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�All 
hanged, 
hanged utterly: a terrible beauty is born.�

Yeats, Easter 1916

�Ô Mort, vieux 
apitaine, il est temps! levons l'an
re!

Ce pays nous ennuie, � Mort! Appareillons!

Si le 
iel et la mer sont noirs 
omme de l'en
re,

Nos 
oeurs que tu 
onnais sont remplis de rayons!

Verse-nous ton poison pour qu'il nous ré
onforte!

Nous voulons, tant 
e feu nous brûle le 
erveau,

Plonger au fond du gou�re, Enfer ou Ciel, qu'importe?

Au fond de l'In
onnu pour trouver du nouveau!�

Charles Baudelaire, Le Voyage, Les Fleurs du Mal

�L'inspiration, 
'est une invention des gens qui n'ont jamais rien 
réé. Nous entretenons

la légende pour nous faire valoir, mais entre nous, 
'est un blu�. Le poète ne 
onnaît

que la 
ommande.�

Jean Anouilh
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Résumé

Ce manus
rit présente plusieurs études des désintégrations de mésons B0
et B0

s en trois


orps non-
harmés, dont un méson K0
S
. Ces études portent sur les données enregistrées

par l'expérien
e LHCb pendant le Run I du LHC, 
orrespondant à une luminosité intégrée

de

∫

L = 3 fb

−1
.

Une première analyse 
onsiste en une mesure des rapports d'embran
hement des modes

B0
d,s→ K0

S
h+h

′−
, où h(

′)
désigne un kaon ou un pion. Les pré
édentes mesures par LHCb

des rapports d'embran
hements de 
es modes de désintégration, rapportés à 
elui du mode

B0 → K0
Sπ

+π−
, sont mis à jour. De plus, le but prin
ipal de 
ette analyse est de re
her
her

le mode B0
s → K0

S
K+K−

, pas en
ore observé par les analyses pré
édentes. Les rapports

d'embran
hement relatifs sont mesurés :

B (B0
s → K0

S
π+π−)

B (B0→ K0
S
π+π−)

= 0.26± 0.04(stat.)± 0.02(syst.)± 0.01(fs/fd),

B (B0→ K0
S
K±π∓)

B (B0→ K0
S
π+π−)

= 0.17± 0.02(stat.)± 0.00(syst.),

B (B0
s → K0

S
K±π∓)

B (B0→ K0
Sπ

+π−)
= 1.84± 0.07(stat.)± 0.02(syst.)± 0.04(fs/fd),

B (B0→ K0
SK

+K−)

B (B0→ K0
S
π+π−)

= 0.59± 0.02(stat.)± 0.01(syst.),

(1)

Une première observation de B0
s → K0

S
K+K−

est rapportée, ave
 une signi�
an
e globale

de 3.7 σ.
Une analyse non-étiquetée de saveur et indépendante du temps du plan de Dalitz de la

désintégration B0→ K0
S
K+K−

est présentée, en utilisant l'appro
he isobare. Les rapports

d'embran
hement quasi-deux-
orps des désintégrations B0 → K0
S
φ0
, B0 → K0

S
f

′

2(1525),
B0 → K0

Sf0(1710), et B
0 → K0

Sχc0 sont mesurés. Ils sont 
ompatibles ave
 les mesures

pré
édentes de BaBar, à l'ex
eption de B0→ K0
S
f0(1710).
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Abstra
t

This dissertation presents several studies of the de
ays of both B0
and B0

s mesons to


harmless three-body �nal states in
luding a K0
S
meson. They use the data re
orded by

the LHCb experiment during Run I of LHC, 
orresponding to an integrated luminosity of

∫

L = 3 fb

−1
.

A �rst analysis 
onsists of the measurement of the bran
hing fra
tions of B0
d,s →

K0
S
h+h

′−
de
ays, where h(

′)
designates a kaon or a pion. Pre
eding LHCb measurements

of bran
hing fra
tions for all de
ay 
hannels, relative to that of B0 → K0
S
π+π−

, are

updated. Furthermore, the primary goal of this analysis is to sear
h for the, as yet,

unobserved de
ay B0
s → K0

S
K+K−

. The relative bran
hing fra
tions are measured to be:

B (B0
s → K0

Sπ
+π−)

B (B0→ K0
S
π+π−)

= 0.26± 0.04(stat.)± 0.02(syst.)± 0.01(fs/fd),

B (B0→ K0
S
K±π∓)

B (B0→ K0
S
π+π−)

= 0.17± 0.02(stat.)± 0.00(syst.),

B (B0
s → K0

S
K±π∓)

B (B0→ K0
S
π+π−)

= 1.84± 0.07(stat.)± 0.02(syst.)± 0.04(fs/fd),

B (B0→ K0
S
K+K−)

B (B0→ K0
Sπ

+π−)
= 0.59± 0.02(stat.)± 0.01(syst.),

(2)

A �rst observation of B0
s → K0

S
K+K−

is reported with a global signi�
an
e of 3.7 σ.
A �avour-untagged, time-independent Dalitz-plot analysis of B0 → K0

SK
+K−

is pre-

sented, using the isobar approa
h. The quasi-two-body bran
hing fra
tions of B0→ K0
S
φ0
,

B0→ K0
S
f

′

2(1525), B
0→ K0

S
f0(1710), and B

0→ K0
S
χc0 are measured. They are 
ompati-

ble with previous measurements from BaBar, ex
ept for B0→ K0
Sf0(1710).
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Introdu
tion

The study of of b-hadron de
ays to hadroni
 �nal states with no 
harmed parti
les allow

for a ri
h array of studies. A few examples are the measurements of bran
hing fra
tions,

CP asymmetries, weak and strong phases; they probe the dynami
s of weak and strong

intera
tions. The typi
al bran
hing fra
tions of these modes are below 10−5
and thus

their analyses are feasible only with large data samples and the use of powerful tools to

reje
t ba
kground. The LHCb experiment at the CERN Large Hadron Collider (LHC) is

an adequate experimental environment for these analyses, o�ering the possibility to study

de
ays of light B mesons, Bs mesons and b baryons.
This dissertation des
ribes two analyses of B0

d,s → K0
S
h+h

′−
de
ays, where h(

′)
rep-

resents a kaon or a pion, that were performed with the 3 fb

−1
dataset 
olle
ted by the

LHCb experiment during the years 2011 and 2012, at 
entre-of-mass energies of 7 and

8TeV, respe
tively. The de
ays under study are dominated by loop transitions, that may

have 
ontributions from parti
les beyond the standard model. The measured observables

are therefore probes for new physi
s. A �rst analysis 
onsists in the measurement of the

six bran
hing fra
tions of these modes, relative to that of B0→ K0
S
π+π−

. This in
ludes

a sear
h for the mode B0
s → K0

SK
+K−

, that has never been observed before. A se
ond

study is the �rst amplitude analysis (or Dalitz-plot analysis) of the mode B0→ K0
S
K+K−

from LHCb. It 
ontains a measurement the bran
hing fra
tions of intermediate states that

intervene in the de
ay, using the isobar approximation. This is the �rst su
h study of

this mode in LHCb; it will be pursued in steps of in
reasing 
omplexity with the growing

dataset, and will be
ome more and more sensitive to new physi
s observables.

This dissertation is organized as follows. Se
tion 1 shortly reviews the theoreti
al

framework, as well as 
on
epts related to the amplitude analysis. It also gives a short

overview of existing results. Se
tion 2 then des
ribes the LHCb experiment and the related


on
epts that are useful for the understanding of the analysis work. The presentation

of my work is then separated into three parts. Firstly, Se
. 3 presents an alternative

pro
edure to simulate ba
kground events. This pro
edure is used in the measurement

of B0
d,s → K0

S
h+h

′−
bran
hing fra
tions. Se
ondly, Se
. 4 des
ribes the measurement of

the bran
hing fra
tions of B0
d,s→ K0

Sh
+h

′−
modes, along with the sear
h for the missing

B0
s → K0

S
K+K−

mode. Finally, Se
. 5 presents the untagged, time-independent Dalitz-

plot analysis of the B0→ K0
S
K+K−

de
ay.
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Chapter 1

Theory

1.1 Introdu
tion

The Standard Model (SM) of parti
le physi
s des
ribes the intera
tion of fundamental

parti
les through the strong and ele
troweak intera
tions [1�3℄. It is an outstandingly

su

essful theory that predi
ts nearly all the measurements ever performed with great

pre
ision. There are however some hints that point at a larger theory, the SM being an

e�e
tive model of that theory at lower energies:

• the SM does not explain the number of fermion generations nor their highly hierar-


hi
al stru
ture in terms of mass. Instead, masses of parti
les form the bulk of free

parameters of the SM (13 out of 18);

• the SM does not in
lude gravity. In fa
t, general relativity is even mathemati
ally

in
ompatible with quantum �eld theory (QFT). The SM has then to be an e�e
tive

theory that 
annot be valid at the Plan
k energy s
ale;

• the SM does not provide a 
andidate for 
old dark matter, whose 
ontribution to

the mass 
ontent of the Universe is found to be about �ves times larger than that

of ordinary matter [4℄;

• there is no me
hanism in the SM that explains the smallness of the mass of the

Higgs boson. Indeed, quantum 
ontributions to the Higgs boson mass from Grand

Uni�
ation or Plan
k-s
ale parti
les would make the mass huge, unless there is a

�ne-tuning 
an
ellation between the radiative 
orre
tions and the bare mass [5℄.

This problem may be solved by the presen
e of physi
s beyond the SM at low mass

s
ale (1TeV), whi
h would provide a more natural 
an
ellation;

• the SM fails to a

ount for the matter-antimatter asymmetry observed in the Uni-

verse.

These issues motivate the sear
h for new physi
s (NP), and also provide some hints that

it should be a

essible at energies 
lose to the TeV s
ale.
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Sear
hes for new physi
s 
an be 
lassi�ed in two 
ategories: dire
t and indire
t sear
hes.

Dire
t sear
hes look for the produ
tion of on-shell parti
les beyond the SM, su
h as

supersymmetri
 parti
les (squarks, gluinos) [4℄. Indire
t sear
hes fo
us on deviations of

measurements of observables from a theoreti
al SM predi
tion due to the e�e
t of o�-

shell NP parti
les. These sear
hes require both a 
lean theoreti
al predi
tion and a 
lean

experimental measurement so that possible deviations 
an be attributed to the e�e
ts of

NP; they are better performed on de
ays where a 
ontribution from NP is expe
ted. In

general, dire
t sear
hes need an a

urate des
ription of the ba
kground, whereas features

of the ba
kground 
an be usually inferred from data in indire
t sear
hes.

The violation of the CP symmetry, des
ribed in Se
. 1.2, is a feature of the Standard

Model whi
h is strongly related to the matter-antimatter asymmetry in the Universe.

1

It depends on few parameters of the Standard Model, thus its predi
tive power is rather

high. The study of the violation of this symmetry in B0
d,s → K0

S
h+h

′−
de
ays provides

opportunities to perform indire
t sear
hes for NP. Indeed, de
ays of the type B0
d,s →

K0
Sh

+h
′−
, where h(

′)
are kaons or pions, are dominated by so-
alled penguin diagrams

that in
lude a loop of virtual parti
les. Parti
les of NP 
ould 
ontribute inside of that

loop and 
ause a deviation of some observables from the SM predi
tion. Additionally,

these de
ays also provide a relatively 
lean experimental 
ontext in the LHCb experiment,

where sample purities larger than 90% 
an be a
hieved.

Se
tion 1.2 details the Standard Model des
ription of the CP violation, and Se
. 1.3

presents some general 
on
epts of amplitude analysis. Finally, Se
tion 1.4 presents an

overview of the motivations and experimental 
ontext of the study of B0
d,s → K0

S
h+h

′−

de
ays.

1.2 Violation of the CP symmetry

The violation of the CP symmetry, des
ribed in Se
. 1.2.2 is a key fa
tor to understand

the matter-antimatter asymmetry of the Universe. Indeed, the required 
onditions so that

a model 
ould allow for a matter-antimatter asymmetry, denoted Sakharov 
onditions [7℄,

are

• the existen
e of an intera
tion that does not 
onserve the baryon number;

• the existen
e of an intera
tion that violates both the C and CP symmetries;

• non-thermal equilibrium.

The baryon number is not 
onserved in some non-perturbative ele
troweak pro
esses, for

instan
e the pro
esses 
alled sphalerons [8℄. The existen
e of su
h pro
esses relies however

on the existen
e of a CP violation at the perturbative s
ale.

1

As des
ribed in the following, CP violation is a key ingredient to explain this asymmetry, but this

CP violation is too small by 9 orders of magnitude to explain the matter-antimatter asymmetry of the

Universe [6℄.
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1.2.1 Introdu
tion to symmetries

Symmetries play a fundamental role in modern physi
s, as they 
onstitute the building

blo
ks of any Lagrangian theory. They 
an be 
ontinuous or dis
rete. Continuous sym-

metries are families of symmetries that depend on a 
ontinuous parameter. For instan
e,

U(1) is a group of the 
ontinuous, global symmetries that des
ribe rotations in a plane.

It 
an be de�ned as

{tα ∈ U(1); y → y × eiα}, (1.1)

where y is a 
omplex number and α is a real number.

Continuous, global symmetries 
an be extended into gauge symmetries, where the

parameter is itself a fun
tion of the position in spa
e and time. For instan
e, the gauged

version of the global U(1) symmetry would be

{tα ∈ U(1); y(x) → y(x)× eiα(x)}, (1.2)

where x is a position in spa
e-time, y(x) is a 
omplex operator, and α(x) is a real fun
tion.
The Standard Model is a gauge theory of the SU(3)C ⊗ SU(2)L ⊗ U(1)Y group. This

underlying stru
ture 
onstrains the parti
le 
ontent of the theory and the intera
tions

between these parti
les.

The strong intera
tion is des
ribed by the underlying SU(3)C symmetry, where the C
stands for �
olour� 
harge of the intera
tion. Properties of that symmetry group naturally

yield the gluon self-intera
tion, whi
h is the underlying 
ause for the 
on�nement of quarks

into 
olourless hadrons.

The ele
tromagneti
 and weak intera
tions are des
ribed by the underlying SU(2)L ⊗
U(1)Y symmetry, where the L stands for �left-handed� and the Y for the hyper
harge.

The left-handed aspe
t of the SU(2)L symmetry is what explains the nonexisten
e of

right-handed neutrinos, and thus the violation of parity (see Se
. 1.2.2) by the weak

intera
tions. The SU(2)L ⊗ U(1)Y symmetry is spontaneously broken at the 
urrent

Universe energy density, leaving only the residual U(1)Q symmetry that is responsible for

ele
tromagneti
 intera
tion and whose mediator is the massless photon γ. The me
hanism

of that symmetry breaking, where the va
uum expe
tation value of one of the s
alar �elds

of the theory is nonzero, is known as the Higgs me
hanism. This me
hanism gives rise

to the masses of fermions and of the gauge bosons of the weak intera
tion, W±
and

Z0
, and has been 
on�rmed by the dis
overy of the Higgs boson by the ATLAS and

CMS experiments in 2011 [9, 10℄. The weak intera
tion is the only one known to 
ouple

di�erent �avours. In the quark se
tor, it 
ouples up-type quarks (u,c,t) and down-type

quarks (d,s,b).
Dis
rete symmetries do not depend on a 
ontinuous parameter, and 
annot be gauged.

They are however interesting in the building of a model as they 
orrespond to 
onserved
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quantum numbers, through the Noether theorem (also valid for 
ontinuous symmetries).

The 
onservation of these quantum numbers in a pro
ess governed by an intera
tion that is

invariant under the 
orresponding symmetry allows to build sele
tion rules. The following

se
tion des
ribes three of these dis
rete symmetries, C, P , T , as well as the CP and CPT
produ
ts.

