(PoINR(P0)) | 0.79  -0.18
¢(PoINR(P2)) | 0.39  -0.073
(PoINR(P2)) | -2.3 0.26

Table 5.11 — Statistical uncertainties and biases of fit fractions estimated by fitting the distribu-
tion of residuals of toy experiments with a bifurcated Gaussian.

Parameter Value (%) Bias (%) Lower unc. (%) Upper unc. (%)

FF(gbO) 13 20.32 14 >
FE(f,(980)) 18 9.6 3.6 21
FF(f,(1500)) 4.2 0.97 0.96 2.3
FE(f)(1525)) 2.7 2052 0.64 1.8
FF(fo(1710)) 1.9 -0.65 0.46 2.1
FF(xw) 2.3 -0.31 0.28 0.79
FF(PoINR(S0)) 26 2.3 5.7 16
FF(POINR(SL)) | 7.9 0.17 2.2 9
FF(POINR(S2)) | 6.6 2.6 1.8 11
FF(POINR(P0)) | 23 2.6 5.1 4.7
FF(PoINR(P2)) | 5.5 0.63 3.6 3.7
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Figure 5.20 — Distributions of residuals of the ¢" and y.o fit fractions (left and right, respectively).

from MINOS and the uncertainties from the likelihood scans for each isobar parameter.'?
We notice that uncertainties from the likelihood scans are systematically larger than the
uncertainties from MINOS. The values are however close, and the significant asymmetry
of the uncertainties for certain parameters justifies the use of MINOS uncertainties in the
following rather than those from MIGRAD.

5.8 Evaluation of systematic uncertainties

5.8.1 Fit-bias estimation

As described in Sec. 5.7, the model is validated using pseudo-experiments. For each
parameter, we extract the average bias and, in case it is significant, assign the systematic
uncertainty

o
Ax =[5 |, (5.36)

where 0y is the bias measured on the parameter X.

5.8.2 General method to evaluate systematic uncertainties

The method to extract systematic uncertainties is similar to that exposed in Sec 4.6. We
divide systematic uncertainties in two categories:

12The 1o interval around a minimum can be defined by the closest values for which the NLL is 0.5
larger than at that minimum.
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e systematic uncertainties related to assumptions on fixed parameters, such as effi-
ciencies, resonance parameters, and yields;

e systematic uncertainties related to the choice of the model used to fit the data.

The first kind of uncertainties is estimated by varying the fixed parameters within
their uncertainties, taking correlations into account whenever possible, and fitting the
model to data with the randomized parameter. The uncertainty Ay on a parameter X
is then

Ax = Jot + (B, (5.37)

where pxy and ox are mean and the rms of the distribution of residuals calculated between
the nominal fit and the fits using randomized parameters.

The second kind of uncertainties is estimated by fitting the concurrent model to data,
and using the result of that fit to generate pseudo-experiments. These pseudo-experiments
are then fitted using both the nominal and the concurrent model. The systematic uncer-
tainty on a parameter X is then calculated using Eq. 5.37, where yx and ox are the mean
and the rms of the distribution of residuals calculated between the fits using the nominal
model and those using the concurrent model.
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Table 5.12 — Isobar parameters along with uncertainties extracted from MIGRAD, MINOS, or the
likelihood scans.

Parameter Value Stat. (fit) Stat. (scan) Stat. (MINOS)
c(¢”) 0.6 £0.072 +0.066 +0.04
#(6°) 0.35 fixed fixed fixed
c(fo(980)) 0.7 +0.16 +9-17 +9-062
o0 | 24 xom9 46 ]
c(fo(1500)) 0.34  +0.054 0058 0043
&(fo(1500)) 14 4045 054 037
c(f,(1525)) 0.27 +0.056 40063 40058
B(f,(1525)) 0.28 +0.43 047 +0-37
c(fo(1710)) 0.23  £0.044 0048 0034
(fo(1710)) | -0.0071  +0.4 047 4034
c(Xc0) 0.25  +0.038 0,058 +0.057
c(PoINR/(S0)) 0.84 fixed fixed fixed
(PoINR/(S0)) 0 fixed fixed fixed
c(PoINR(S1)) | 0.47 +0.089 +0-096 4-0-098
#(PoINR(S1)) | -3.1 +0.3 45934 +0-24
c(PoINR(S2)) | 042 0.1 012 +0.18
#(PoINR(S2)) | 3.9 +0.21 4,92 10-22
¢(PoINR(PO)) | 0.79  £0.12 £0.12 011
»(PoINR(P0)) 1.1 fixed fixed fixed
c(PoINR(P2)) | 039  +0.12 011 £0.063
(PoINR(P2)) | -2.3 fixed fixed fixed

5.8.3 Efficiencies

The method to evaluate efficiencies across the Dalitz plot along with the uncertainties
on the efficiency values has been discussed in Sec. 5.5. We fit the model to data using
alternative efficiency maps obtained by varying the nominal efficiency maps within their
uncertainties. We neglect correlations between data-taking periods and neighbouring bins
in the histograms, and show the results in Table 5.13.

5.8.4 Signal and background yields estimations

As explained in Sec. 5.3, signal and background yields are fixed in the fit to data, and
taken from the invariant-mass fit. In order to take into account all possible correlations,
we use the full covariance matrix from the invariant-mass fit to obtain a set of alternative
yields and shape parameters. The integrals of the contributions in the signal mass window
are recalculated.

Table 5.14 shows the systematic uncertainties related to the estimation of signal and
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Table 5.13 — Systematic uncertainties on isobar parameters and fit fractions related to the esti-
mation of efficiencies.

Resonance | Fit fraction (%) ¢ ¢
¢° 0.17 0.03  fixed
£5(980) 45 0.1  0.68
fo(1500) 0.18 0.017 0.25
f,(1525) 0.17 0.017 0.25
fo(1710) 0.12 0.012 0.21
X0 0.052 0.013 0.14
PoINR(S0) 3 fixed fixed
PoINR(S1) 1.1 0.024 0.12
PolNR(S2) 1.6 0.035 0.16
PolNR(P0) 1 0.047 fixed
PoINR/(P2) 1.1 0.049 fixed

Table 5.14 — Systematic uncertainties on isobar parameters and fit fractions related to the esti-
mations of the yields of event species.