1.2.2 The C, P , and T symmetries

The 
harge-
onjugation operator C

The 
harge-
onjugation operator C transforms a parti
le to the 
orresponding antiparti
le.

This antiparti
le shares all the properties of the original parti
le, ex
ept for reversed

ele
tri
, �avour, and 
olour 
harges. The Lagrangians of the ele
tromagneti
 and strong

intera
tion are invariant under C, unlike the Lagrangian of the weak intera
tion.

The parity operator P

The parity operator is de�ned as the reversal of all the spatial 
oordinates of a 4-ve
tor,

while the time 
omponent is 
onserved. It 
onserves all the 
harges of the parti
le and its

spin. The angular momentum L is 
onserved, whi
h means that the sign of the heli
ity

of the parti
le, de�ned as

H =
L.p

|p| , (1.3)

is reversed. Hen
e P transforms left-handed (H = −1) parti
les into right-handed (H = 1)
parti
les, and inversely. The heli
ity is strongly related to the 
hirality of the parti
le,

whi
h de�nes its transformation under P .2 In 
ontrary to the heli
ity, however, 
hirality

does not depend on the referen
e frame in the 
ase of massive parti
les.

Following the observation that parity is 
onserved by the ele
tromagneti
 and strong

intera
tions, weak intera
tion was initially thought to 
onserve that symmetry. However,

Lee and Yang [11℄ raised 
on
ern that the weak intera
tion 
ould be sensitive to the


hirality of parti
les (�
hiral intera
tion�). This was 
on�rmed by the observation that

β de
ays only emit left-handed neutrinos [12℄. More generally, only left-handed parti
les

(and right-handed antiparti
les) intera
t via the weak intera
tion.

The T operator

The time-reversal operator T is 
omplementary to the parity operator P , as it transforms

(t,x) into (−t,x). It is 
onserved by the ele
tromagneti
 and the strong intera
tions. The

�rst dire
t observation of the violation of the T symmetry by the weak intera
tion has

been performed in the study of the B0
system [13℄.

2

The heli
ity and the 
hirality are equal for massless parti
les.
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The CP and CPT operators

The previous results on C and P operators 
ould mean that the produ
t of the C and

P operator, denoted CP , is 
onserved by weak intera
tions as this operator transforms

left-handed neutrinos into right-handed antineutrinos [14℄. The �rst demonstration of CP
violation in nature has been obtained through the study of the mixing of neutral mesons

su
h as the K0
[15℄ and the B0

[16℄

The CPT theorem states that the Lagrangian of the SM must be invariant under

the CPT produ
t. This is related to Lorentz invarian
e and lo
ality. Sear
hes for CPT
violation have for now not found any signi�
ant violation.

Under the assumption of the CPT theorem, any observation of violation of the T or

the CP symmetry results in the violation of CP or T , respe
tively. This has led to the

�rst observation of time-reversal symmetry violation in the neutral kaon system, under the

assumption of CPT [17℄. Additionally, measurements of the T -violation have 
onstrained

the violation of CP by the strong intera
tion to smaller than 10−10
[18℄. This 
onstitutes

the strong CP problem, as the strong intera
tion 
ould in prin
iple violate CP . We


onsider in the rest of this dissertation that the strong intera
tion if CP -
onserving.
Se
tion 1.2.3 des
ribes the me
hanism of CP violation in the mixing of neutral mesons,

along with the di�erent types of CP violation in the Standard Model.

1.2.3 Neutral mesons mixing and CP violation

We 
onsider a neutral meson |P 0〉 su
h that |P 0〉 6= |P 0〉, de
aying to a �nal state f .
There are three di�erent bases that 
an be used to des
ribe the |P 0〉-|P 0〉 system:

• |P 0〉 and |P 0〉 (�avour eigenstates);

• 1√
2
(|P 0〉+ |P 0〉) and 1√

2
(|P 0〉 − |P 0〉) (CP -eigenstates);

• |PL〉 and |PH〉 (eigenstates of the Hamiltonian).

In the two eigenstates of the Hamiltonian, L and H stand for �light� and �heavy�, re-

spe
tively. The weak Hamiltonian 
onserves CP if and only if the eigenstates of the

Hamiltonian are also eigenstates of CP .
The e�e
tive Hamiltonian H , des
ribing the evolution of an initial state 
ontaining a

mixture of |P 0〉 and |P 0〉 (and ignoring �nal states), 
an be written as

H =M − i

2
Γ, (1.4)

where M and Γ are hermitian matri
es de�ned as

M =

(

m11 m12

m∗
12 m22

)

,Γ =

(

Γ11 Γ12

Γ∗
12 Γ22

)

. (1.5)
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The CPT invarian
e requires that the diagonal terms of these matri
es are equal. The

introdu
tion of the matrix Γ in the Hamiltonian removes its property of hermiti
ity, whi
h

is linked to the 
onservation of probability. This allows to introdu
e the lifetime of the

states des
ribed by this Hamiltonian, as the square of the wave-fun
tion that des
ribes

them is de
reasing exponentially with time.

The S
hrödinger equation that governs the time-evolution of a wave-fun
tion is

i
d|Ψ(t)〉

dt
= H|Ψ(t)〉. (1.6)

The integration of this equation applied to the |PL,H〉 states yields

|PL,H(t)〉 = |PL,H〉e−i(ML,H− i
2
ΓL,H)t

(1.7)

where (ML,H − i
2
ΓL,H) are the 
orresponding eigenvalues of the Hamiltonian. The terms

p and q are de�ned as the (nonvanishing) 
oe�
ients that allow to 
hange the basis

|PL〉 = p|P 0〉+ q|P 0〉,
|PH〉 = p|P 0〉 − q|P 0〉, (1.8)

where |p|2 + |q|2 = 1. Conversely, these 
oe�
ients 
an be used to write

|P 0〉 = 1

2p
(|PL〉+ |PH〉),

|P 0〉 = 1

2q
(|PL〉 − |PH〉). (1.9)

We remark that if p = q = 1√
2
, |PL〉 and |PH〉 are exa
tly equal to

1√
2
(|P 0〉 + |P 0〉) and

1√
2
(|P 0〉 − |P 0〉), and CP is 
onserved.

Finally, 
ombining Eq. 1.9 and 1.7, the time-evolution of |P 0〉 and |P 0〉 states writes

|P 0〉(t) = f+(t)|P 0〉+ q

p
f−(t)|P 0〉,

|P 0〉(t) = f+(t)|P 0〉+ p

q
f−(t)|P 0〉,

(1.10)
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Table 1.1 � Experimental average for ∆m and ∆Γ in di�erent neutral-meson systems from [19℄.

B0
mixing parameters

∆md( ps
−1) 0.510± 0.003

∆Γd/Γd 0.001± 0.010
|q/p| 1.0009± 0.0013
B0

s mixing parameters

∆ms( ps
−1) 17.757± 0.020± 0.007

∆Γs/Γs 0.124± 0.009
|q/p| 1.0038± 0.0021

where

f±(t) =
1

2

(

e−i(ML− i
2
ΓL)t ± e−i(MH− i

2
ΓH)t

)

. (1.11)

We de�ne the quantities

∆m = mH −mL,∆Γ = ΓL − ΓH, (1.12)

and obtain

f±(t) =
1

2

(

e−imLte−
1
2
ΓLt
[

1± e−i∆mte−
1
2
∆Γt
])

. (1.13)

This fun
tion governs the mixing in the |P 0〉�|P 0〉 system.

The ∆m and ∆Γ parameters 
an be predi
ted from SM 
al
ulations, and experimen-

tally measured. Table 1.1 summarizes the 
urrent world averages for the B0
and B0

s meson

systems [19℄.

We 
onsider the de
ay of the |P 0〉 meson to a �nal state f , asso
iated with the ampli-

tude Af .
3

The parameter

λf =
q

p

Af

Af
(1.14)


ontains the information about CP violation in that de
ay. Indeed, if the modulus of λf
is not 1, or if its imaginary part is not vanishing, CP violation in the |P 0〉 → f de
ay

o

urs. De�ning the three observables

3

In the following, the 
onjugate de
ay of |P 0〉 to f is asso
iated with the amplitude Af .
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Cf =
1− λ2f
1 + λ2f

, (1.15)

Sf =
2ℑ(λf)
1 + λ2f

, (1.16)

A∆Γ
f = −2R(λf )

1 + λ2f
, (1.17)

(1.18)

the de
ay rate of |P 0〉 as a fun
tion of time writes

Γ(t) ∝ e−Γ|P0〉t

2τ

[

cosh

(

∆Γt

2

)

+A∆Γ
f sinh

(

∆Γt

2

)

+ (Cf cos (∆mt)− Sf sin (∆mt))

]

,

(1.19)

where τ = (ΓL+ΓH

2
)−1

, Γ|P 0〉 =
ΓL+ΓH

2
, and ∆Γ = ΓL − ΓH. It is ne
essary to perform a

time-dependent analysis of a de
ay in order to measure all the CP -violation e�e
ts with

pre
ision, as well as to determine the �avour of the neutral meson that de
ays (�tagging�).

In the 
ase where several 
hannels 
ontribute to the total amplitude, the amplitudes

A and A of the total de
ay 
an be written

A =
∑

i

Aie
i(φi−δi),A =

∑

i

Aie
i(φi+δi), (1.20)

where the sum runs over the 
hannels 
ontributing to the amplitude and Ai is the magni-

tude of the 
ontribution of ea
h 
hannel. The phases φi and δi are the CP -
onserving and
CP -violating 
omponents of the phase 
orresponding the ea
h 
hannel, respe
tively. The

e�e
t of the CP symmetry 
an only indu
e a di�eren
e in phase, not magnitude, in ea
h


hannel taken separately. However, in the presen
e of two or more 
ontributing 
hannels,

the di�eren
e in the pattern of interferen
e indu
ed by the CP -violating phase 
an result

in CP violation in the de
ay.

Three types of CP violation sour
es 
an be distinguished, with di�erent physi
al in-

terpretations.

CP violation in de
ays

In presen
e of several 
ontributions to the amplitude that both have a relative CP -

onserving phase and di�erent CP -violating phases, the rate of a de
ay and its 
onjugate

may be di�erent. Indeed, in the 
ase of two 
ontributing diagrams,

A = A1e
i(φ+δ1) + A2e

i(−φ+δ2),A = A1e
i(φ−δ1) + A2e

i(−φ−δ2), (1.21)
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where the relative CP -
onserving phase between diagrams 1 and 2 is 2φ, and δ1,2 is the CP -
violating phase between these diagrams. If both the CP -
onserving and the CP -violating
phases are not 0, the de
ay rates related to A and A are di�erent.

This is the only possible type of CP violation in de
ays of 
harged mesons or baryons.

CP violation through mixing

As underlined before, CP violation 
an be indu
ed by the mixing of neutral mesons.

Considering for instan
e Eq. 1.8, CP is violated in the mixing of neutral mesons if and

only if |p
q
| 6= 1. As shown in Tab. 1.1, this ratio is 
onsistent with 1 in the 
ase of the B0

and B0
s mesons.

CP violation in interferen
e between mixing and de
ay

Another type of CP violation is asso
iated to the interferen
e between mixing and de
ay

pro
esses of neutral mesons to the same CP -eigen state. Contrary to the CP violation in

de
ay, it does not require several 
hannels to 
ontribute to the amplitude, as the inter-

feren
e happens between the mixed and unmixed amplitudes. This type of CP violation

o

urs in 
ase that the imaginary part of λ takes a nonzero value. The parameter that

outlines this measurement is 
ontained in the term Sf .

Dire
t and indire
t CP violation

CP violation 
an be alternatively 
lassi�ed into dire
t or indire
t CP violation. Dire
t CP
violation 
orresponds to CP violation through de
ay, whereas indire
t CP violation refers

to CP violation through mixing or through the interferen
e between mixing and de
ay.

As shown in Tab. 1.1, the CP violation in the mixing of the B0
meson 
an be negle
ted in

most 
ases, and thus �indire
t CP violation� often refers to interferen
e between mixing

and de
ay when 
onsidering de
ays of the B0
meson.

1.2.4 The CKM matrix and the KM me
hanism

As des
ribed in Se
. 1.1, �avour eigenstates are eigenstates of the ele
troweak intera
-

tion. They are however not ne
essarily eigenstates of the strong intera
tion, or of the

Hamiltonian. This se
tion des
ribes how the 
hange of basis between eigenstates of the

ele
troweak intera
tion and of the Hamiltonian introdu
es an irredu
ible phase in the SM,

and thus to CP violation, when three or more quark generations exist.

We 
onsider the 
hange of basis between the quark eigenstates of �avour and of the

Hamiltonian by the matri
es Uf
L and Uf

R, de�ned su
h as

Mmass =
(

Uf
L

)†
MflavourU

f
R, (1.22)

10



where Mmass and Mflavour are the matri
es that des
ribe quark 
urrents in the mass basis

and the �avour basis, respe
tively. The idea of di�erent bases to des
ribe the mass

and the weak eigenstates was �rst proposed by Cabibbo [20℄. The motivation was to

explain the suppression of the de
ay of strange parti
les, and thus the long lifetime of

these parti
les. The GIM me
hanism is an extension of this 
on
ept that requires the

existen
e of a se
ond-generation up-type quark, the c quark [21℄. It allows to forbid any

�avour-
hanging neutral 
urrent at tree-level in the Standard Model.

A 2× 2 unitary matrix V 
an be des
ribed by a single real parameter. Starting from

the original 2× 4 real parameters (e.g. magnitudes and phases), unitarity relations state

that

∀(i, j),
∑

k

VikV
∗
jk = δij , ∀(i, j),

∑

k

VkiV
∗
kj = δij , (1.23)

whi
h removes 4 parameters. Finally, phases between quark 
urrents are physi
ally mean-

ingless, thus removing 2N − 1 = 3 parameters, leaving only one real parameter. The


omparison with real orthogonal matri
es leads to de�ning this parameter as an angle θC,
and so

V =

(

cos θC sin θC
− sin θC cos θC

)

. (1.24)

This idea has �rst been proposed with the two lightest quark generations, this angle

θC being named the Cabibbo angle. Kobayashi and Maskawa have proposed to extend

this idea to three quark generations and showed how this resulted in the introdu
tion

of a physi
al phase in the SM, responsible for CP violation [22℄.

4

Indeed, an extension

of the dis
ussion above shows that a 3 × 3 unitary matrix 
an be des
ribed by 4 real

parameters, one of whi
h being an irredu
ible phase. The 3 × 3 basis-
hanging matrix

in the 
ase of three quark generations is 
alled the Cabibbo-Kobayashi-Maskawa (CKM)

matrix. The 2008 Nobel prize of physi
s was awarded to Kobayashi and Maskawa after

pre
ise measurements of CP violation showed that it was indeed 
onsistent with their

des
ription.

The CKM matrix is written as

VCKM = (Uu
L )

† Ud
R =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (1.25)

It is important to note that, due to the fa
t that �avour-
hanging neutral 
urrents (FCNC)

are forbidden at tree-level in the SM, up-type quarks are only paired with down-type

quarks, and inversely. Following the dis
ussion on the number of degrees of freedom,

this matrix 
an be parameterized by three real parameters and one imaginary parameter.

These three angles are de�ned as θ12(= θC) , θ13, and θ23. For ea
h angle θij , its 
osine
and sine are noted cij and sij , respe
tively, and the CKM matrix may be written as

4

This irredu
ible phase is equivalent to a violation of CP , as this symmetry is anti-linear.