Resonance | Fit fraction (%) c o
@’ 0.044 0.003  fixed
£5(980) 0.23 0.0026  0.026
£o(1500) 0.012 0.0019  0.012
£2(1525) 0.032 0.0032  0.0089
fo(1710) 0.0073 0.0016  0.01
Xc0 0.0083 0.0015 0.0045
PoINR(S0) 0.34 fixed  fixed
PoIlNR(S1) 0.072 0.0025 0.008
PolNR/(S2) 0.054 0.0039 0.0019
PoINR(P0) 0.42 0.013 fixed
PoINR(P2) 0.1 0.0025 fixed

background yields on isobar parameters and fit fractions.

5.8.5 Background shapes

The distributions of background events over the Dalitz plot are considered separately for
combinatorial and cross-feed contributions. We perform 200 fits to data, varying the
histograms representing these distributions within their uncertainties. Neighbouring bins
are considered as uncorrelated, as are histograms for different data-taking periods and K?
reconstruction modes.
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Table 5.15 — Systematic uncertainties on isobar parameters and fit fractions related to the mod-
elling of backgrounds.

Resonance | Fit fraction (%) c ¢

@’ 0.028 0.002  fixed
f0(980) 0.26 0.0051  0.024
fo(1500) 0.015 0.0012  0.012
f,(1525) 0.035 0.0021  0.011
fo(1710) 0.017 0.0012  0.0098
Xeo 0.01 0.0011  0.006
PoINR(S0) 0.18 fixed  fixed
PoINR(S1) 0.1 0.0036  0.01
PoINR(S2) 0.13 0.0039 0.0066
PoINR(P0) 0.13 0.0043  fixed
PoINR(P2) 0.16 0.0054 fixed

Table 5.15 shows the systematic uncertainties on isobar parameters and fit fractions
related to the shape of the combinatorial background shape and the cross-feeds.

5.8.6 Total experimental systematic uncertainties

The previous systematic uncertainties related to the imperfect knowledge of the event yield
species and experimental setup are summed in quadrature and reported independently
from other sources of systematic uncertainties in the final result. Table 5.16 shows the
experimental systematic uncertainties on the isobar parameters and fit fractions for the
preferred solution.

5.8.7 Resonance shape parameters

Resonance parameters such as masses and widths are rather well-known inputs from other
experiments. We vary the mass and the width of each resonant component of the Dalitz-
plot model, neglecting any correlation, and show the results in Table 5.17.

We also consider a systematic uncertainty related to Blatt-Weisskopf barrier factors,
described in Sec. 1.3.5. When varying the values of these factors, we assume that it
remains the same for all resonances. We vary independently the barrier factors of the
mother particle and the resonances, and add the resulting systematic uncertainties in
quadrature. Table 5.18 shows this systematic uncertainty.

The overall systematic uncertainty related to resonance shape parameters on a given
quantity is the sum in quadrature of all the previously mentioned systematic uncertainties.
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Table 5.16 — Summary of systematic uncertainties on fit fractions arising from the knowledge of
event species and experimental setup.

Parameter Efficiency Shape cf. Shape comb. Yield ratios | Total

FF(gbO) 0.17 TBD 0.028 0.044 0.18
FF(f0(980)) 4.5 TBD 0.26 0.23 4.5
FF(f0(1500)) 0.18 TBD 0.015 0.012 0.18
FF(f,(1525)) 0.17 TBD 0.035 0.032 0.18
FF(fo(1710)) 0.12 TBD 0.017 0.0073 0.12
FF(x0) 0.052 TBD 0.01 0.0083 0.053
(PolNR(SO)) 3 TBD 0.18 0.34 3
FF(PoINR(S1)) 1.1 TBD 0.11 0.072 1.1
FF(PoINR(S2)) 1.6 TBD 0.13 0.054 1.6
FF(PoINR(P0)) 1 TBD 0.13 0.42 1.1
FF(PoINR(P2)) 1.1 TBD 0.16 0.11 1.1

Table 5.17 — Systematic uncertainties on isobar parameters and fit fractions originating from
fixed parameters in the lineshapes.

Resonance | Fit fraction (%) c o
@0 0.065 0.019 fixed
£o(980) 4.1 0.098  0.19
£o(1500) 0.3 0.018  0.14
’ (1525) 0.13 0.013  0.073
fo(1710) 0.21 0.012  0.086
Xc0 0.042 0.0091 0.064
PoINR(S0) 1.7 fixed  fixed
PoINR(S1) 0.8 0.017  0.08
PolNR(S2) 1 0.031  0.11
PoINR(P0) 0.38 0.029  fixed
PoINR(P2) 0.19 0.015 fixed

5.8.8 Fixed isobar parameters

As described in Sec. 5.6, some isobar parameters are fixed in the fit to data as the sensitiv-
ity of an untagged analysis to these parameters is limited.!®> A systematic uncertainty re-
lated to the fixed parameters is assigned by varying their values within their uncertainties
provided by the BaBar experiment. We neglect correlations between these uncertainties.
Table 5.19 shows the resulting systematic uncertainties.

13The isobar parameters related to the constant term of the nonresonant S-wave are not included in
this, as they set the reference for both the phases and the magnitudes.
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Table 5.18 — Systematic uncertainties on isobar parameters and fit fractions originating from
Blatt-Weisskopf barrier factors.

Resonance | F'F c 10}
@° 1.1 0.07  fixed
f0(980) 1.1 0.062 0.092
fo(1500) 0.092 0.034 0.16
(
(

f5(1525) | 0.99  0.047 0.16
fo(1710) | 0.096 0.029 0.088
Xeo 0.095 0.031 0.019

PoINR(S0) | 5.5  fixed fixed
PoINR(S1) | 0.93 0.059 0.025
PoINR(S2) | 1.3 0.0098 0.065
PoINR(PO) | 5.5  0.12 fixed
PoINR(P2) | 1.6  0.093 fixed

Table 5.19 — Systematic uncertainties on isobar parameters and fit fractions originating from fixed
isobar parameters aside from the parameters of the constant term of the nonresonant S-wave.

Resonance | Fit fraction (%) ¢ o)

@0 0.35 0.073 fixed
£0(980) 6.5 0.07  0.85
o(1500) 0.13 0.056 0.4

f5(1525) 0.49 0.039  0.38
fo(1710) 0.079 0.035 0.33
Xc0 0.1 0.047 0.099
PoINR(S0) 11 fixed fixed
PolNR(S1) 0.82 0.053 0.3

PolNR(S2) 3 0.043  0.064
PoINR(P0) 6 0.19 fixed
PoINR(P2) 2.4 0.13 fixed

5.8.9 Model uncertainties

We consider the possible presence of the following additional resonances: fo(1370),
f2(1270), f2(2010), f2(2300), and ¢(1680). No significant contribution from any of these
resonances is found, and they are then only included in the model to evaluate systematic
uncertainties.

In order to estimate a systematic uncertainty related to an alternative model, we
generate 200 toy experiments using the fit of this model to data. We then fit each of these
toys with the baseline model and the alternative model, and fit the distribution of the
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Table 5.20 — Systematic uncertainties on fit fractions originating from the addition of a resonance
in the model. They are then summed in quadrature in order to yield the total systematic
uncertainty related to the model.

‘f0(1370) f2(1270)  f2(2010)  f2(2300) #1370 Sum

¢ 0.58 0.89 0.67  0.00075 0.64 1.4
fo(980) 13. 8.5 3.4 0023 39 17
fo(1500) 2.2 0.64 0.39  0.0012 048 2.3
£5(1525) 0.59 0.73 052 0.00079 1.7 2.0
fo(1710) 1.2 0.58 0.78  0.0011 069 1.7
Xe0 0.13 0.22 0.17  0.00039 0.16 0.34
PoINR(S0) |  14. 12. 8.1 0018 59 21
PoINR(S1) | 8.5 11. 3.8 0012 19 14
PoINR(S2) | 7.0 5.4 2.9 0010 25 9.6
PoINR(PO) | 3.7 46 48 0.0048 44 8.8
PoINR(P2) | 1.9 3.6 2.2 0.0042 14 4.8

differences of the fit fractions between the two fits with a Gaussian. The corresponding
systematic uncertainty is then

[0\ 2
Ax =1/ (5) +o7, (5.38)
where p and o are the mean and the width of the Gaussian.

Table 5.20 summarizes the model uncertainties on each fit fraction related to the addi-
tion of one of these resonances in the model. As expected, this is the largest contribution
to the systematic uncertainties.

The addition of the aJ(980) or the a3 (980) causes the fit to converge to a solution
that is rather far away from the global minimum. We thus do not assign a systematic
uncertainty for it.

5.9 Conclusion

We have performed a preliminary Dalitz-plot analysis of the B — KK ™K~ decay mode
in LHCb, using 3 fb™" of data from Run1, taking the result from BaBar [40] as a reference
model. The distribution of events over the Dalitz plot is overall well modelled, as shown
by Figs. 5.16 and 5.17. Table 5.21 shows the fit fractions of the different resonances along
with their statistical and systematic uncertainties.
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Table 5.21 — Fit fractions of each resonance, along with their statistical and systematic uncertain-
ties. Each value is in %. The quoted value is corrected for the bias. The “Total” column refers
to the total systematic uncertainty; “Exp.” refers to the experimental systematic uncertainty,
“FixParams” to the systematics uncertainty related to fixed isobar parameters, “Res. par.” to
the systematic uncertainty related to fixed resonance parameters, and “Add. res.” refers to the
systematic uncertainty related to alternative models.

Value Stat. Bias Exp. FixParams Res. par. Add. res. Total

FF(¢°) 3. £XT 0.090 0.18 0.35 1.1 1.4 1.8
FF(f0(980)) 13. £ 55 45 6.5 4.3 17. 20.
(f9(1500)) 3.7 422 053 0.18 0.13 0.32 2.3 2.4
FF(f,(1525)) 2.9 £13 015 0.18 0.49 1.0 2.0 2.3
FF(fo(1710)) 2.2 18 028 0.12 0.079 0.23 1.7 1.7
FF(xe0) 2.2 £567 0.13  0.053 0.10 0.10 0.34 0.40
FF(PoINR(S0)) 25. #i& 099 3.0 11. 5.8 21. 25.
FF(PoINR(S1)) 7.3 #99 063 1.1 0.82 1.2 14. 15.
FF(PoINR(S2)) 4.5 #+% 21 1.6 3.0 1.7 9.6 11.
FF(PoINR(P0)) 21. £37 22 1.1 6.0 5.5 8.8 12.
FF(PoINR(P2)) 44 £5 10 1.1 2.4 1.7 4.8 5.9

The fit model has many (16) solutions within 4.5 NLL units from the best minimum,
corresponding to different interference patterns and fit fractions. Resolving these solu-
tions, which could be made possible with a larger dataset, would help to make a final
interpretation of the result. However, the fit fraction of the ¢° does not depend on a
specific minimum, and its value is compatible with the result from the B factories. We
thus determine the Q2B branching fraction of this mode

B(B’— KJ(¢°— KTK~) = (1.63 +(73 (stat) + 0.2(syst) + 0.2(BF)) x 107°,  (5.39)

where the uncertainties are statistical, systematic, and due to the uncertainty on B (B° —
K?K*K™), respectively. This branching fraction is compatible with the PDG value

Bepa (B’ — K%°%) = (7.3 +£0.7) x 107°. (5.40)

We also extract branching fractions for the B° — KJy.o(—~ KTK~), B® —
KOf,(1525)(— K+ K~), and B®— K?fy(1710)(— K*K~) modes