11



VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (1.26)

where δ is the irredu
ible phase. Sin
e the term s12 is small, this form of the CKM

matrix 
an be written as an expansion of λ = s12 ≈ 0.22, and three parameters that are


lose to unity: A = s23
λ2 , ρ = s13

λs23
cos δ, and η = s13

λs23
sin δ. This yields the Wolfenstein

parameterization [23℄

VCKM =





1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



+O(λ4). (1.27)

Finally, the

ρ = ρ

(

1− λ2

2

)

, η = η

(

1− λ2

2

)

(1.28)

terms 
an be de�ned to yield the Buras parameterization [24℄ whi
h is is valid at O(λ5)

VCKM =





1− λ2/2− λ4/8 λ+O(λ7) Aλ3(ρ− iη)
−λ + A2λ5 [1− 2(ρ+ iη)] /2 1− λ2/2− λ4 (1 + 4A2) /8 Aλ2 +O(λ8)

Aλ3(1− ρ− iη) −Aλ2 + Aλ4 [1− 2(ρ+ iη)] /2 1− A2λ4/2





(1.29)

1.2.5 The unitarity triangles

The unitarity of the CKM matrix 
an be formulated as

L∗
iLj =

∑

i

V ∗
ikVjk = δij ,

C∗
i Cj =

∑

i

V ∗
kiVkj = δij ,

(1.30)

where Li(j) and Ci(j) are the ith (jth) line and 
olumn, respe
tively. These unitarity


onstraints yield 9 equations, among whi
h six involve di�erent lines or 
olumns

5

:

5

As the CKM matrix 
an be written using only four terms, these equations are highly redundant.

12



V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = 0, (1.31)

V ∗
udVub + V ∗

cdVcb + V ∗
tdVtb = 0, (1.32)

V ∗
usVub + V ∗

csVcb + V ∗
tsVtb = 0, (1.33)

V ∗
cdVud + V ∗

csVus + V ∗
cbVub = 0, (1.34)

V ∗
tdVud + V ∗

tsVus + V ∗
tbVub = 0, (1.35)

V ∗
tdVcd + V ∗

tsVcs + V ∗
tbVcb = 0. (1.36)

These 
onstraints 
an be represented by triangles in the 
omplex plane, denoted by �uni-

tarity triangles�. Most of them in
lude terms of di�erent orders in λ, thus 
orresponding to
�at triangles. Equation 1.32 and 1.35, however, only in
lude terms that are proportional

to λ3.
The triangle de�ned by Eq. 1.32 is often 
alled �the� unitarity triangle, as it has been

the fo
us of many measurements. Indeed, the three sides of this triangle are all of order

λ3, 
ompared to other triangles that are �atter. Alternatively, it is referred to as the

B0
unitarity triangle. Its sides are normalized by V ∗

cdVcb, and its internal angles are thus

de�ned as:

α = arg

(

− V ∗
tbVtd

V ∗
ubVud

)

= arg

(

−1− ρ− iη

ρ+ iη

)

+O(λ2), (1.37)

β = arg

(

−V
∗
cbVcd
V ∗
tbVtd

)

= arg

(

1

1− ρ− iη

)

+O(λ4), (1.38)

γ = arg

(

−V
∗
ubVud
V ∗
cbVcd

)

= arg (ρ+ iη) +O(λ2). (1.39)

Figure 1.1 shows a sket
h of this unitarity triangle spe
ifying the angles and the expres-

sions of the lengths of its sides [19℄.

The angles and the sides of the triangle 
an be measured experimentally, to 
onstrain

the lo
ation of its apex.

6

These di�erent 
onstraints set by the measurements must overlap

in at least one region of spa
e so that the unitarity of the CKM matrix is respe
ted. Fig-

ure 1.2 shows the status of the 
onstraints on this unitarity triangle, from the CKM�tter


ollaboration [19℄. These 
onstraints arise from the measurement of physi
s observables

by several experiments. They in
lude

• the measurement of εK and ε′K (CP -violating parameters of the neutral kaon system)

[26℄;

• the 
onstraint on ∆md, measured �rst by the UA1 [27℄ and ARGUS [28℄ 
ollabora-

tions; 
urrent world average is dominated by B-fa
tories and LHCb;

6

The freedom to set the origin of the referential and its orientation 
an be used to set two of the tree

apexes of the triangle to 0 and 1, leaving only one apex to be determined.

13



Figure 1.1 � Sket
h of the unitarity triangle de�ned by Eq. 1.32, from [19℄.

• the 
onstraint on ∆ms, �rstly measured by CDF [29℄; LHCb [30℄ is dominating the


urrent world average

7

;

• the measurement of β performed in b→ ccs modes by BaBar [31℄, Belle [32℄, and

LHCb [33℄;

• the measurement of the angle α, measured in time-dependent analyses of b→ uud
de
ays su
h as B→ ππ, B→ ρρ, and B→ ρπ;

• the 
onstraint on γ, set with the best pre
ision in 
harmed B tree de
ays, and

measured by CDF, BaBar, Belle, and LHCb. It is one of the least known parameters

of the B0
unitarity triangle.

The mixing phase between the B0
s and the B0

s is noted φs, and is equal to

φs = −2βs = arg

(

−VtsV
∗
tb

VcsV ∗
cb

)

, (1.40)

where βs is one of the angles of the B
0
s unitarity triangle de�ned by Eq. 1.33. The LHCb

experiment disposes of a large sample of B0
s mesons that allows it to improve 
onstraints

on this triangle.

1.2.6 B0
os
illations and the β angle

As dis
ussed in Se
. 1.2.3, �avoured neutral mesons (K0
, D0

, B0
, and B0

s ) os
illate when

they propagate. The short-range terms related to these os
illations 
an be des
ribed at

�rst order by box diagrams like those shown in Fig. 1.3. Long-range terms and upper or-

7

The ratio ∆md/∆ms is 
leaner than the individual observables, as it 
an
els some hadroni
 un
er-

tainties.
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Figure 1.2 � Constraints on the apex of the unitarity triangle de�ned by Eq. 1.32 from the

CKM�tter 
ollaboration [25℄

Figure 1.3 � Se
ond-order weak intera
tion Feynman diagrams that give rise to the mixing of

the B0
meson. The virtual loop in both diagrams is dominated by the top-quark.

ders are negle
ted. The 
ontribution from virtual quarks inside of the loop are dominated

by the top-quark. It is then a very good approximation to 
onsider the amplitude to be

proportional to VtbV
∗
td/V

∗
tbVtd, whose phase is equal to −2β at O(λ4). This expression also

yields that |q/p| = 1+O(λ4), thus strongly suppressing CP violation in the mixing of B0
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mesons.

The angle β 
an be extra
ted from various 
hannels that allow to measure the inter-

feren
e between the mixing and the de
ay of B0
mesons. Considering a B0 → f de
ay,

where f is a CP eigenstate and only one pro
ess 
ontributes to the amplitude, no dire
t

CP violation is possible and

Sf = sin (arg (λf)) = sin

(

arg

(

q

p

Af

Af

))

= ηf sin 2β, (1.41)

where ηf = ±1 is the eigenvalue of the f �nal state. The observable Sf 
an be extra
ted

from an analysis that measures Γ(t) (time-dependent analysis).

De
ays of the formB0→ K0
S
(K0

L
)(cc) are dominated by the tree-level transition b→ ccs

and thus allow for a 
lean measurement of the angle β by means of a time-dependent

analysis. This allows to extra
t a 
lean measurement of β in modes where no signi�
ant


ontribution from NP pro
esses is expe
ted. This value 
an then be 
ompared to the

value of β from modes that in
lude a virtual loop.

Charmless B0
de
ays involve an underlying b → qqs transition. They are strongly

suppressed at tree level as the only tree-level 
ontribution involves a b→ u transition,

that is suppressed by a fa
tor λ2 in bran
hing fra
tions 
ompared to a b→ c transition.
Figure 1.4 shows a 
ompilation of the CKM angle β and of βeff as of 2014 [19℄, in the

b→ ccs and the b→ qqs transitions, respe
tively. These two averages are 
ompatible, but

most of the b→ qqs measurements are smaller than measurements in b→ ccs modes.

1.3 Amplitude analyses 
on
epts

1.3.1 Three-body parti
le de
ays and the Dalitz plot

The di�erential 
ross-se
tion asso
iated with the de
ay of a parti
le of mass M and mo-

mentum P into n parti
les of momenta pi and energies Ei is

dΓ =
(2π)4

2M
|M|2 dΦn(P ; p1...pn), (1.42)

where

dΦn(P ; p1, ...pn) = δ4(P −
n
∑

i=1

pi)
n
∏

i=1

d3pi
(2π)32Ei

(1.43)

is the phase-spa
e element of volume, and the s
attering matrix M 
ontains all the infor-

mation related to underlying dynami
s (su
h as resonan
es or hadroni
 fa
tors). Conser-

vation of momentum is ensured by the Dira
 fun
tion δ.
In the 
ase of three-body de
ays, the previous equation be
omes

dΓ =
1

(2π)5
1

16M2
|M|2 dE1dE3dαd(cosβ)dγ (1.44)
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Figure 1.4 � World average of β from [19℄, extra
ted from b → ccs de
ays (left) and b → qqs
de
ays (right). The world average from b→ ccd is also indi
ated in the right hand-side �gure.

where E1 and E3 are the energy of parti
les 1 and 3 in the rest frame of the mother parti
le.

The angles α, β, and γ are the Euler angles that de�ne the plane where momenta of the

daughters are 
ontained. Here, the initial twelve degrees of freedoms are redu
ed to �ve

when the 
onservation of momentum and the masses of the three �nal-state parti
les is

taken into a

ount.

In the 
ase of the de
ay of a (pseudo-)s
alar parti
le into three (pseudo-)s
alar parti
les,

the pro
ess is isotropi
. This means that the dependen
y on angles 
an be integrated out,

further redu
ing the number of degrees of freedom from �ve to two. Equation 1.44 be
omes

dΓ =
1

(2π)3
1

8M
|M|2 dE1dE3. (1.45)

This equation 
an be rewritten as

dΓ =
1

(2π)3
1

32M3
|M|2 dm2

12dm
2
13, (1.46)

where the mij masses are the invariant masses of the parti
le pair ij. This amplitude only

depends on two variables, whi
h allows to represent the whole phase-spa
e on a single

plane. A graphi
 representation of this plane is 
alled a Dalitz plot [34℄.

The 
onservation of momentum and the mass of the mother parti
le set 
onstraints on

the Dalitz plot. Figure 1.5 shows a typi
al Dalitz plot along with kinemati
al boundaries.
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Figure 1.5 � Typi
al Dalitz plot, along with kinemati
al boundaries [4℄.

The physi
al region 
orresponds to the gray area, limited by boundaries where all parti
les

are 
ollinear. The 
orners of the physi
al region 
orrespond to the 
ase where one of the

parti
les is at rest.

As shown in Eq. 1.46, the only possible sour
e of non-uniformities over the Dalitz

plot is the s
attering matrix M. Su
h non-uniformities typi
ally arise in the presen
e of

quasi-two body (Q2B) de
ays (see Se
. 1.3.3).

1.3.2 The square Dalitz plot

An alternative representation of events that is sometimes easier to manipulate is the

square Dalitz plot [35℄. Its 
oordinates m′
and θ′ are de�ned as

m′ =
1

π
arccos

(

2
mij −mmin

ij

mmax
ij −mmin

ij

− 1

)

, (1.47)

θ′ =
1

π
θij , (1.48)

where m
max(min)
ij designates the maximum (minimum) mass of the ij pair

mmax
ij =M −mk (1.49)

mmin
ij = (mi +mj), (1.50)
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Figure 1.6 � Ja
obian of the transformation from the usual Dalitz plot to the square Dalitz

plot. [36℄

where M is the mass of the mother parti
le and mi,j,k is the mass of the daughter i, j,
or k. The angle θij is the heli
ity angle of a given ij system, whi
h is de�ned between

the momenta of the parti
les k and i in the ij rest frame. These 
oordinates are de�ned

between 0 and 1, and the 
hange of 
oordinates between the regular Dalitz plot and the

square Dalitz plot is de�ned as

dm2
ijdm

2
jk → | det J |dm′dθ′, (1.51)

|det J | = 4
∣

∣p∗ij
∣

∣ |p∗k|
δmij

δm′
δ cos θij
δθ′

, (1.52)

J being the Ja
obian of the transformation. The momenta p∗ij =
√

E2
ij −m2

ij and p
∗
k =

√

E2
k −m2

k are de�ned in the ij rest frame. Figure 1.6 shows the distribution of this

Ja
obian over the square Dalitz plot.

This representation is espe
ially useful in 
harmless B de
ays, as they populate areas

of the Dalitz plot 
lose to its boundaries, due to the small mass of intermediate resonan
es


ompared to the mass of the B meson. Additionally, from a te
hni
al point of view, the

square shape of this plot allows to bin the plane more easily.

A major di�eren
e between the usual Dalitz plot and the square Dalitz plot is that

the square Dalitz plot area is not proportional to the element of phase spa
e. This means

that stru
tures over the square Dalitz plot are not ne
essarily related to any dynami
s,

unlike in the usual Dalitz plane. This is illustrated by Fig. 1.6, as the Ja
obian 
an be

interpreted as the shape over the square Dalitz plot of a �at, phase-spa
e, 
omponent.
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Figure 1.7 � Sket
h of a Dalitz plot in
luding several Q2B de
ays, represented in di�erent 
olours.

The red strip 
orresponds to a s
alar resonan
e. The green and dark blue points 
orrespond to

ve
tor resonan
es, while the magenta and light blue 
orrespond to tensor resonan
es. A spin

3 resonan
e is also shown, in yellow. Interferen
e regions are 
learly visible where resonan
es

overlap, su
h as the red and green ones.

1.3.3 Quasi-two body de
ays

A de
ay A→ B+C+D 
an pro
eed via an intermediate state R that de
ays for instan
e

into B and C. The de
ay A→ (R→ B + C)D is 
alled a �quasi-two-body� de
ay, where

D is sometimes denoted as the �ba
helor� parti
le.

A Q2B de
ay appears as a strip over the Dalitz plot with a mean and a width that are

related to the mass and the width of the resonan
e, respe
tively. The variations of the

magnitude along the strip provide information about the spin of the resonan
e. Figure 1.7

shows an example of a Dalitz plot with several Q2B de
ays with di�erent spins of the

resonan
es.

1.3.4 The isobar model

The amplitude of a three-body de
ay 
an be modelled in di�erent ways. The isobar

approa
h approximates the total amplitude as

A
(

�

)

=
N
∑

n

An

(

�

)

, (1.53)

where the sum runs over N 
oherent 
ontributions and

An

(

�

)

= an
(

�

)

Fn

(

m2
ij , m

2
jk

)

, (1.54)
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are the partial amplitudes that are 
hara
terized by their lineshapes Fn

(

m2
ij , m

2
jk

)

[37�39℄.

The an
(

�

)


oe�
ients are 
omplex numbers.

Under the assumption of heavy-quark fa
torization, the lineshape Fn

(

m2
ij , m

2
jk

)

is

only related to strong dynami
s. Hen
e this does not 
ontain any information about CP
violation

8

, and is not de
ay-dependent.

The isobar 
oe�
ients an
(

�

)


an be parameterized in several ways. In the analyses that

are detailed in this dissertation, they are parameterized as

an = cn(1± bn)e
i(φn±δn), (1.55)

where φn and δn are the strong and weak phases, respe
tively. This parameterization has

been proposed by the BaBar experiment in Ref. [40℄.