B(B®— K{xeol— KTK™)) = (0.28 405 (stat) + 0.05(syst) = 0.04(BF)) x 107°,
B(B®— K?f,(1525)(— K*K™)) = (0.36 + 0.16(stat) & 0.29(syst) # 0.05(BF)) x 107°.
B(B®— K f,(1710)(— Kt K™)) = (0.27 + 0.22(stat) + 0.21(syst) & 0.03(BF)) x 107

(5.41)
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The branching fraction of B — K0 f,(1525)(— K*K~) is in good agreement with PDG
values. There is no such reference for B (B® — K{x.( KTK™)), but the value is
consistent with both BaBar and Belle measurements. Finally, the branching fraction of
fo(1710) differs significantly from the (2.2 4= 0.45) x 107¢ value of the PDG.
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Conclusion

The RunT dataset from the LHCb experiment, corresponding to 3 fb~! recorded at centre-
of-mass energies of 7 and 8 TeV, has been analyzed in order to search for the BY —
KJK* K~ decay and update LHCb measurement of the branching fraction of other By, —
th*h'* modes. Furthermore, an untagged, time-independent Dalitz-plot analysis of
B°— KYK* K~ is performed in order to extract Q2B branching fractions.

The B?— K?KTK~ mode is observed for the first time with a global significance of
3.70. The results obtained of the other B®— K%h*h'T relative branching fractions are

B(B?— Kintn~
B (B — Kdntn—
B(B'— KOK*n+
B(B’— Kirtn—)
B(B°— K'K*r¥)
B(B°— Kdntn—)
B(B'— KOK+K-)
B(B’— Kintn—)

; = 0.26 + 0.04(stat.) £ 0.02(syst.) £+ 0.01(f;/fq),
)

= 0.17 + 0.02(stat.) £ 0.00(syst.),

= 1.84 £ 0.07(stat.) £ 0.02(syst.) £ 0.04(fs/fq),

= 0.59 + 0.02(stat.) £ 0.01(syst.),
(5.42)

They are compatible with results obtained by B-factories, and coherent with previous
measurements from LHCb, at the exception of B — KK K~. These results are used as
a baseline to extract signal yields and background distributions for the amplitude analyses
of B®— Klntr~, B— K!K*n¥, and B~ K!KTK~.

The first flavour-untagged, time-independent Dalitz-plot analysis of B® — KK+ K~
in LHCD is performed with a reoptimized BDT selection. The amplitude is modelled as
the sum of a ¢°, f,(980), fo(1500), fo(1710), f,(1525), X0, and a nonresonant component.
This nonresonant amplitude is described similarly to that from the latest BaBar analysis,
as a sum of an S-wave and a P-wave, both modelled as second-degree polynomials. Fit
fractions are extracted, and quasi-two-body branching fractions are measured for the
Q2B modes B® — K%¢°, B® — K?f,(1525), B® — K%x., and B° — K?fy(1710). These
branching fractions are compatible with results from B factories, with the exception of
the latter.

The study of B}, — KJh™h'~ decays will benefit from a growing dataset in the next
few years; amplitude analyses of the suppressed modes such as BY — K2r"7~ could
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become possible for the first time. Amplitude analyses of the favoured modes such as
B°— KKK~ will enter a new phase, with the addition of a tagging information that
will allow to disentangle B and B contributions. Indeed, this information is necessary not
only to perform CP violation measurements, but also to measure the relative phases of
even and odd partial waves.
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Appendix A

Correcting sWeights in the presence of
fixed yields

Subtracting background from the signal in physics analyses can be performed in several
ways. We described in Sec. 4.2.3 the Plots procedure [65], which is an efficient and
widespread method to do so; it is implemented in the RooStats package [72|. In this
appendix, we focus on the effect of fixed yields on the results, which is documented in
Ref. [73], Annexes B.1 and B.2.

Section A.1 shortly reminds the ,Plots subtraction procedure and its modifications
in the presence of fixed yields that was presented in Sec. 4.2.3. Section A.2 then reviews
the implementation of ;Plots in RooStats and the issues it may introduce. Finally, an
alternative constructor to the RooStats::SPlot class that would solve these issues is
proposed in Sec A.3, along with some tests.

A.1 JPlots with fixed yields

We consider a model with Ng event species; the yield of a species k is noted Ny and
its normalized PDF f,. The  Plots procedure allows to use the information from a
fit performed on a discriminating variable X to extract the distributions of the control
variable Y for the different species.

A main ingredient of the ;Plots calculation is the covariance matrix V of the fit, which
can be taken from the output of a fit routine (e.g. TMinuit [74]). Alternatively, its inverse
can be directly computed using:

N

vl =

v]

file)f;(e)

J | (A1)
e=1 (k; Ny fr(e))?

where the sum is running over N events, and f;(e) designates the value of the PDF f; for

154



the event e. We can then use the covariance matrix to compute, for each event species n,
the per-event sWeight sP,(e), using:

sPy(e) = — (A.2)
The distribution of the event species n on the control variable Y is then estimated by:

NusMo(Y).0Y = > sPy(e). (A.3)
eC[Y —8Y,Y +6Y]

We now introduce another event species in the model, with a fixed yield Ny and a nor-
malized PDF f;. The covariance matrix changes, and its inverse becomes:

Vij_l _ Z - fi(e) f;(e) ’ (A.4)
e=1 (kgl Nkfk(e) + NOfO(e))2

whereas the per-event sWeight becomes:

> Vi f5(X,) S UahX) S N
sPn(e) _ - Jj=1 _ ];Sl - k=1
1; Nifr(Xe) + Nofo(Xe) 1;1 Nifr(Xe) 1; Nifr(Xe) + Nofo(Xe)

(A.5)

This expression differs from Eq. A.2 only by an event-by-event factor that depends on the
yields Ny and the PDFs f;.

In the case where the distribution of the control variable for the species with fixed
yield, My(Y'), is known, the distribution of the control variable Y for the species n is:

NosMy(Y).0Y = > sPy(e) + cu. Mo (Y), (A.6)
eClY —08Y,Y+6Y]

where
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Ng
n=No=> Vi (A7)
j=1

is a coefficient depending uniquely on the considered event species. It quantifies the
impact of the species with fixed yields on sM,(Y'), and vanishes only if Ny = 0.

One of the issues of extracting sWeights using a tool that treats the varied and fixed
yields on an equal footing is related to the calculation of the covariance matrix. To
illustrate this, we consider a model including three species: a signal S, a combinatorial
background C, and another background B with a fixed yield. Using Eq. A.4, we calculate
the inverse of the covariance matrix, and obtain:

(Vhss (V7 hse (V7 'ss
V= (Ves (V ee (V Nes |, (A.8)
(VBs (V se (V7 ')ss

which incorrectly includes terms related to the species with fixed yields. As the terms
(V™1sp and (V~1)op do not vanish a priori, the inverse of this matrix has no clear link
with the correct covariance matrix. Also, we notice that in the case where fp = fo or
fB = [s, the matrix is no longer invertible (it has two identical columns and lines), whereas
sWeights should still be calculable. This shows that there is something fundamentally
flawed with this approach.

A.2 RooStats implementation of the ;Plots method

The RooStats: :SPlot method, used to calculate sWeights, computes the inverse of the
covariance matrix using Eq. A.1 with a list of yields that the user provides as an argument.
The covariance matrix itsef is then obtained from its inverse. As shown in Sec. A.1, in
the case where there are some fixed yields in the arguments, this results in an incorrect
covariance matrix.

However, building the RooStats: :SPlot object using only the varied yields is also
incorrect, as it would result in using Eq. A.1 and Eq. A.2 rather than Eq. A.4 and
Eq. A.5. Correcting the sWeights event-by-event using Eq. A.5 is not possible either, as
the covariance matrix is not correctly calculated.

A.3 Proposed method and test
It is clear from Sec. A.1 that it is necessary to differenciate the fixed yields from the others

in the RooStats: :SPlot object. To address this requirement, we propose an alternative
constructor to the RooStats: :SPlot object, shown in Fig. A.1 along with the original
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constructor. We stress that this alternative constructor does not perform the correction
shown in Eq. A.6. However, it calculates and stores the ¢,, coefficients in a new attribute of
the class, as shown in Fig. A.2 and Fig. A.3. We also add a test to the original constructor,
to check if all the arguments are indeed varying yields.

We test this alternative constructor and the ¢, extraction tool using a toy model
containing 3 event species: a signal S, a combinatorial background C, and a peaking
background B with a fixed yield. The PDFs of these species on the discriminating variable
X and on the control variable Y are taken as:

e Signal (S): Gaussian (u = 0, 0 = 0.1) for X; Gaussian (4 = 0, o = 0.05) for Y.

e Combinatorial background (C): Constant for X; Gaussian (u = -0.5, ¢ = 0.05) for
Y.

e Fixed background. (B): Gaussian (¢ = 0, o = 0.05) for X; Gaussian (u = 0.5, 0 =
0.05) for Y.

Both variables X and Y are defined in the interval [-1,1]. This model is chosen in order
to ensure a sizable nuisance of the species with fixed yield on the discriminating variable,
whereas its impact on the control variable is easy to spot. We generate a sample of
16,000 events, including 5,000 signal events, 1,000 fixed background events, and 10,000
combinatorial background events. We then assume a wrong hypothesis on the yield of the
fixed background (Np = 1200), in order to simulate the general case where the value of
the fixed yield is not precisely known. We show the result of the one-dimensional fit on
the variable X using this model, along with the projection of this fit on the variable Y,
in Fig. A 4.

We consider two approaches, A and B: the former is the calculation of the sWeights
with the original RooStats: :SPlot method, providing only the list of varying yields to
the RooStats: :SPlot constructor; the latter is the proposed approach, where we use the
alternative RooStats: :SPlot constructor providing the list of all yields and the list of
fixed yields.

For each of these two methods, Fig. A.5 shows the samples with signal and background
weights applied, both before and after the correction of Eq. A.6. The results are satis-
factory for approach B after the ¢, correction, for both the signal and the combinatorial
background distributions. On the contrary, approach A provides an acceptable description
of the signal shape, but shows large discrepancies for the combinatorial background.

For each event species, Table. A.1 also shows the sum of sWeights and of its associated
¢n, compared to the fitted yield. According to Ref. [73], the sum has to be compatiable
with the yield, which is clearly not the case for approach A.
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Table A.1 — Summary of yields and sum of sWeights for the two approaches.

Species | > sPa(e)+ca >, sPg(e)+cp Fitted yield
Signal -7336.15 4975.27 4975.35
Comb. 16361.5 10007.5 10007.5
Blkg - - 1200.

As shown in

Ref. [73], in both approaches the sum of all yields extracted from the fit is not equal to the total

number of events.
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Changes in the implementation of the usual constructor:

SPlot :: SPlot (const charx name, const charx title ,
RooDataSet& data, RooAbsPdfx pdf,
const RooArgList &yieldsList, const RooArgSet &projDeps,

bool includeWeights, bool cloneData, const charx newName):
TNamed (name, title)

/#* Original body of the SPlot constructor ./

// Add check that yieldsList contains only varying yields

iter = yieldsList.createlterator ()

RooRealVar xvar;

while ((var=(RooRealVarx*)iter —Next ())) {
if (var—isConstant()) {

//Throw exception and error message.