The 
oe�
ients an are not physi
al as, for instan
e, all the magnitudes in a given model


ould be multiplied by a fa
tor without 
hanging the des
ription of data. Fit fra
tions of

resonan
es are de�ned as

FFn =

∫∫

DP

(

|An|2 +
∣

∣An

∣

∣

2
)

dm2
12dm

2
13

∫∫

DP

(

|A|2 +
∣

∣A
∣

∣

2
)

dm2
12dm

2
13

(1.56)

Ea
h Q2B bran
hing fra
tions is related to the �t fra
tion of the 
orresponding resonan
e

by

B(A→ RD) = FFR × B(A→ BCD). (1.57)

Similarly, interferen
e �t fra
tions between two resonan
es i and j 
an be de�ned as

FFnm = 2Re









∫∫

DP

(

AnA∗
m +AnAm

∗)
dm2

12dm
2
13

∫∫

DP

(

|A|2 +
∣

∣A
∣

∣

2
)

dm2
12dm

2
13









. (1.58)

The sum of �t fra
tions FFn is not ne
essarily unity, be
ause of interferen
e. In the


ontrary, the relation

∑

n≤m

FFnm = 1 (1.59)

is ful�lled.

The parameters of the 
oe�
ients an 
an also be used to de�ne CP -violating observ-
ables Cn and Sn for resonan
e n as

Cn =
2bn

1 + b2n
(1.60)

and

Sn =
1− b2n
1 + b2n

sin(2βeff ,n), (1.61)

8CP violation by the strong intera
tion is negligible.

21



where

βeff,n = β + δn. (1.62)

The angle βeff ,n quanti�es the interferen
e between mixing and de
ay for a given Q2B

de
ay. The observable Sn is meaningful only for CP -eigen Q2B de
ays su
h as B0→ K0
S
φ.

1.3.5 Resonan
e dynami
s

Resonan
e dynami
s are 
ontained in the Fn

(

m2
ij , m

2
jk

)

terms of the isobar de
omposition.

This term 
an be de
omposed as

Fn

(

m2
ij , m

2
jk

)

= XL(|p∗|r′)XL(|q|r)Tn(L,p,q)Rn(mij), (1.63)

where:

• i and j are the daughters of the resonan
e;

• mij is the mass of the de
ay produ
ts of the resonan
e;

• L is the angular momentum of the resonan
e;

• p∗
is the momentum of the ba
helor parti
le, evaluated in the B rest frame;

• r and r′ are the Blatt-Weisskopf barrier radii;

• p and q are the momenta of one of the resonan
e daughters and of the ba
helor

parti
le, respe
tively. They are both evaluated in the rest frame of the resonan
e.

We review in the following the de�nition and the physi
al meaning of the terms XL,

Tn, and Rn.

Blatt-Weisskopf momentum barrier fa
tors XL

The maximum angular momentum L of a strong de
ay is limited by the momentum and

by a distan
e that is 
omparable to the �radius� of the resonan
e. The Blatt-Weisskopf

momentum barrier fa
tor ( [41℄) depends on these two variables, and reweights the am-

plitudes in order to enfor
e the global 
onservation of angular momentum. The value of

this fa
tor depending on the angular momentum L of the resonan
e is

L = 0;XL(z = |p|r) = 1;

L = 1;XL(z = |p|r) =
√

1 + z20
1 + z2

;

L = 2;XL(z = |p|r) =
√

9 + 3z20 + z40
9 + 3z2 + z4

;

where z0 is the value of the z = |p|r variable when the invariant mass of the two daughter

parti
les is exa
tly the mass of the resonan
e. In the following of this dissertation, we

take the radii values as r′ = 0 and r = (4± 2.5) (GeV/c2)−1
from Ref. [40℄.
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Zema
h tensor Tn

The Zema
h tensor Tn des
ribes the angular distribution of the resonan
e daughters [42℄.

It depends on the resonan
e angular momentum L following:

L = 0;Tn = 1; (1.64)

L = 1;Tn = 4p.q; (1.65)

L = 2;Tn =
16

3

[

3(p.q)2 − (|p||q|)2)
]

. (1.66)

(1.67)

This terms explains the variations of the amplitude along a resonan
e, as seen in Fig. 1.7.

The resonan
e lineshape Rn

Hadroni
 resonan
es are de�ned as poles of the s
attering matrix S, whi
h des
ribes the

unitary operator that relates the asymptoti
 initial and �nal states. They appear in

several ways, for instan
e as an in
rease in the total 
ross-se
tion when s approa
hes the
square of the mass of the resonan
e. The amplitude 
an be expanded in several ways

around su
h a pole.

The Breit-Wigner formalism is well-suited to model the amplitude near an isolated

pole that is far from the opening of any threshold. It is a �rst-order Taylor expansion of

the amplitude around the pole. The asso
iated lineshape is de�ned as

Rn(mij) =
1

m2
r −m2

ij − imrΓij(q)
, (1.68)

where r is a resonan
e de
aying into the parti
les i and j, and q is the momentum of the

resonan
e in the mother rest frame. The mass-dependent width Γ is

Γij(q) = Γr

( |q|
|q

r
|

)2L+1(
mr

mij

)

X2
L(q, q0), (1.69)

where Γr is the intrinsi
 width of the resonan
e and q
r
is the value of q when m = mr. It

is worth mentioning that a sum of 
lose Breit-Wigner distributions breaks the unitarity

of the S matrix. In the 
ase of overlapping or broad resonan
es, other parameterizations


an be used, su
h as the Gounaris-Sakurai for the ρ0 resonan
e [43℄. One of these param-

eterizations is the Flatté formula ( [44℄) that des
ribes the amplitude of a resonan
e 
lose

to a threshold, su
h as the f 0(980) (
lose to the KK threshold)

Rn(mij) =
1

m2
r −m2

ij − i(ρ1g
2
1 + ρ2g

2
2)
, (1.70)

where g21 + g22 = mrΓr. The gi are 
oupling 
onstants that are measured experimentally.

The ρi fa
tors are phase-spa
e terms that 
ontain the information about the di�erent
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masses of the �nal states. In the 
ase of the f0(980), they are written

ρ1 = ρππ =

√

√

√

√

(

1−
(

2mpi

mij

)2
)

, (1.71)

ρ2 = ρKK =
1

2

√

√

√

√

(

1−
(

2mK±

mij

)2
)

+

√

√

√

√

(

1−
(

2mK0

mij

)2
)

. (1.72)

The K-matrix formalism ( [45℄) des
ribes the s
attering pro
ess by de
omposing the T̂
matrix as

T̂ = (I − iρK̂)−1K̂, (1.73)

where ρ is the phase-spa
e matrix, and K̂ is a Lorentz-invariant matrix de�ned as

K̂ij =
∑

α

α

√

mαΓα,i(m)mαΓα,j(m)

(m2
α −m2)

√
ρiρj

, (1.74)

where the sum runs overs all resonan
es α. This 
onstru
tion expli
itly enfor
es the

unitarity of the T̂ operator. Additionally, this expression yields the same result as a Breit-

Wigner in the 
ase of a single resonan
e in a single 
hannel. The K-matrix formalism

is best de�ned in the 
ase of s
attering. It 
an be transposed to the 
ase of three-body

de
ays under the assumption that there are no intera
tions between the ba
helor parti
le

and the daughters of the resonan
e.

1.3.6 Nonresonant amplitude

The nonresonant amplitude is not related to any pole of the S matrix, and 
overs the

whole phase spa
e. It is espe
ially important to 
onsider in the 
ase of B de
ays as the

phase spa
e is large, and as resonan
es 
over a small portion of it (even more so in the


ase of 
harmless B de
ays, as 
harmless resonan
es have a small mass 
ompared to the

B mass). As a result, while the typi
al nonresonant 
ontribution to 
harmed de
ays is of

the order 10%, it 
an be as large as 90% in B→ KKK de
ays ( [46℄). This nonresonant

amplitude is poorly understood theoreti
ally, and may even be the result of the presen
e

of several broad resonan
es. Several parameterizations of the nonresonant amplitude have

been used by di�erent analyses from di�erent 
ollaboration, in
luding a �at distribution,

an exponential distribution, and a polynomial. These parameterizations have usually been

de�ned in an ad ho
 manner. For instan
e the use of a �at nonresonant distribution was

motivated by the presen
e of signal events in the 
entre of the Dalitz plot.

In the 
ontext of the fa
torization approa
h, a large s
alar 
ontribution is expe
ted

in B → KKK [47℄. However, as dis
ussed in the following, a large additional P -wave

ontribution has been observed by the BaBar experiment in these modes.
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Table 1.2 � Summary of favoured (�Fav.�) and suppressed (�Sup.�) B0
d,s→ K0

Sh
+h

′−
de
ays. The

suppression fa
tor is equal to λ2
, where λ ≈ 0.22 is the sine of the Cabibbo angle.

Final state

Bd,s meson K0
Sπ

+π− K0
Sπ

+K− K0
SK

+π− K0
SK

+K−

B0
Fav. Sup. Sup. Fav.

B0
s Sup. Fav. Fav. Sup.

1.4 The study of B0
d,s→ K0

Sh
+h− de
ays

De
ays of B0
and B0

s mesons to K0
S
h±h

′∓
are a privileged se
tor to perform indire
t

sear
hes for NP. They have been studied for years in di�erent experiments su
h as BaBar,

Belle, and now LHCb. This se
tion presents the general properties of these de
ays, with

an emphasis on the B0→ K0
S
K+K−

de
ay, along with a state of the art.

1.4.1 B0
d,s→ K0

S
h+h

′−
de
ay amplitudes

The B0
d,s → K0

Sh
+h

′−
de
ays pro
eed through b→ qqu tree-level transitions, as well as

q → qqd and b→ qqs penguin transitions, where q = d or s. Figure 1.8 shows all the

possible dominant diagrams that 
ontribute to a three-body de
ay of a heavy meson,

where Q denotes the heavy quark, T , C, A, E , and P stand for �tree�, �
olour-suppressed

tree�, �annihilation�, �ex
hange�, and �penguin�, respe
tively. As dis
ussed in Se
. 1.2.4,

b→ u transitions are suppressed with respe
t to b→ c transitions by a fa
tor λ2, where
λ ≈ 0.22 is the sine of the Cabibbo angle. This results in the suppression of tree-level

diagrams in these de
ays, relative to the penguin amplitudes. The following dis
ussion

thus fo
uses on the properties of penguin amplitudes.

Depending on the nature of the mother parti
le and on the number of kaons in the

�nal state, a B0
d,s→ K0

Sh
+h

′−
de
ay pro
eeds via the Cabibbo-favoured b→ qqs transition

or the Cabibbo-suppressed b→ qqd transition, as shown in Table 1.2.

In B-meson de
ays, it is a good approximation to fa
torize the weak and strong parts

of the de
ay, due to the large mass of the b quark 
ompared to ΛQCD.

The B0 → K0
S
K+K−

de
ay 
ontains the B0 → K0
S
φ(1020) 
ontribution, whi
h is a

parti
ularly good 
hannel to study time-dependent CP violation. Indeed, it is dominated

by a b→ sss transition that pro
eeds via a gluoni
 b→ s penguin. There is no tree 
on-

tribution to this 
hannel (�tree pollution�), whi
h means that deviations of the measured

value of the CKM angle β 
ompared to that performed in b→ ccs transitions su
h as

B0→ J/ψK0
S

an be an indi
ation to NP.

The K0
S
K+K−

�nal state is not a CP -eigenstate. Indeed, for a given orbital angular

momentum L of the K+K−
system,

CP |K0
SK

+K−〉 = (−1)L|K0
SK

+K−〉. (1.75)
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Figure 1.8 � Quark diagrams for three-body de
ays of a heavy meson. Q denotes the heavy

quark. The dominant diagrams in B0→ K0
SK

+K−
are P1 and P2.

One of the uses of a Dalitz plot analysis of this mode is to separate the di�erent partial-

wave 
ontributions in order to measure CP -violating observables in a CP -eigen �nal state.

1.4.2 Previous studies of B0
d,s→ K0

S
h+h

′−
and B0

d,s→ K0
S
K+K−

de-


ays

The work des
ribed in this do
ument is part of de
ade-long e�orts by several 
ollaborations

to study B0
d,s → K0

Sh
+h

′−
de
ays. The main goal of the analyses des
ribed in the next

se
tion is to re�ne previous measurements and to gather more information in the spe
i�


LHCb environment. It lays the groundwork for future �avour-tagged, time-dependent,

analyses of these modes in LHCb.
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Lega
y from B fa
tories

The B0→ K0
S
π+π−

and B0→ K0
S
K+K−

de
ays have been studied by BaBar ( [40,48℄) and

Belle ( [49,50℄). Both experiments have measured the bran
hing fra
tions of these de
ays

and performed a �avour-tagged time-dependent analysis that extra
ted βeff in several Q2B
modes. Additionally, BaBar has reported the observation of the B0 → K0

S
K±π∓

de
ay

in [51℄ with a total signi�
an
e of 5.2σ.
Studies of three kaons �nal states from BaBar and Belle have shown that they are

dominated by a large nonresonant 
omponent. This nonresonant amplitude 
annot be

des
ribed with a �at phase-spa
e shape, and BaBar has shown that it 
an be des
ribed as

a sum of S-wave and P -wave 
ontributions. One of the main goals of the time-integrated

amplitude analysis des
ribed in Se
. 5 is to provide more insight on this 
omponent.

Analysis with LHCb data (1 fb

−1
)

The LHCb experiment has reported in [52℄ a measurement of the B0
d,s→ K0

S
h+h

′−
bran
h-

ing fra
tions, relative to the B0 → K0
S
π+π−

bran
hing fra
tion, as well as a glimpse of

the Dalitz-plot distribution of signal events. The observation of the B0→ K0
SK

±π∓
mode

from BaBar was 
on�rmed, and the B0
s → K0

S
π+π−

and B0
s → K0

S
K±π∓

modes were

observed for the �rst time.
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Chapter 2

Des
ription of the LHCb experiment

The LHCb dete
tor is pla
ed at one of the intera
tion points of the Large Hadron Collider

(LHC), presented in Se
. 2.1. The dete
tor, des
ribed in Se
. 2.2, is designed in order to

take advantage of the large amount of bb and cc pairs produ
ed near the beam axis in

the 
onditions of the LHC. The system of parti
le identi�
ation is shortly dis
ussed in

Se
. 2.3.

The large number of 
ollisions and their short spa
ing in time (50 ns in 2010�2012,

then 25 ns) requires a trigger system, des
ribed in Se
. 2.4. Finally, modern high-energy

physi
s relies on a

urate simulations of physi
s and dete
tor response, and I des
ribe in

Se
. 2.5 the software environment for Monte-Carlo produ
tions in the LHCb experiment.

2.1 The Large Hadron Collider

The LHC is the largest and most powerful a

elerator in the world in terms of 
entre-of-

mass energy, and is lo
ated at the Conseil Européen pour la Re
her
he Nu
léaire (CERN),

in Geneva. It is the �nal point of a 
hain of a

elerators lo
ated at CERN, shown in

Fig. 2.2. It a

elerates bun
hes of protons from 450GeV to energies of 3.5, 4, or 6.5TeV,
depending on the data-taking period. This a

eleration is performed using 16 radio-

frequen
ies (RF) 
avities lo
ated along the 27 km tunnel. The a

elerator is also designed

to a

elerate beams of lead ions during dedi
ated runs.

The programme of the LHC is separated into several parts 
alled �Runs� by long

shutdowns (LS), during whi
h the 
hara
teristi
s of the a

elerator remain rather stable.

The LHC a

elerator physi
s programme is divided in Runs separated by long shut-downs

(LSD) during whi
h both the a

elerator and the dete
tors 
an be maintained and/or

upgraded. The data-taking during 2011 and 2012 is designated as �Run I�, and the data-

taking period starting from 2015 is designated as �Run II�. Data used in this thesis was

entirely a
quired during Run I. Figure 2.1 shows the running plan for the LHC in the next

few years, in
luding planned upgrades for the experiments.

Nominal proton beams are 
omposed of bun
hes of 1.2�1.4.1011 protons separated

by 50(25) ns in Run I(II). A beam 
an 
ontain up to 2,808 bun
hes of protons, and 
an

remain stable for over 8 hours. The beams are steered by 1,232 super
ondu
ting (1.3K)
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Figure 2.1 � Plan for the LHC in the next few years. Long shutdowns are indi
ated as �LS�. The

upgrade of the LHCb experiment is planned during �LS2�.