1

delete iter ;
//Call method to build sWeights
this —>AddSWeight (pdf , yieldsList ,projDeps ,includeWeights );

)

Implementation of the alternative constructor:
SPlot :: SPlot (const charx name, const charx title ,
RooDataSet& data, RooAbsPdfx pdf,

const RooArgList &allYieldsList ,const RooArgList &fixedYields ,
const RooArgSet &projDeps ,

bool includeWeights, bool cloneData, const charx newName):
TNamed(name, title)

/#* Original body of the SPlot constructor ./

// Add check that yieldsList contains only varying yields

//Check that fixed yields are in the allYields arguments

iter = fixedYields .createlterator ();

while ((arg=(RooAbsArgx)iter —>Next ()))
if (!(allYieldsList.contains(xarg)))

{
//Throw exception and error message.
}
//Call new method to build sWeights, with fixed yields
this —>AddSWeight (pdf, allYieldsList ,fixedYields ,projDeps ,includeWeights );

Figure A.1 — Snippets of code showing the original (top) and the alternative (bottom) con-
structors for the RooStats: :SPlot class. Providing an empty RooArgSet as the fixedYieldsList

argument of the alternative constructor yields the same results as calling the original constructor
with the same arguments.
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void SPlot :: AddSWeight( RooAbsPdfx pdf, const RooArgList &allYieldsList ,
const RooArgList &fixedYields ,
const RooArgSet &projDeps, bool includeWeights)

/*Usual body of the method: stores the constant parameters (other than
yields) values x/

//Stores which indexes of the allYieldsList are the variable ones.
TIterator =it = allYieldsList.createlterator ();
RooAbsArgx arg;
unsigned int iArg(0);
std :: vector<unsigned int> varIndexes;
while ((arg = (RooAbsArgx) it—>Next()) != NULL){

if (!(fixedYields.find (arg—>GetName())))

varIndexes.push back(iArg);

iArg++;}
//We now have two indexes over which we iterate
Int_t nAllSpec = allYieldsList.getSize ();
Int_t nVarSpec = allYieldsList.getSize() — fixedYields.getSize ();

/*Usual body of the method:
—stores the initial yield parameters
—calculate the value of the component pdf for each event and
species.x/
//Inverse of the covariance matrix
TMatrixD covInv(nVarSpec, nVarSpec);
/xInitialisation*/
for (Int_t ievt = 0; ievt < numevents; ++ievt){
fSData—>get (ievt) ;
// Sum for the denominator
Double t dsum (0);
for(Int_t k = 0; k < nAllSpec; ++k)
dsum +—= pdfvalues[ievt|[k] * yieldvalues[k] ;

for (Int_t n=0; n<nVarSpec; ++n)
for(Int_t j=0; j<nVarSpec; ++j)
if (includeWeights = KTRUE)
covlnv(n,j) += fSData—>weight ()
xpdfvalues[ievt |[ varIndexes[n]]
xpdfvalues[ievt |[varIndexes[]]]/(dsumxdsum) ;
else
covlnv(n,j) +=
pdfvalues|[ievt|[ varIndexes[n]]
xpdfvalues[ievt ][ varIndexes[j]]/(dsum*dsum) ;}
// Invert to get the covariance matrix
TMatrixD covMatrix(TMatrixD:: kInverted ,covInv);

Figure A.2 — First part of the implementation of the new constructor.
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// Create and label the variables

// used to store the SWeights

for (Int_t k=0; k<nVarSpec; ++k){
/*Usual variablesx/

//c_n coefficients
wname = std::string(yieldvars|varIndexes|k|]—>GetName())+" c¢";
var = new RooRealVar(wname.c_str(),wname.c_str(),0);
double cVal = yieldvalues|[varIndexes[k]];
for (Int_t n = 0 ; n<nVarSpec; ++n)
cVal —= covMatrix[k]|[n];
var—>setVal (cVal);
fSWeightCoefs .add (xvar); //new attribute of the class.
}
// Create and fill a RooDataSet with the SWeights
RooDataSet« sWeightData = new RooDataSet ("dataset", "" 6 sweightset);
for(Int_t ievt = 0; ievt < numevents; ++ievt){
fSData—>get (ievt) ;
// sum for denominator
Double t dsum (0);
for(Int_t k = 0; k < nAllSpec; ++k)
dsum += pdfvalues[ievt|[k] * yieldvalues[k]
// covariance weighted pdf for each specie
for (Int _t n=0; n<nVarSpec; +4n){
Double t nsum(0) ;
for(Int_t j=0; j<nVarSpec; ++j)
nsum +— covMatrix(n,j) * pdfvalues|[ievt][varIndexes[j]]| ;
if (includeWeights = KTRUE)
sweightvec[n]—>setVal (fSData—>weight () * nsum/dsum) ;
else
sweightvec[n]—>setVal( nsum/dsum) ;
/* Fill the dataset with sweightvecx/
b
// Add the SWeights to the original data set
fSData—>merge (sWeightData );
/*Reinitialise all parameters and yieldsx/
return ;

Y

Figure A.3 — Second part of the implementation of the new constructor.
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Figure A.4 — Result of the fit on X, projected on the X dimension (left) and the Y dimension
(right). The signal is displayed in blue, the combinatorial background in red, and the peaking
background in black. As expected, the projection of the result on the Y dimension shows that
we overestimated (on purpose) the number of background events.
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Figure A.5 — Distribution of Y in data samples sWeighted according to signal (combinatorial)
weights. Results of the approach A(B) are shown on the left (right). The red points correspond
to the distribution of the sum of sWeights, whereas the blue points represent the final distribution
(after correction using Eq. A.6).
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A.4 Conclusion

Models that include an event species with fixed yields require a specific treatment when
using the ,Plots method, that the RooStats: :SPlot implementation does not provide.
In this note, we propose a straightforward modification of this class that allows to extract
the correct ¢Plots in the case of fixed yields. We also implement some precautions in
the code to help analysts avoiding the use of the wrong method. These modifications do
not remove the need to correct the distributions using Eq. A.6, but allow to calculate
the ¢, coefficients inside the RooStats: :SPlot object in a way that is coherent with the
sWeights extraction.

We tested this additional code, both in terms of compatibility with the former imple-
mentation (not shown here), and in terms of expected results. The results are satisfactory,
and show a clear improvement compared to the original approach, especially in terms of
normalization properties.
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Appendix B

(Goodness-of-fit criteria

Estimating the relative quality of two fits is usually done by a x? calculation or a likelihood
estimation. However, while these methods yield a good indicator of the quality of a fit,
they tend not to distinguish a localized discrepancy between two fits, especially when the
fit is performed on more than one dimension. The addition or removal of a resonance
in a Dalitz-plot model constitutes such a localized difference, and thus we use additional
tools to assess the relative quality of the fit of two models on data. These additional tools
provide us with so-called goodness-of-fit criteria, defined on an event-by-event basis. In
the following, we describe two of these methods, presented in [75].

These methods define for two given samples a statistic 7" that takes a value of t when
comparing data and a Monte-Carlo sample generated using a model fitted on data. Given
the expected distribution g of this statistic in the case where the model is the parent PDF
of data, we define the p-value of a fit

+o0

p= /g(T)dT. (B.1)

t

This p-value is what is used to compare two different fits to data.

Mixed-sample estimation

The idea of mixed-sample estimation is that the mixing between two samples is maximal
if and only if f and g have been generated by the same underlying PDF. Figure B.1
shows the example of two samples generated using the same PDF and different PDFs to
illustrate that idea.

A mixing indicator I on two points z and y can be defined as

(B.2)

I(2,y) 1 if x and y belong to the same sample,
x7 = .
Y 0 otherwise.
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Figure B.1 — Example of two samples (red and blue points) generated with the same underlying
PDF (left), and different PDFs (right).

The mixing statistic T(A,B) for two samples A and B, containing n, and n; points, is
defined as

Ng+np Mg
1(i, k), (B.3)

i=1 k=1

1
T=—
ng(ng + 1p)

where ny, is an arbitrary number of neighbours of a point that are considered. A large
value of this parameter reduces statistical fluctuations, but it also reduces the resolution
of the method as further points are considered.

This statistic is maximal for minimally mixed samples, and can be used to assess the
quality of the fit of a model to data. Indeed, if the fitted model is used to generate a
Monte-Carlo sample, this statistic calculated using data and the simulated sample yields
an indication on the quality of the fit.

In the case where the two underlying PDFs are the same, this statistic converges to a
Gaussian distribution of mean

~ ng(ng — 1) +ny(ny — 1)
e ) (et 0 —1)

(B.4)

The width of this distribution depends on the PDF and on the choice of n;, but has
a limiting value
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1 " 4,4
lim o% = (n %y 4nazb), (B.5)

n,ng—00 nng . n? n

where n = n, + ny. We assume that this limiting value is reached in our conditions.
The distribution g used to calculate the p-value in Eq. B.1 is then the limit Gaussian
distribution.

Point-to-point dissimilarity methods

In the case where the real parent distribution f(x) of data is known,

i=35 [(7e) = folw)Pda (B.)

is a distance between this parent distribution and the fitted model fo(x). In practical
cases, the real parent distribution f(x) of data is unknown, but Eq B.6 can be generalized
by introducing a correlation function ¢ (z,2’), and the function

= / / (F(2) = S(@) (@) — fola))(e, 2')deda. (B.7)

is defined. This generalization allows to calculate a similar quantity for samples rather
than distributions. Indeed, developing the expression and replacing integrals by sums we
define for two samples A and B the statistic

T = ZZQ/)l’x d:cd:c—i— nB_lzzwa:x Ydzdx'

/”L —
A :veA z'eA xeB z'eB

Z Z (z, 2" )dxdr'. (B.8)

z€Ax'eEB

nAnB

The first and second terms of this expression can be considered as statistical uncertain-
ties on data and Monte-Carlo samples, the third term being a correlation term between
the two. Monte-Carlo samples are often generated with large amount of points, so the
second term can be neglected as it is computationally heavy.

Two forms of the correlating function ¢ (x, 2’) have been studied in [75]:

x—x')2
L4 wGaus = eXp(m)

'Indeed, the convergence to this limit is demonstrated as being very fast in [75].
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o Yo = log(z — 2'| + )

The parameter € is an arbitrary number that keeps the 91, from exhibiting a pole when
x and 2’ are too close. The widths o(z) and o(2’) in the Gaussian correlating function are
shown in [75] to be optimal in terms of discriminating power when they are proportional
to the inverse of the PDF:

o
o(r) = —— B.9
@) = 7 (B.9
The preferred range for the parameter & is [[',2I'] where
— FFiI;
o 2 FED (B.10)

SOFF;

the index ¢ running over all resonances in the model, and I'; and FF; designate their
widths and fit fractions, respectively.

168



Appendix C

Fast MC method for background
studies - other channels

We show in this section the results of smearing various partially reconstructed backgrounds
using resolution functions extracted from a B® — (K** — K7%)(p°— 77 ™) sample.

C1 B'—= K)n— ntr )

This channel belongs to the K77~ spectrum, but its kinematics are different from the
ones of B®— K*0p0,

Figure C.1 shows the distribution of the m o+, near the threshold for reconstructed
and fast MC events, as well as the resolution distributions of m 9,4, . The distributions
agree quite well on m KOn+h'» with a well-reproduced behaviour at the threshold. As before,
the distribution of AmK0h+h, is slightly narrower in the fast MC case.  Fig. C.2 shows
the distributions of everslts over the Dalitz plane for reconstructed and fast MC events,
along with the distribution of the pulls between these two distributions. The distributions
are similar, and the pulls are rather small and show no structure. Overall, the result we
obtain on this channel are satisfactory.

C.2 B'— Kdrtm

This channel also belongs to the K77~ spectrum. As the missed particle in this channel
is massless, its M cop+ ! distribution goes under the signal peak, which makes it especially
dangerous for our analysis.

Figure C.3 shows the distribution of the Mo+ Near the threshold for reconstructed
and fast MC events, as well as the resolution distributions of m ..+, . The distributions
agree quite well on m ., +,, with a well-reproduced behaviour at the threshold. As before,
the distribution of AmK0h+hl is slightly narrower in the fast MC case.  Fig. C.4 shows
the distributions of everslts over the Dalitz plane for reconstructed and fast MC events,
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Figure C.1 — Left: Distributions of 4! for reconstructed (blue) and fast MC (red) B® —

K27 events. Right: Resolutions of m KOhth for reconstructed (blue) and fast MC (red) B® — K1
events.
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Figure C.2 — Distributions of mig ,, Versus mig s for the B°— K1 mode, with DD reconstruc-

tion of the K?. Left: Reconstructed events. Middle: Fast MC events. Right: Pulls between the
two distributions.

along with the distribution of the pulls between these two distributions. The distributions
are similar, and the pulls are rather small and show no structure. Overall, the result we
obtain on this channel are satisfactory.