Figure 2.2 � A

eleration 
omplex of the LHC. The four main experiments are also shown along

the LHC.

Niobium-Titanium dipole magnets, 
ooled by super�uid helium, ea
h of them 
reating a

�eld of up to 8.3T. Quadrupole and o
tupole magnets are also used to fo
us the beam

and 
orre
t 
hromati
 aberrations.

The two beams 
ollide in 4 intera
tion points along the LHC, and seven experiments

are lo
ated at these points. The ATLAS and CMS experiments use giant general-purpose

dete
tors (GPDs) with a barrel-like geometry to study the produ
t of 
ollisions that have

a large transverse momentum pT . This physi
s programme in
ludes the study of the
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Figure 2.3 � Di�erential bran
hing fra
tion of bb pair produ
tion at the energies of the LHC

during the 2011 data-taking, and angular a

eptan
e of GPDs (CMS and ATLAS, marked in

yellow) and LHCb (marked in red).

Higgs boson that these experiments dis
overed in 2012 [9, 10℄, of the top quark, and

sear
hes for New Physi
s (NP) parti
les produ
ed on shell. These two experiments, and

CMS in parti
ular, also have sensitivity to pro
esses relevant for �avour physi
s, su
h as

B0
s → µ+µ−

[53, 54℄.

The other experiments being operated at the LHC are LHCb (des
ribed in Se
. 2.2),

ALICE, TOTEM, LHCf, and MoEDAL. Figure 2.3 
ompares the angular 
overage of the

ATLAS, CMS, and LHCb dete
tors, illustrating the di�erent purposes of these experi-

ments.

2.2 The LHCb dete
tor

The LHC a

elerator is the world most intense sour
e of b and c quark pairs. The LHCb

dete
tor is designed to take advantage of the lo
alization of these pairs by 
overing only

the forward regions near the beam axis. Figure 2.4 shows the diagrams responsible for

heavy-quark pair produ
tion at the LHC.

The LHCb dete
tor, shown in Fig. 2.5, is designed as a single-arm forward spe
trom-

30



Figure 2.4 � Dominant diagrams for bb and cc pair produ
tion at the energies of the LHC: (left)

qq annihilation; (middle) gluon separation; (right) gluon fusion.

eter. This geometry 
overs an angular a

eptan
e of 15�300(250)mrad in the bending

(non-bending) plane of the magnet.

1

A right-handed 
oordinate system is de�ned with

the z-axis parallel to the beam axis in the dire
tion from the VELO towards the muon

stations, and the y-axis pointing upwards. In this arrangement the magneti
 �eld bends

traje
tories in the xz plane. Additionally, the terms �upstream� and �downstream� are

often used to designate the relative position of two points with respe
t to the intera
tion

point.

1

This is equivalent to a pseudorapidity 
overage of 2 < η < 5. The pseudorapidity η is de�ned as

η = − log(tan θ/2), where θ is the polar angle with respe
t to the beam axis.
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Figure 2.5 � Overview of the LHCb dete
tor. The z axis is along the horizontal, while the y axis is along the verti
al. The intera
tion

point is lo
ated on the left, inside of the VELO subdete
tor. The beam pipe and the 
ontours of the pit are �lled with gray. Upstream

and downstream dire
tions 
orrespond to the left and the right, respe
tively.

3
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Figure 2.6 � Number of primary verti
es as a fun
tion of the luminosity.

2.2.1 Beam 
onditions at the LHCb intera
tion point

The LHCb dete
tor has been designed to operate at a nominal luminosity of 2 ×
1032 cm2 s−1

, whi
h is lower than the maximum that 
an be provided by the LHC. Indeed,

as shown in Fig. 2.6, larger instantaneous luminosities indu
e an in
reased number of

multiple pp inelasti
 
ollisions. These multiple pp inelasti
 
ollisions in
rease the amount

of data re
orded by the dete
tor, but indu
e larger o

upan
ies and thus less a

urate

re
onstru
tion. They also in
rease the amount of radiations absorbed by the dete
tor.

The luminosity for the LHCb experiment 
an be tuned by 
hanging the beam fo
us at

its intera
tion point independently from the other intera
tion points. This allows LHCb

to maintain its optimal luminosity for the whole duration of a �ll, as shown in Fig. 2.7.

The luminosity has been in
reased to 3.5×1032 cm2 s−1
and 4.5×1032 cm2 s−1

in 2011 and

2012, respe
tively.

2.2.2 The magnet

The LHCb dipole magnet [55℄ is lo
ated between the TT and tra
king stations. It gen-

erates a magneti
 �eld that is perpendi
ular to the beam axis, so that the traje
tory of

all 
harged parti
les that pass through is 
urved. The 
urvature radius of the traje
tory

allows for a measurement of the tra
k momentum. In order to a
hieve a 0.5% relative

pre
ision on p up to 200GeV/c momenta, the integrated bending power is equal to 4Tm

for tra
ks of 10m length.

The magnet is 
omposed of two saddle-shaped aluminium 
oils maintained by an iron

yoke, as shown in Fig. 2.8. An important feature of the LHCb magnet is the ability to
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Figure 2.7 � (Left) Example of the evolution of instantaneous luminosity of the lifetime of a �ll

for di�erent experiments. (Right) Integrated luminosity in fb

−1
per year of data taking.

Figure 2.8 � Layout of the LHCb magnet.

reverse the polarity of its magneti
 �eld.

2

This allows to 
an
el out dete
tion asymmetries

su
h as the 
harge dete
tion asymmetry [56℄.

2.2.3 The tra
king system

The goal of the tra
king system is to measure the traje
tories and momenta of 
harged

parti
les (�tra
ks�) in the dete
tor a

eptan
e. It is 
omposed of the VELO and of two

ensembles of stations lo
ated upstream and downstream from the magnet. These ensem-

bles are the TT and the T1�3 stations. The T1�3 stations are 
omposed of two distin
t

subdete
tors: the Inner Tra
ker (IT) and the Outer Tra
ker (OT).

2

The two polarities are referred to as MagUp and MagDown.
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Figure 2.9 � (Left) Resolution of the impa
t parameter of a tra
k with respe
t to a vertex as

a fun
tion of the momentum p of that tra
k. (Right) Resolution of the impa
t parameter of a

tra
k with respe
t to a vertex as a fun
tion of the inverse of the transverse momentum pT of

that tra
k.

The vertex lo
ator (VELO)

The VErtex LO
ator (VELO) provides pre
ise measurements of 
harged tra
k 
oordinates


lose to the intera
tion region, whi
h are used to identify the primary verti
es and the

displa
ed (se
ondary) verti
es.

3

The information on deta
hed verti
es is used to enri
h the b-hadron 
ontent of the

data written to tape, as well as in the LHCb o�ine analysis in order to measure parti
les

lifetimes and to reje
t ba
kgrounds. Indeed, the main sour
e of ba
kground for most

analyses is the 
ombinatorial ba
kground, where one or several tra
ks are mat
hed to the

wrong de
ay vertex.

The ability of the VELO to di�erentiate between the multiple primary and se
ondary

verti
es is strongly related to its resolution of the impa
t parameter (IP) of tra
ks with

respe
t to these verti
es. This parameter is de�ned as the smallest distan
e of approa
h of

a tra
k to the vertex, and is expe
ted to be zero for tra
ks originating from this vertex. The

resolution of the VELO on the impa
t parameter of a tra
k relative to a vertex depends

on the transverse momentum pT of that tra
k. Figure 2.9 shows the performan
es of the

VELO as a fun
tion of the p and pT of a tra
k [57℄.

The dete
tor is divided in two halves, ea
h 
onsisting of 21 modules mounted around

and downstream of the intera
tion point and perpendi
ular to the beam as shown in

Fig. 2.10. The number of modules is 
hosen su
h that tra
ks that are inside the a

eptan
e

of the rest of the tra
king system (and originate up to 10 cm downstream of the intera
tion

point) traverse at least 3 modules. Ea
h module is equipped with sili
on strips oriented

in the r and φ dire
tions to measure the azimuthal and radial 
oordinates of 
harged

3

Primary verti
es are the verti
es of the pp intera
tion. Conversely, verti
es formed by the de
ay of

parti
les (e.g.B0
mesons) are 
alled se
ondary verti
es.
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Figure 2.10 � Top: 
ut view of the VELO; the rest of the LHCb dete
tor is lo
ated downstream

(on the right). Bottom: view of a VELO module in 
losed (left) and open (right) positions.

parti
les.

4

The pit
h within a module varies from 38µm at the inner radius of 8.2mm,

in
reasing linearly to 102µm at the outer radius of 42mm. Figure 2.11 shows a proje
tion

of a module with its r and a φ sili
on strips.

Two additional stations are pla
ed upstream of the intera
tion point. They are used

to aid the instantaneous measurement of luminosity. To prote
t the dete
tor while LHC

beams are not squeezed at the IP, the two VELO halves are retra
ted 35mm from the

beam axis, as shown in Fig. 2.10.

Tra
king Turi
ensis (TT) stations

The Tra
ker Turi
ensis

5

(TT) dete
tor is lo
ated upstream from the magnet, after the

RICH1 subdete
tor. This station is 
omposed of four planar layers 150 cm wide and

130 cm high, 
overing an a
tive area of 8.4m2
. These layers are arranged in a �x�u�v�x�

layout, with verti
al (x-layers) and rotated by stereo angles of +5

◦
and -5

◦
(u and v-layers,

respe
tively) readout strips. The stru
ture of these planes is illustrated in Fig. 2.12. This

layout allows the TT to resolve the x and y position of the hits in the stations.

4

This geometry is 
hosen to enable fast pattern re
ognition in the trigger.

5

The Tra
ker Turi
ensis was formerly known as the Trigger Tra
ker.
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Figure 2.11 � Sili
on strips used to measure the r (left) and the φ (right) 
oordinates in the

VELO.
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Figure 2.12 � Sket
h of the TT subdete
tor. The two inner layers are tilted by a stereo angle of

±5◦ (u/v-layers) in order to provide information on the y 
oordinate.

The planes whi
h 
omprise the TT are manufa
tured using sili
on mi
ro-strip te
h-

nology similar to that used in the VELO, with a strip pit
h of 183µm and 500µm thi
k

p+-on-n sensors.
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Figure 2.13 � (Left) View of a tra
king module. The inner tra
ker 
overs the 
entral region,

while the outer tra
ker 
overs the rest of the angular a

eptan
e. (Right) View of an IT module.

Dimensions are given in cm and refer to the sensitive surfa
e 
overed by the IT.

Tra
king stations T1�3

The tra
king stations T1�3 are lo
ated downstream from the magnet. Ea
h of them is


omposed of four substations organized in a x�u�v�x layout, des
ribed in Se
. 2.2.3. In

order to avoid un
overed regions in the a

eptan
e, the top and bottom modules are

staggered 4mm in the z-axis and 3mm in the x-axis, with respe
t to the lateral ladders.

Ea
h of these substations is divided into an inner tra
ker (IT) and an outer tra
ker OT,

as shown in Fig. 2.13.

The 
entral regions near the beam pipe feature large o

upan
ies and require a �ne

granularity. The IT is positioned in the three downstream tra
king stations T1�T3, and

uses a sili
on mi
ro-strip te
hnology. It is separated into single and double lines of seven

staggered sili
on ladders. Figure 2.13 shows a proje
tion of this subdete
tor.

The remaining area has a signi�
ant redu
tion in the o

upan
y, allowing a 
oarser

granularity. Therefore, the OT dete
tor 
overs this large a

eptan
e (total area of 5×6m2
)

utilizing a drift-tube te
hnology. The OT a

eptan
e extends from the outer boundaries

of the inner tra
ker up to the nominal LHCb 
overage. It is designed in four layers of

arrays of gaseous straw tubes 2.4m long and 4.9mm in diameter. Ea
h of these modules


ontains two monolayers of drift tube as shown in Fig. 2.14. The gas is 
omposed of

a mixture of Ar (70%) and CO2 (30%). Both these 
hara
teristi
s enable the dete
tor

to a
hieve a fast drift-time a
ross the drift-tubes under 50 ns, whi
h is the performan
e

required for the tra
king algorithm.

Types of tra
ks in LHCb

The quality of a tra
k in LHCb depends on the subdete
tors used in its re
onstru
tion.

Four types of tra
ks are de�ned in LHCb: Long, Down, T, and Muon. Figure 2.15 shows
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Figure 2.14 � a (Left) View of the OT. The T2 station is in open position. (Right) Illustration

of the OT layer and zoom on the arrangement of straw tubes (distan
es are given in cm). [58℄

these di�erent types, with the ex
eption of Muon tra
ks, whi
h also have hits in the muon


hambers.

A tra
k is re
onstru
ted as Long if it 
rosses at least three VELO stations. As K0
S

mesons �y a typi
al distan
e of 1m, some of them do not de
ay inside of the VELO

a

eptan
e and thus their pion daughters are re
onstru
ted as Down tra
ks. Three types

of K0
S
mesons are de�ned in LHCb, depending on the tra
k type of their daughters: Down-

Down, Long-Long, and Long-Down. As the resolution of the momenta of Down tra
ks is

worse than the resolution of Long tra
ks, the resolution of the mass of Down-Down K0
S

mesons is worse than for Long-Long K0
S
mesons.

2.2.4 The RICH1 and RICH2

The ring imaging Cherenkov (RICH) stations are lo
ated upstream (RICH1) and down-

stream (RICH2) of the magnet. These stations are �lled with a radiative material of

refra
tive index n that emits a ring of Cherenkov light whenever a high-energy parti
le

traverses them. All photons are emitted at an angle

θc =
1

nβ
, (2.1)

where β is the ratio between the parti
le velo
ity and the speed of light. A pre
ise

measurement of this ratio and of the parti
le momentum (performed by the tra
king

system in the 
ase of 
harged tra
ks) allows to extra
t the mass of the parti
le, and then

to identify it.

The 
hoi
e of the refra
tive index of the material determines the momentum range

in whi
h the dete
tor e�
iently determines the mass of the parti
le. Figure 2.16 shows
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Figure 2.15 � Types of tra
k in LHCb, along with the magneti
 �eld as a fun
tion of z [58℄.

Muon tra
ks that only leave hits in the muon stations are not shown.

the Cherenkov angle as a fun
tion of momentum for two di�erent refra
tive indexes. The

RICH1 subdete
tor uses two di�erent refra
tors, SO2 (n=1.03) and C4F10 (n=1.0014).

The RICH2 subdete
tor uses only CF4 (n=1.0005) as a refra
tor.

The full 
overage of the nominal momentum range 2�100GeV/c is a
hieved through

the use of di�erent te
hnologies in the RICH1 and the RICH2. Upstream from the magnet,

low-momentum parti
les asso
iated to a large angular aperture are 
overed by the RICH1

dete
tor momentum a

eptan
e 2�60GeV/c. Parti
les that have a larger momentum or

a smaller aperture are 
overed by the RICH2 momentum a

eptan
e of 15�100GeV/c.
Di�erent momentum ranges 
orrespond to the 
hoi
e of di�erent refra
tive indexes. While

RICH1 
overs the LHCb tra
king a

eptan
e, RICH2 has a redu
ed angular a

eptan
e

of 120mrad (horizontal) and 100mrad (verti
al), as it is dedi
ated to the PID of parti
les
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Figure 2.16 � (Left) Cherenkov angle as a fun
tion of the parti
le momentum for di�erent radi-

ators and parti
les. (Right) Re
onstru
ted Cherenkov angle for isolated tra
ks, as a fun
tion of

tra
k momentum in the C4F10 radiator [59℄. The Cherenkov bands for muons, pions, kaons and

protons are 
learly visible.

with high momenta, whi
h are mainly at small angles.