C.3 B'— (K*— KdrM)rn~

In this channel, we are missing a charged particle (71). We expect the Mgty distribu-
tion to be similar to that in B° — K*°p% but the Dalitz plane distributions of the two

modes are expected to differ.
Figure C.5 shows the distribution of the m o+, near the threshold for reconstructed
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Figure C.3 — Left: Distributions of LRI for reconstructed (blue) and fast MC (red) B® —
Ko7t7n~~ events. Right: Resolutions of M goptp! for reconstructed (blue) and fast MC (red)

B — K977~ events.
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Figure C.4 — Distributions of m%{% versus m%{%/ for the B® — K{nt7~~ mode, with DD
S S
reconstruction of the K. Left: Reconstructed events. Middle: Fast MC events. Right: Pulls

between the two distributions.

and fast MC events, as well as the resolution distributions of m g+, . The distributions

agree quite well on m KOn+h' with a well-reproduced behaviour at the threshold. As before,

the distribution of AmK0h+h, is slightly narrower in the fast MC case.  Fig. C.6 shows
S

the distributions of events over the Dalitz plane for reconstructed and fast MC events,
along with the distribution of the pulls between these two distributions. The distributions
are similar, and the pulls are rather small and show no structure. Overall, the result we
obtain on this channel are satisfactory.

v
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Figure C.5 — Left: Distributions of m KOnt+h! for reconstructed (blue) and fast MC (red) Bt —
K*Trtr~ events. Right: Resolutions of Moy for reconstructed (blue) and fast MC (red)
Bt — K*tntn~ events.
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Figure C.6 — Distributions of mi(oh versus m%{%/ for the BT — K*TnTn~ mode, with DD
S S
reconstruction of the K?. Left: Reconstructed events. Middle: Fast MC events. Right: Pulls

between the two distributions.

C4 B'— (K¥— K (¢— KTK™)

This mode does not belong the K?7 "7~ spectrum. However, it is still interesting to test
the limits of the method with this mode, similar to B® — K*°p° but with a ¢ instead of
the p°.

Figure C.7 shows the distribution of the Mo+ Near the threshold for reconstructed
and fast MC events, as well as the resolution distributions of m 9,4+, . The distributions
agree quite well on m KOh+h'» with a well-reproduced behaviour at the threshold. As before,
the distribution of Angh+h, is slightly narrower in the fast MC case.  Fig. C.8 shows

the distributions of events over the Dalitz plane for reconstructed and fast MC events,
along with the distribution of the pulls between these two distributions. The distributions
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are similar, and the pulls are rather small and show no structure. Overall, the result we
obtain on this channel are satisfactory.
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Figure C.7 — Left: Distributions of m KOt h’ for reconstructed (blue) and fast MC (red) B® —
K*%¢ events. Right: Resolutions of m KOt h for reconstructed (blue) and fast MC (red) B? —
K*0¢ events.
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Figure C.8 — Distributions of mi(oh versus m%{%/ for the B” — K*9¢ mode, with DD reconstruc-
S S

tion of the K?. Left: Reconstructed events. Middle: Fast MC events. Right: Pulls between the
two distributions.

C5 B"— (K'— Kin")(¢— KTK™)
This mode does not belong the K277~ spectrum. However, it is still interesting to test

the limits of the method with this mode, similar to B® — K*°p° but with a ¢ instead of
the p°, and missing a 7.
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Figure C.9 shows the distribution of the m o+, near the threshold for reconstructed
and fast MC events, as well as the resolution distributions of mq,+, . The distributions
agree quite well on m KOh+h'» with a well-reproduced behaviour at the threshold. As before,
the distribution of Am — is slightly narrower in the fast MC case.  Fig. C.10 shows
the distributions of eve;ts over the Dalitz plane for reconstructed and fast MC events,
along with the distribution of the pulls between these two distributions. The distributions
are similar, and the pulls are rather small and show no structure. Overall, the result we
obtain on this channel are satisfactory.

ﬁjr 2000 1}
H t
fii+ : + i+
4001 1500~ N +
H +
| r + +
* 1000 +
L L + +
200 i - T
i t 500 - -,
[ I 3 —+
. + i o T
o] EEP Y EE N NV R s R N e < >
5000 5100 5200 5300 -40 20 0 20 40
Kghh' mass [MeV/c?] A(m, ) [MeV/cT]

Figure C.9 — Left: Distributions of m KOh+H for reconstructed (blue) and fast MC (red) BT —
K**¢ events. Right: Resolutions of m KOt for reconstructed (blue) and fast MC (red) B™ —
K** ¢ events.
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Figure C.10 — Distributions of mKOh versus mKoh, for the BT — K*T¢ mode, with DD recon-

struction of the K. Left: Reconstructed events. Mlddle: Fast MC events. Right: Pulls between
the two distributions.
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C6 B'— (K*¥— K (¢— KTK™)

This mode does not belong the K277~ spectrum. However, it is still interesting to test
the limits of the method with this mode, similar to B®— K*°p° but with a ¢ instead of
the p°.

Figure C.11 shows the distribution of the Mo+ NEAr the threshold for reconstructed
and fast MC events, as well as the resolution distributions of m g+, . The distributions
agree quite well on m KOh+h'» with a well-reproduced behaviour at the threshold. As before,
the distribution of Angh+h, is slightly narrower in the fast MC case.  Fig. C.12 shows

the distributions of events over the Dalitz plane for reconstructed and fast MC events,
along with the distribution of the pulls between these two distributions. The distributions
are similar, and the pulls are rather small and show no structure. Overall, the result we
obtain on this channel are satisfactory.
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Figure C.11 — Left: Distributions of m KOnt+h! for reconstructed (blue) and fast MC (red) B? —
K*%¢ events. Right: Resolutions of m KOhth for reconstructed (blue) and fast MC (red) B? —

K*0¢ events.
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