Figure 2.17 shows the layout of the two RICH stations. Parti
les pass through the

middle of the dete
tor, and emits Cherenkov light that is re�e
ted by the mirrors lo
ated

on the sides. The photons are �nally 
olle
ted by hybrid photo-dete
tors (HPDs) lo
ated

outside of the LHCb a

eptan
e.

The RICH system provides good parti
le identi�
ation over the entire momentum

range. The average e�
ien
y for kaon identi�
ation for momenta in the 2�100GeV/c
interval is 95%, with a 
orresponding average pion misidenti�
ation rate of 5%. Around

30GeV/c the identi�
ation probability is 
lose to 97% and the misidenti�
ation probability

roughly 5%.

2.2.5 Calorimeters

The LHCb 
alorimeter is lo
ated downstream of the T1�3 and RICH2 stations, and 
on-

sists of the ele
tromagneti
 
alorimeter ECAL and the hadroni
 
alorimeter HCAL. It

provides information about the energy and the position of all parti
les, in
luding neutral

parti
les (π0
,γ) that do not leave a tra
e until that point. Two additional systems, PS

and SPD, are dedi
ated to the dete
tion of neutral parti
les. This strategy is designed in

order to separate ele
trons and pions (
harged or neutral), whi
h requires a longitudinal

separation of the showers. The ele
tromagneti
 
alorimeter (ECAL) is designed to stop

ele
trons and photons, and the hadroni
 
alorimeter (HCAL) is designed to stop hadrons.

Calorimeter systems perform a destru
tive dete
tion of the parti
le. This dete
tion is

performed by 
onverting the energy of the in
oming parti
le in a shower of parti
les that

ex
ite a radiator medium, whose nature depends on the type of parti
les that are dete
ted.
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Figure 2.17 � S
hemati
 
ross se
tion of the RICH1 (left) and RICH2 (right) dete
tors. [60℄

This radiator medium then emits UV photons that are 
olle
ted by the dete
tor. The

total amount of 
olle
ted light is proportional to the energy of the in
oming parti
le.

The SPD and the PS

The PS and SPD 
onsist of two identi
al planes of s
intillator pads with a 15mm thi
k

lead plane in between that 
orresponds to 2.5X0 for ele
trons and photons, but only to

6% hadroni
 intera
tion lengths. This allows to gain information about the nature of

in
oming parti
les, in parti
ular on the γ/e separation. Figure 2.18 shows the typi
al

longitudinal shower pro�le for di�erent kind of parti
les.

Additionally, the SPD hit multipli
ity information is used in the hardware trigger as

it is 
orrelated to the multipli
ity of the event.

The ele
tromagneti
 
alorimeter ECAL

The ele
tromagneti
 
alorimeter is responsible for measuring the energy of in
oming ele
-

trons and photons. It is a shasklik-type sampling 
alorimeter of thi
kness 25X0, 
omposed

of 66 layers of lead plates and s
intillating tiles; the s
intillating light is 
olle
ted by photo-

multipliers. The 
ell size varies from 4×4 cm in the inner part of the dete
tor, to 6×6 cm
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Figure 2.18 � Sket
h of the typi
al repartition of showers depending on the nature of the in
oming

parti
le. �Pb� refers to a lead plate that 
onverts photons to 
as
ades of 
harged parti
les.

Figure 2.19 � (Left) Segmentation of the ECAL. (Right) Segmentation of the HCAL. The beam

pipe region is �lled with bla
k, and is outside of the a

eptan
e of both 
alorimeters.

and 12 × 12 cm in the middle and outer parts. Figure 2.19 shows these di�erent segmen-

tation s
hemes. The 
ell granularity 
orresponds to that of the SPD and the PS, aiming

at a 
ombined use in γ/e separation.

The hadroni
 
alorimeter HCAL

The hadroni
 
alorimeter is designed to absorb the entire energy of in
oming hadrons. It

is organized as a su

ession of 26 layers of thin iron plates and s
intillating tiles arranged

parallel to the beam pipe. Figure 2.19 shows the segmentation of the two 
alorimeters.

2.2.6 Muon 
hamber

The �ve muon 
hambers are responsible for the identi�
ation of muons and for providing

a fast-response dete
tion of high-pT muons in the trigger system. Four of them 
onsist of
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Figure 2.20 � S
hemati
 view of the (left) side of the LHCb muon dete
tor and the (right) two

me
hani
ally independent station halves with the four regions (R1-R4) indi
ated.

multi-wire proje
tion 
hambers (MWPC). The �rst muon 
hamber is lo
ated upstream

from the 
alorimeter systems in order to improve the resolution of the transverse momen-

tum of muons, as 
alorimeters indu
e multiple s
attering. It is equipped with a triple gas

ele
tron multiplier (GEM) that is more resistant to the in
reased radiation in this region.

The other muon 
hambers (M2�5) are lo
ated downstream from the 
alorimeter systems.

A 80 cm-thi
k layer of iron absorber is pla
ed in front of ea
h of these 
hambers in order

to redu
e ba
kgrounds, and another is pla
ed in front of M5 for the same purposes.

After the hadroni
 
alorimeter, most hadrons and ele
tromagneti
 (e, γ) parti
les have
been absorbed. Inversely, muons mostly pass through the whole dete
tor without being

absorbed, due to their low rate of energy loss dE/dx. Hen
e, the mat
hing of a tra
k to

a deposit in the muon 
hambers in
reases its probability to be asso
iated with a muon.

This information is used in parti
le identi�
ation.

Figure 2.20 shows the layout of the muon 
hambers. The segmentation of the readout

is �ner in the regions near the beam axis, as these 
orrespond to higher o

upan
ies.

The information from muon 
hambers is used as a veto in the analyses des
ribed in fur-

ther parts of the do
ument. Indeed, the muon identi�
ation provided by the information

from these 
hambers allows to veto out muon misidenti�
ation with a large e�
ien
y.

2.3 Parti
le identi�
ation in LHCb

The identi�
ation of parti
les in the LHCb experiment relies on information from most of

its subdete
tors, su
h as:

• Cherenkov radiation angle from the RICH (
harged parti
les only);

• tra
k measurement in the muon 
hambers (muons);
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• deposited energy in the ECAL, asso
iated with the tra
k momentum (ele
trons);

• information from the PS and SPD (neutral parti
les).

Additionally, a 
luster formed in the 
alorimeters that is not asso
iated with a tra
k 
an

be attributed to a γ or a π0
. As all analyses des
ribed in this do
ument use 
harged pions

and kaons as �nal-state parti
les, we only des
ribe in the following the te
hniques relative

to these parti
les.

Two approa
hes are used in LHCb for the identi�
ation of parti
les. The �rst method,

named DLL, 
omputes the di�eren
e of likelihood between a mass hypothesis and the

pion hypothesis for ea
h subsystem, and 
ombines them linearly. The se
ond method,

named ProbNN, uses information from all subdete
tors as inputs to a multivariate method

that outputs a single probability for ea
h hypothesis. It takes the 
orrelations between

subdete
tors responses into a

ount, as well as additional information. The training of

this multivariate method is performed on in
lusive simulated B events. Its performan
e

depends on the blending of MC samples used (tune).

2.4 Trigger system in the LHCb experiment

The LHC a

elerator operates at a bun
h-
rossing frequen
y of 40MHz. Due to the lower
luminosity settings at the LHCb intera
tion point and to the dete
tor geometry, the rate

of visible intera
tions was 15MHz for 2012 data-taking 
onditions.

6

At a luminosity of

2 × 1032 the bun
h 
rossings with visible pp intera
tions are expe
ted to 
ontain a rate

of about 100 kHz of bb-pairs. However, only about 15% of these events will in
lude at

least one B meson with all its de
ay produ
ts 
ontained in the spe
trometer a

eptan
e.

Furthermore the bran
hing ratios of interesting B meson de
ays used to study for instan
e

CP violation are typi
ally less than 10−3
. The role of the LHCb trigger system is to redu
e

the rate down to 5 kHz while enri
hing the samples with events that are interesting for

LHCb analyses. The trigger is also required not to bias interesting observables too mu
h,

whi
h is espe
ially 
hallenging in the 
ase of parti
le lifetimes.

Figure 2.21 shows the overall stru
ture of the LHCb trigger system during Run I,

along with the rates asso
iated to ea
h level. The trigger is divided in two levels: the

hardware trigger (level-0 trigger or L0), and the software trigger (high-level trigger or

HLT). The stru
ture of the trigger system in LHCb has been overhauled for Run II, with

the suppression of the hardware trigger.

2.4.1 The hardware trigger (L0 trigger)

The purpose of the L0 trigger is to redu
e the LHC beam 
rossing rate of 40MHz to the

rate of 1MHz with whi
h the entire dete
tor 
an be read out. The logi
 of the L0 trigger

takes advantage of the fa
t that the dominant sour
e of transverse momentum and energy

6

An intera
tion is de�ned to be visible if it produ
es at least two 
harged parti
les with su�
ient hits

in the VELO and T1�T3 to allow them to be re
onstru
tible.
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Figure 2.21 � (Left) Overview of the LHCb trigger system in 2012, along with the allowed rates

for ea
h line. (Right) Dete
tor subsystems involved in the L0 trigger de
ision.

in the LHCb a

eptan
e 
omes from the de
ays of heavy parti
les and resonan
es. A

partial read-out of the muon 
hamber information and of the 
alorimeter information is

pro
essed in order to estimate the transverse momentum of single/di-muon 
andidates and

the highest ET 
luster, respe
tively. Both quantities are then 
ompared to a pre-de�ned

threshold. The rates of ea
h de
ision line in 2012 data-taking 
onditions are shown in

Fig. 2.21, along with a sket
h showing the subdete
tors involved in the de
ision.

In parallel with this �ltering, the information from the SPD is also read in order to

estimate the total number of tra
ks in the event, respe
tively. This allows to veto events

that would have too many tra
ks and that would be triggered due to large 
ombinatori
s.

These events would also o

upy a disproportionate fra
tion of the data-�ow bandwidth

or available pro
essing power in the HLT.

The L0 trigger is operated syn
hronously with the 40MHz bun
h-
rossing frequen
y,

using 
ustom-made ele
troni
s.

2.4.2 The software trigger (HLT trigger)

The High Level Trigger (HLT) is designed as a series of C

++

algorithms that redu
es

the output rate to approximately 3.5 kHz and 5 kHz in 2011 and 2012, respe
tively. This


orresponds to the nominal event rate for being permanently stored. The HLT ar
hite
ture

is divided in two stages: fast partial event re
onstru
tion with an in
lusive sele
tion

(HLT1) in order to redu
e the rate to 40 and 80 kHz for 2011 and 2012, respe
tively;


omplete event re
onstru
tion with �nal trigger sele
tion (HLT2).

With the additional information available, the strategy of a single tra
k trigger is

implemented in HLT1 using information on the quality of the tra
k and the displa
ement
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from the primary vertex. Further improvements on the tra
king sear
h are obtained by

redu
ing the phase-spa
e boundaries to 
onsider only tra
ks with transverse momentum

above the required threshold 
onditions. In parti
ular, an in
lusive approa
h for beauty

de
ays has been designed, whi
h 
omprises a large fra
tion of the output bandwidth. The

strategy of this approa
h is to sele
t a high transverse momentum, signi�
antly displa
ed

tra
k, and a signi�
antly displa
ed vertex 
ontaining this tra
k and 1�3 other tra
ks [61℄.

This design triggers e�
iently on B de
ays with at least two 
harged daughters.

2.4.3 Trigger 
onventions

Another important 
onsideration is the asso
iation of a trigger obje
t with a signal tra
k.

An event is 
lassi�ed as trigger-on-signal (TOS) if the signal under study triggers the event,

whereas trigger-independent-of-signal (TIS) 
ategorizes the trigger obje
ts not asso
iated

to the signal. This separation is espe
ially relevant when the main trigger line for an

analysis introdu
es a bias on the variables of interest that has to be studied.

2.5 Monte-Carlo simulations in LHCb

The simulation of a physi
s event in LHCb is divided in several phases, integrated in

the Gaudi framework. Firstly, the underlying physi
al event and its intera
tion with

the LHCb dete
tor is simulated inside the Gauss framework. The digitization of hits

in the subdete
tors and the building of the raw dataset is then modelled by the Boole

pa
kage. The re
onstru
tion of tra
ks from this raw dataset is then modelled by the

Brunel pa
kage. Finally, the DaVin
i pa
kage simulates the further o�ine analysis

steps, su
h as the building of physi
al variables from tra
ks. Figure 2.22 shows the data

�ow of simulated events in LHCb.

In this se
tion, I fo
us on the Gauss and DaVin
i parts of the framework. I also

detail several sour
es of data/MC dis
repan
ies that are relevant to the analyses dis
ussed

in this do
ument.

2.5.1 The Gauss framework

The Gauss pa
kage simulates pp 
ollisions in LHCb and the dete
tor response to the

produ
ts of the 
ollision. It operates in two phases that 
an be run sequentially or inde-

pendently.

The �rst phase 
onsists of the event generation of pp 
ollisions and the de
ay of the

B-mesons in 
hannels of interest for the LHCb physi
s programme. It is interfa
ed to

Pythia for the event produ
tion and to a spe
ialized de
ay pa
kage, EvtGen, for the

B-meson de
ay. The generator phase of Gauss also handles the simulation of the running


onditions, the smearing of the intera
tion region due to the transverse and longitudinal

sizes of the proton bun
hes and the 
hange of luminosity during a �ll due to the �nite beam

lifetime. Single and multiple pp 
ollisions are produ
ed a

ording to the 
hosen running

luminosity. Other event generator engines 
an be interfa
ed in this phase if required.
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Figure 2.22 � The LHCb data pro
essing appli
ations and data �ow. Underlying all of the

appli
ations is the Gaudi framework and the event model des
ribes the data expe
ted. The

arrows represent input/output data

The se
ond phase of Gauss 
onsists in the propagation in the LHCb dete
tor of the

parti
les produ
ed by the generator phase. The simulation of the physi
s pro
esses that

the parti
les undergo when traveling through the experimental setup is delegated to the

Geant4 toolkit. The behaviour of the Geant4 simulation engine in terms of dete
tors

to simulate, physi
s models to use, details of the Monte-Carlo truth to be provided, is


ontrolled at run time via job options 
on�guration.

The behaviour of the generator phase and of the dete
tor response is regularly studied

using referen
e de
ay 
hannels for whi
h LHC disposes of a large high-purity dataset. The


orre
tion of some variables in the Monte-Carlo produ
tion in order to mat
h data better

is 
alled �tuning�. It is espe
ially relevant to the generator phase, where the output of

Pythia and other hadronization tools is 
losely s
rutinized.

As the se
ond phase is the most CPU-intensive, it is possible to spe
ify a set of

requirements (�generator-level 
uts�) to the �rst phase, in order to veto out events that

have no 
han
e to be re
onstru
ted by LHCb, for instan
e, a signal event with a 
harged

tra
k outside of the LHCb a

eptan
e.

2.5.2 The DaVin
i framework

The DaVin
i pa
kage manages the 
reation of physi
al obje
ts su
h as tra
ks from the

output of Gauss or from the dete
tor response to real data-taking. Additionally, DaVin
i


ontains tools to tag the �avour of parti
les, or to re�t events taking 
onstraints su
h as

masses or verti
es into a

ount. This allows, for instan
e, to 
onstrain the masses of all

48



Figure 2.23 � Distributions of the number of tra
ks in B0→ K0
Sπ

+π−
events. Simulated events

are represented in blue, while signal events from data are represented in red.

parti
les to be the �true� mass when 
onsidering a Dalitz plot.

The DaVin
i pa
kage is implemented in su
h a way that Monte-Carlo produ
tions and

real data are treated the same way.

2.5.3 Data/MC dis
repan
ies

Despite regular tuning and an overall ex
ellent performan
e, the LHCb Monte-Carlo pro-

du
tion does not mat
h data perfe
tly, for several reasons. I des
ribe in the following

several sour
es of data/MC dis
repan
ies that are relevant to the analyses des
ribed in

this dissertation.

Our understanding of strong intera
tion and hadroni
 physi
s is limited, and the sim-

ulation of the underlying event is only an approximation. As a result, the kinemati
al

spe
trum of the produ
ts of pp intera
tions and the number of these produ
ts is di�erent

in Monte-Carlo and data. The response of several subdete
tors, su
h as the RICH and

the 
alorimeters, is 
orrelated to the tra
k multipli
ity in the event. Figure 2.23 shows the

di�erent distributions in tra
k multipli
ity of events in data and Monte-Carlo. The tra
k-

�nding e�
ien
y of LHCb is 
orrelated to momenta and to the tra
k multipli
ity, and

so di�ers between data and simulation. The kinemati
al dependen
y of that di�eren
e

means that it depends a priori on the Dalitz plot.

As mentioned in Se
. 2.2.4, performan
es of the RICH dete
tors depend on the re-

fra
tive index n of their radiator. This index is highly sensitive to temperature and

pressure 
hanges through the whole year, a 
hange that is impossible to mat
h perfe
tly

in Monte-Carlo. Additionally, the performan
es of these subdete
tors depend on the tra
k

multipli
ity in the event and on the kinemati
s of parti
les. The PIDCalib tool is used

to reweight Monte-Carlo produ
tions to mat
h the e�
ien
y of a given sele
tion on PID
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variables. The weights are 
al
ulated using a referen
e data sample and the dependen
e

on tra
k multipli
ity and the kinemati
s of the given parti
le is taken into a

ount.

50



Chapter 3

Fast Monte-Carlo method for

ba
kground studies

In this 
hapter, I des
ribe a fast simulation method that I have developed to model the

partially re
onstru
ted ba
kgrounds in B0
d,s→ K0

Sh
+h− modes. I present the strategy of

the method in Se
. 3.1, and then present the study of a fully simulated sample of one of

these ba
kgrounds in Se
. 3.2. I show the results of exporting this study to another sample

of partially re
onstru
ted ba
kground in Se
. 3.3. I dis
uss in Se
. 3.4 the modelling of

a

eptan
e e�e
ts by means of sele
tion 
riteria, and �nally present the results of a full

fast MC simulation in Se
. 3.5.

3.1 Strategy of the fast MC method

Partially re
onstru
ted ba
kground in B0
d,s → K0

S
h+h− modes 
onsists of events su
h

as X → K0
S
h+h−Y , where Y is not being re
onstru
ted (e.g. it is soft or out of the

a

eptan
e). It 
an originate from a variety of 
hannels with di�erent mother parti
les,

missed parti
les, or intermediate resonan
es.

Studying and modelling the partially re
onstru
ted ba
kground is usually done by

generating large samples of fully re
onstru
ted Monte-Carlo (MC) events, whi
h is CPU-


onsuming. As des
ribed in Se
. 2.5, the simulation of the dete
tor is the most expensive

part of the generation of simulation samples in terms of CPU. We thus aim at modelling

the e�e
ts of the dete
tor on the distribution of invariant masses without simulating the

whole dete
tor.

The dete
tor a�e
ts the distributions of physi
al variables be
ause of its �nite resolu-

tion, and be
ause of its �nite a

eptan
e. The proposed fast Monte-Carlo method 
onsists

of smearing generator-level variables event by event, to a

ount for resolution e�e
ts on

invariant masses, after applying some requirements on the generator-level distributions in

order to a

ount for the a

eptan
e e�e
ts.

For most kinemati
 variables, the distributions of variables at generator-level and

re
onstru
tion-level are barely distinguishable. We study the resolution of a variable X
by means of the distribution of
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Figure 3.1 � Mass spe
trum of B0
d,s → K0

Sπ
+π−

(LHCb data) from [52℄. The partially re
on-

stru
ted ba
kground 
an be seen to the left of the Bd,s signal peaks.

∆X = X −Xtrue. (3.1)

In the 
ase of a variable at re
onstru
tion level Xrec, the resolution quanti�es the dete
tor

e�e
t on the variable. We attempt to obtain a 
hoi
e of variables to smear with a para-

metri
 fun
tion modelling their resolutions, in a way that ensures that resolution e�e
ts

on all the invariant masses are fairly well taken into a

ount.

For obvious reasons, we prefer having a set of variables for whi
h the resolutions are not


orrelated. Resolutions of the 
omponents px, py and pz of the three �nal-state-parti
les
momenta do not have these properties (x, y, and z are the usual LHCb 
oordinates de�ned
in Se
. 2.2). We therefore use the resolutions of 1/pz, the polar angle θ, and the azimuthal

angle φ, along with the resolution of mK0
S
. On
e we extra
t the resolution distributions,

we use them to smear the 
orresponding variables, and 
ompute the resulting invariant

masses.

We investigate the results of extra
ting resolution fun
tions from one 
hannel, and

applying them on another. Indeed, the partially re
onstru
ted ba
kground of B0
d,s →

K0
S
h+h

′−
is 
omposed of 
hannels of various types. They 
an di�er by their topologies,

or by the missing parti
le. For instan
e, the following modes 
ontribute to the partially

re
onstru
ted ba
kground of B0
d,s→ K0

S
π+π−

:

• B0→ (K∗0→ K0
S
π0)(ρ0→ π+π−), P→VV topology, missing π0

(massive 
alorimet-

ri
 obje
t);

1

1

The P,V, and S letters stand for pseudo-s
alar, ve
tor, and s
alar, respe
tively.
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• B0→ K0
S
(η→ π+π−π0), P → PS, S→PPP topology, missing π0

;

• B0→ K0
Sπ

+π−γ, nonresonant, missing γ (massless 
alorimetri
 obje
t);

• B0→ K0
S
(η′→ π+π−γ), resonant, missing γ;

• B0→ (K∗0→ K0
Sπ

+)π+π−
, P→VPP topology, missing π+

(massive tra
k).

The invariant-mass distribution of ea
h of these modes is modelled by an Argus

distribution 
onvoluted with a Gaussian. The Argus distribution is parameterized as

f(m; c, s,m0) = N m

m0

(

1−
(

m

m0

)2
)c

.e
− 1

2
s2

(

1−m2

m2
0

)

, (3.2)

where the parameters c, s, and m0 are the 
urvature, slope, and threshold mass, respe
-

tively, and N is a normalization fa
tor.

3.2 Study of a B0→ (K∗0→ K0
Sπ

0)(ρ0→ π+π−) sample

We extra
t the resolutions from a fully simulated sample of roughly 20,000 Monte-Carlo

events of B0 → (K∗0 → K0
Sπ

0)(ρ0 → π+π−). This se
tion only presents the study of

events with Down-DownK0
S
re
onstru
tion, as de�ned in Se
.2.2.3. The results also hold

for events with a Long-Long K0
S re
onstru
tion.

For ea
h parti
le in ea
h event, we extra
t ∆θ, ∆φ, and ∆
1/pz

, along with ∆mK0
S
,

and �t them with analyti
 fun
tions. These are then used to smear the generator-level

variables, to obtain fast Monte-Carlo distributions. These distributions are not 
omplete

fast Monte-Carlo distributions, as we apply here the smearing pro
edure on the generator

level of a fully re
onstru
ted sample. We 
ontrol the results obtained by 
omparing the fast

Monte-Carlo and re
onstru
tion-level distributions of invariant masses. We also 
ompare

the distributions of ∆X for the re
onstru
ted sample Xrec and for the fast Monte-Carlo

sample XfastMC.

Figure 3.2 shows the distributions of ∆θ, ∆φ, and ∆
1/pz

for the π+
with respe
t to its

pz momentum. The three variables show a strong dependen
e on pz. We a

ount for this

dependen
e by handling twelve intervals of pz that 
ontain roughly the same number of

events, and �tting ∆θ, ∆φ, and ∆
1/pz

in ea
h of them. Figure 3.2 shows the distribution

of ∆mK0
S
along the pz(K

0
S
) axis. The resolution of m(K0

S
) depends on the momentum of

theK0
S
, but this dependen
e is ignored in the following as it is smaller than the dependen
e

of other resolutions with respe
t to the momentum.

We model the distributions of ∆θ, ∆φ, and ∆
1/pz

by a sum of two Gaussians in ea
h

interval. Figure 3.3 shows the results of a �t to the resolution distributions obtained for

π+
in a single pz interval. The �t is overall satisfa
tory.
To generate fast Monte-Carlo distributions, we pro
eed as following:
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Figure 3.2 � Distributions versus pz of ∆θ (top, left), ∆φ (top, right), and ∆
1/pz

(bottom, left)

for π+
, and distribution of ∆mK0

S
versus pz (bottom, right).
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• for ea
h event i, generate a random value a

ording to the PDF of ∆mK0
S
. We
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obtain mi
K0

S ,fastMC
= mi

K0
S,true

+ ∆mK0
S

i
;

• for ea
h parti
le, determine in whi
h pz interval it lies, and generate a random value

a

ording to the 
orresponding PDFs to get ∆θ
i
, ∆φ

i
, and ∆

1/pz
i
; we then obtain

θifastMC = θitrue + ∆θ
i
, φi

fastMC = φi
true + ∆φ

i
, and 1/piz,fastMC = 1/piz,true + ∆

1/pz
i
;

• dedu
e the fast MC values of momenta, mK0
Sh

+h′
, mK0

Sh
, mK0

Sh
′, and mhh′

.

Figure 3.4 shows a 
omparison of the re
onstru
ted and fast Monte-Carlo distributions

of mK0
Sh

+h′
. These do not agree perfe
tly well, but given the small amount of partially re-


onstru
ted ba
kground events in our modes of interest, it is good enough for our purpose.

In the same �gure, we also 
ompare the re
onstru
ted and fast Monte-Carlo resolution for

mK0
Sh

+h′
. The shape is sensibly the same, but the fast Monte-Carlo distribution is slightly

narrower. Possible explanations in
lude imperfe
tions of the used resolution fun
tions or

missed 
orrelations between variables.

Figure 3.5 shows the distributions of ba
kground events over the Dalitz plane in re
on-

stru
tion level and fast MC. It also shows the distribution of the di�eren
e between the

two former distributions, divided by the standard error on the di�eren
e. In the follow-

ing, this distribution is referred to as the distribution of pulls between re
onstru
ted and

fast Monte-Carlo distributions. These pulls are small and show no overall stru
ture, thus

showing that the agreement between the re
onstru
ted level and the fast Monte-Carlo is

rather good.
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Figure 3.4 � Left: Distributions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red) B0 →

K∗0ρ0 events. Right: Resolutions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red) B0→

K∗0ρ0 events.
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Figure 3.5 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B0 → K∗0ρ0 mode, with DD re
on-

stru
tion of the K0
S . Left: Re
onstru
ted events. Middle: Fast MC events. Right: Pulls between

the two distributions.

3.3 Study of the resolution model applied to other 
han-

nels

We apply the resolution fun
tions extra
ted from B0 → K∗0ρ0 de
ays, using the same

pro
edure and pz intervals as in Se
. 3.2, to a variety of partially re
onstru
ted samples.

The fully simulated and fast Monte-Carlo distributions of mK0
Sh

+h′
and ∆m

K0
S
h+h

′ are then


ompared, as well as the distributions of events over the Dalitz plane. As in Se
. 3.2, this

is not a 
omplete fast Monte-Carlo distribution, as we still use the generator level of a

fully re
onstru
ted sample.

In this se
tion I dis
uss the results of this pro
edure applied to a sample of B0 →
K0

S (η
′ → π+π−γ) de
ays. This 
hannel appears as a ba
kground in the K0

Sπ
+π−

spe
-

trum, and the missed parti
le is massless, whi
h makes this 
ontribution dangerous to

our analysis. In Annex C, I summarize the results of the same pro
edure applied to other


hannels of partially re
onstru
ted de
ays.

Figure 3.6 shows the distribution of mK0
Sh

+h′
near the threshold for re
onstru
ted and

fast MC events, as well as the resolution distributions formK0
Sh

+h′
. The distributions agree

quite well for mK0
Sh

+h
′
, with a well-reprodu
ed behaviour at the threshold. As before, the

distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC 
ase. Figure 3.7 shows the

distributions of events over the Dalitz plane for re
onstru
ted and fast MC events, along

with the distribution of the pulls between these two distributions. The distributions are

similar, and the pulls are rather small and show no stru
ture. Overall, the result we

obtain with this 
hannel are satisfa
tory.

3.4 Study of generator-level re
onstru
tion e�e
ts

The generator-level distributions that we smeared in Se
. 3.2 and Se
. 3.3 are not those

that are dire
tly produ
ed by the Gauss generation. They 
ontains events that pass the
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Figure 3.6 � Left: Distributions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red) B0 →

K0
Sη

′
events. Right: Resolutions of mK0

Sh
+h′

for re
onstru
ted (blue) and fast MC (red) B0 →
K0

Sη
′
events.
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Figure 3.7 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B
0→ K0

Sη
′
mode, with DD re
onstru
-

tion of the K0
S . Left: Re
onstru
ted events. Middle: Fast MC events. Right: Pulls between the

two distributions.

trigger, re
onstru
tion, and a step 
alled �stripping�, all of whi
h modify the generator-

level distributions of invariant masses and momenta. In this se
tion I dis
uss the possibil-

ity of a

ounting for these e�e
ts by applying sele
tion 
riteria on variables available at

generator level. To do so, we use the same samples as in Se
. 3.2 and 
he
k the 
onsisten
y

of our pro
edure on the samples used in Se
. 3.3.

3.4.1 K0
S
re
onstru
tion mode

Firstly, we have to determine if a K0
S in the generator level would be re
onstru
ted as

Down-Down or as Long-Long. For this purpose, we study four variables: the z position

of the K0
S
end vertex, the radial 
oordinate r of this vertex in the LHCb usual 
oordinate
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Table 3.1 � Sele
tion 
riteria applied on events to assign them to Long-Long re
onstru
tion.

A minz> 30mm & z(K0
S
end vertex) < 650mm

B r(K0
S end vertex) < 35mm

C z(K0
S
end vertex) < 250mm

D θ(K0
S ) < 0.07 rad

E z(K0
S
) < 300mm || (z(K0

S
) + 1.2×minz) > 550mm

Total 
ut A & B & (C || (!C & D)) & E

Table 3.2 � Summary of DD-LL requirements on all 
hannels under study. E�
ien
y is de�ned

as the portion of events from the 
orresponding K0
S re
onstru
tion mode that pass the 
riterion;

power is de�ned as the proportion of events from the other K0
S re
onstru
tion mode that do not

pass the 
riteion.

Channel E�
ien
y (%) Power(%)

B0→ K∗0ρ0 98.7 99.7

B0→ K0
S
η 98.9 99.5

B0→ K0
S
π+π−γ 98.4 99.7

B0→ K0
Sη

′
98.8 99.7

B+→ K∗+π+π−
98.0 99.6

B0→ K∗0φ 98.5 99.7

B+→ K∗+φ 98.6 99.8

B0
s → K∗0φ 98.4 99.6

system, the polar angle θ of the K0
S
, and a variable named minz. This variable a

ounts

for the fa
t that a tra
k 
an be re
onstru
ted as Long only if it 
rosses at least three

VELO stations (see Se
. 2.2.3). To design the sele
tion 
riteria on these variables, we


onsider the VELO as a 
ylinder of radius r = 35mm.

Figure 3.8 shows the distribution of the K0
S end vertex, θ, and minz for Down-Down

and Long-Long re
onstru
tion in fully simulated B0 → K∗0ρ0 events. We 
an a
hieve a

good separation between the two samples with rather simple requirements presented in

Table 3.1.

These requirements are then tested on all other available 
hannels, and the results

are shown in Table 3.2. Here, the e�
ien
y is de�ned as the per
entage of Long-Long

events that pass these requirements, and the power is de�ned as the per
entage of Down-

Down events that do not pass these requirements. Both the e�
ien
y and the power are


onsistently high for all 
hannels, and do not vary signi�
antly between them.
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Figure 3.8 � Left: Distributions of the r 
oordinate of the K0
S end vertex for Down-Down events

(blue) and Long-Long events (red), in the r <100mm region. Middle: Distributions of the θ
angle of the K0

S versus the K0
S end vertex z position in the z < 700mm region (top: DD, bottom:

LL). Right: Distributions of minz with respe
t to the z position of the K0
S end vertex (top: DD,

bottom: LL), in the z < 700mm region.

3.4.2 Reprodu
tion of the generator-level distributions

We generate with Gauss 20,000 events of ea
h of the following modes: B0 → K∗0ρ0,
B0 → K0

S
η, B0 → K0

S
η′, B0 → K0

S
π+π−γ, B0 → K∗0φ, and B+ → K∗+φ. The sele
tion

applied to these Gauss samples are presented in Table 3.3. Most of them are des
ribed in

Ref. [62℄, but some values are 
hanged to obtain a higher e�
ien
y of the fully simulated

samples.

2

We also add requirements on θ(B) and on the B-meson �ight distan
e. These

do not a�e
t the e�
ien
y of fully simulated samples, and improve the agreement between

p
z,Gauss

(B) and pz,full(B).
Figure 3.9 shows a 
omparison between the distributions of mK0

Sh
, mK0

Sh
′, mhh′

, and

pz(B) at generator level for fully simulated samples and ourGauss samples of B0→ K∗0ρ0

events. The invariant mass distributions are similar, while the pz(B) fully re
onstru
ted

distribution is shifted towards higher values. This 
ould 
ome from a χ2
sele
tion on

the B vertex, as this variable is 
orrelated with the momentum of the B meson. The

momentum of the B meson a�e
ts our smearing pro
edure, as resolutions depend on pz.
We a

ount for this e�e
t by reweighting the pz(B) distributions. Figure 3.10 shows

the distributions of the weights 
al
ulated for all 
hannels of whi
h we generated a Gauss

2

This readjustment is ne
essary be
ause the sele
tion 
riteria quoted in Ref. [62℄ are applied to

re
onstru
tion-level variables, whi
h are a�e
ted by the resolution.
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Table 3.3 � List of generator-level sele
tions

Down-Down Long-Long

pz(B) > 25GeV/c
pT (B) > 1.5GeV/c
∑

daughters

pT > 3GeV/c

pT,daugh > 800 GeV/c for at least 2 B-meson daughters

cos(DIRAB) > 0.999
pT (h1) > 250GeV/c
pT (h2) > 250GeV/c
pK0

Sdaughters
> 2GeV/c

p(K0
S ) > 6 GeV/c n/a

θ(K0
S
) > 0.01 rad

θ(K0
S ) < 0.35 rad

θ(h(
′)) > 0.01 rad

θ(h(
′)) > 0.4 rad

zK0
Sendvertex

< 2400mm n/a

zK0
Sendvertex

> 100mm n/a

RK0
Sendvertex

> 15mm n/a

B-meson �ight distan
e > 1.5mm B-meson �ight distan
e > 1mm

sample. For a given bin i and 
hannel j, we de�ne the weight wj
i
as following:

wj
i =

Nj,full
i

Nj,Gauss
i
× Nj,Gauss

Nj,full

,with Nj,(Gauss,full) =
∑

i

Ni
j,(Gauss,full). (3.3)

Within un
ertainties, all these weights are 
ompatible. We 
an then reweight our

generator-level distributions using weights from all our fully simulated samples.

3.5 Complete fast Monte-Carlo test on B0→ K∗0ρ0

In this se
tion I present a 
omparison between fast Monte-Carlo events and the

re
onstru
tion-level in fully re
onstru
ted Monte-Carlo events. We generate 50,000

B0 → K∗0ρ0 events using Gauss �rst stage (see Se
. 2.5.1), with generator-level 
uts

on the produ
tion angle of the daughters, to ensure that they are in the LHCb a

ep-

tan
e. We also apply a sele
tion on mK0
Sh

+h′
, for
ed to be larger than 4800MeV/c2. We

apply the generator-level 
uts des
ribed in Se
. 3.4.1 and in Table 3.3 to our generated

sample; we apply weights as des
ribed in Se
. 3.4.2.

Prior to the smearing, we 
ombine all the fully re
onstru
ted samples used in Se
. 3.2

and Se
. 3.3 to extra
t new resolution fun
tions. The larger number of events allows to
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Figure 3.9 � Distributions of mK0
Sh

(top, left), mK0
Sh

′ (top, right), mhh′
(bottom, left), and

pz(B) (bottom, right) for fully simulated (blue) and generated (red) events of B0 → K∗0ρ0 at

generation-level. The agreement between 
entre-of-mass distributions is satisfa
tory, but the

z momentum distributions do not agree well between fully simulated samples and generated

samples.

divide the pz axis into 24 intervals and the �t is of better quality. We then smear the

generator-level variables as des
ribed in Se
. 3.2.

The resulting mK0
Sh

+h′
and ∆m

K0
S
h+h

′ distributions are shown and 
ompared to the

fully simulated distributions for the same 
hannel in Fig. 3.11 with Down-Down and

Long-Long K0
S re
onstru
tion. The level of agreement between the two distributions is
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Figure 3.10 � Distribution of the weights 
al
ulated using Eq. 3.3 for di�erent 
hannels of partially

re
onstru
ted ba
kground.

good enough for our purposes. Figure 3.12 shows the distribution of the Dalitz plane in

fast Monte-Carlo events, and in fully simulated events, as well as the pulls between these

two distributions. The pulls are larger than in Se
. 3.3, but overall satisfa
tory given the

small amount of partially re
onstru
ted ba
kground events that we expe
t.

3.6 Con
lusion

In the 
ase of the partially re
onstru
ted ba
kground of B0
d,s → K0

S
h+h

′−
, it is possible

to a

ount for resolution e�e
ts on invariant masses by smearing event-by-event the θ, φ,
1/pz of ea
h re
onstru
ted parti
le, along with the K0

S
mass. The fun
tions we use to

smear these variables 
an be extra
ted from only one Monte-Carlo sample, and exported

from one 
hannel to another, regardless of the missed parti
le or the type of re
onstru
ted

hadron.

We also demonstrated that we 
an emulate the a

eptan
e e�e
ts on our samples by

using sele
tion 
riteria on variables available at generator level only, and by reweighting

the resulting sample. This opens the possibility to generate a large amount of events

with Gauss, and to obtain sensible distributions of invariant masses both in Down-Down

and Long-Long K0
S
re
onstru
tion modes. This pro
edure 
an be useful in modelling

ba
kgrounds 
oming from a large variety of 
hannels, su
h as the partially re
onstru
ted

ba
kground.

However, this pro
edure still su�ers from ina

ura
ies in several levels. Firstly, the

fun
tions we use to �t resolution distributions are not perfe
t, and there are dependen
ies

that we did not take into a

ount, for instan
e between the distributions of ∆φ for the
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Figure 3.11 � Distributions of mK0
Sh

+h
′
(left) and ∆m

K0
S
h+h

′ (right) for full (blue) and fast (red)

Monte-Carlo methods, with Down-Down (top) and Long-Long (bottom)K0
S re
onstru
tion mode.

two 
harged tra
ks, whi
h 
ould explain the ∆m
K0

S
h+h

′ behaviour in Se
. 3.2 and Se
. 3.3.

The generator-level 
uts 
ould be improved using Monte-Carlo samples disposing of the

whole generator-level information, whi
h would improve the agreement between invariant-

masses distributions shown in Fig. 3.11 and in Fig . 3.12. The weighting pro
edure would

greatly bene�t from a 
areful study and larger samples. Finally, this pro
edure has only

been tested on 
harmless ba
kgrounds. The di�erent topology of open-
harm de
ays


ould require another set of generator-level 
uts. Overall, this method provides su�
ient

modelling power for re
onstru
tion e�e
ts on invariant masses for the analyses des
ribed

in this dissertation.
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Figure 3.12 � Left: Distributions of fully simulated B0→ K∗0ρ0 events with Down-Down (top)

and Long-Long (bottom) K0
S re
onstru
tion mode over the Dalitz plane. Middle: Distributions

of fast Monte-Carlo B0 → K∗0ρ0 events with Down-Down (top) and Long-Long (bottom) K0
S

re
onstru
tion mode over the Dalitz plane. Right: Pulls between the two distributions with

Down-Down (top) and Long-Long (bottom) K0
S re
onstru
tion mode.
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Chapter 4

Measurement of the bran
hing fra
tions

of the B0
d,s→ K0

Sh
+h

′−
modes

In this 
hapter I des
ribe the measurement of the bran
hing fra
tions of the B0
d,s →

K0
S
h+h

′−
modes. In Se
. 4.1, I shortly present the analysis strategy. I then review in

Se
. 4.2 the formalism and methods employed in the mass �t and in the extra
tion of

the signal shapes over the Dalitz plot. The di�erent event spe
ies 
onsidered in ea
h

mass spe
trum and their modelling are des
ribed in Se
. 4.3. The results of the mass

�t to data are shown in Se
. 4.4, and the results of the toy studies used to validate the

model are shown in Se
. 4.5. I then present the di�erent sour
es of systemati
 un
ertainties

originating from the mass �t in Se
. 4.6. Finally, I dis
uss the extra
tion of the distribution

of signal events over the Dalitz plot in Se
. 4.7, and present the measurements of the

bran
hing fra
tions in Se
. 4.8.

4.1 Analysis strategy

The �rst LHCb analysis of the B0
d,s→ K0

S
h+h

′−
modes, performed with 1 fb

−1
of 2011 data,

was published in 2012 [63℄ and updated in 2013 [52℄. The present analysis integrates the

additional 2 fb

−1
of data from 2012, disposes of more simulated samples, and makes use of

more re�ned analysis te
hniques on several points. Our aim is to update the measurements

of the bran
hing fra
tions of the modes previously observed, along with observing the

B0
s → K0

SK
+K−

de
ay for the �rst time. In order to avoid any experimenter bias in

this sear
h, we blind the region of the B0
s → K0

S
K+K−

signal in the mass �t. Finally,

the result of the mass �t performed in this analysis is one of the key inputs to the three

Dalitz-plot analyses performed on the Cabibbo-favoured signal modes.

We 
onsider separately four di�erent �nal states: K0
S
K+K−

, K0
S
K+π−

, K0
S
π+K−

,

and K0
Sπ

+π−
. However, due to experimental di�eren
es, we have to simultaneously �t 24

di�erent spe
tra in total. Firstly, we have to split our data between the Down-Down and
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Long-Long K0
S
re
onstru
tion modes

1

, des
ribed in Se
. 2.2.3, as the shapes and yields

of the di�erent event spe
ies are expe
ted to di�er between these two 
on�gurations.

Se
ondly, we have to 
onsider separately the 2011 data and two di�erent data-taking

periods in 2012, due to the di�eren
e in the trigger 
on�guration between these periods

des
ribed in Se
. 2.4.

Ea
h of these mass spe
tra 
ontains signals events from B0
and B0

s de
ays, as well as

several spe
ies of ba
kgrounds. In the 
ase of 
omponents that are well separated from the

signal, su
h as the 
harmed ba
kground des
ribed in Se
. 4.3.2, we use a veto to remove

most of their 
ontributions. We des
ribe in the following the di�erent strategies adopted

for the remaining ba
kgrounds.

The 
ombinatorial ba
kground, des
ribed in Se
. 4.3.5, is �rst suppressed using some

presele
tion 
riteria that have a high e�
ien
y on signal. It is then further suppressed us-

ing Boosted De
ision Tree (BDT optimization) methods, trained using Monte-Carlo as the

signal referen
e and events from the upper-mass sideband (m(K0
S
h±h

′∓) > 5450MeV/c2)
as the 
ombinatorial ba
kground referen
e. In order not to bias the Dalitz plot, the

variables used as an input to the BDT method are mainly topologi
al variables. These

methods produ
e an output variable for whi
h the signal and 
ombinatorial ba
kground

distributions are well separated, as shown in Fig. 4.1. We then apply a sele
tion on this

variable so that the resulting signal and 
ombinatorial ba
kground yields maximize the

�gure of merit

FoM =
N(Sig)

√

N(Sig) + N(Bkg)
(4.1)

for all observed signal modes. N(Sig) and N(Bkg) are the number of signal and ba
k-

ground events after the sele
tion is applied. For the unobserved B0
s → K0

SK
+K−

mode,

we use the Punzi �gure of merit [64℄

FoM =
ǫsig

√

a
2
+N(Bkg)

(4.2)

with a = 2, where ǫsig is the signal e�
ien
y, estimated by means of Monte-Carlo samples.

We use two di�erent sets of requirements on the BDT output variable for ea
h spe
trum,

depending on the signal 
omponent that we use to 
al
ulate the �gure of merit. Indeed,


onsidering di�erent signal 
omponents for the parameterN(Sig) will result in di�erent 
ut
values as 
ross-se
tions are di�erent between B0

and B0
s signals. Sele
tion 
uts optimized

using a �gure of merit 
al
ulated with the Cabibbo-favoured mode will be referred to as

�loose�, whereas those 
al
ulated with the Cabibbo-suppressed mode will be refereed to

as �tight�.

1

We do not dispose of a dedi
ated stripping line for Long-Down K0
S

andidates.
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Figure 4.1 � Left: distribution of the output variable of a BDT method for signal Monte-Carlo

events (red) and upper-mass sideband events (blue). Dashed histograms represent the distri-

bution of the BDT output variable in training samples, while dots represent the distribution

of the BDT output variable in test samples. Right: value of the �gure-of-merit 
al
ulated on

B0→ K0
SK

+K−
, 2011, Down-Down signal for di�erent BDT sele
tion 
ut values. The maximum

is 
hosen as the 
ut value for the loose BDT sele
tion in that sample.

We apply a sele
tion on parti
le identi�
ation variables (PID 
uts) to redu
e the


ontributions from misidenti�ed signal events, or 
ross-feeds, with 
riteria of the type

(PROBNN(Pi/K)− PROBNN(K/Pi) > α). (4.3)

These likelihood-based PID 
lassi�ers are des
ribed in Se
. 2.2.4. The threshold α is

optimized for ea
h spe
trum, using the same �gure of merit as in the 
orresponding BDT


ut optimization. The value of α is therefore di�erent between the loose and the tight

optimizations. The values of α are also 
hosen in su
h a way that no event 
an 
ontribute

to two di�erent spe
tra.

Partially re
onstru
ted ba
kground events, already dis
ussed in Se
. 3, peak at a

lower re
onstru
ted K0
Sh

±h
′∓

invariant mass than signal events. In order to redu
e the

number of partially re
onstru
ted ba
kground events, we in
lude in the �t events with a

re
onstru
ted K0
S
h±h

′∓
mass between 5150MeV/c2 and 5800MeV/c2.

The e�
ien
y of the trigger, stripping, and sele
tion 
riteria is not 
onstant over the

Dalitz plane. We estimate its distribution using Monte-Carlo simulations, 
orre
ted for

data/MC dis
repan
ies in the tra
king and the trigger e�
ien
ies. The total e�
ien
y is

taken as the fa
torized produ
t of three 
omponents

ǫtot = ǫgenǫsel|genǫPID|(sel|gen), (4.4)
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where ǫgen is the e�
ien
y of the generator-level 
uts in the Monte-Carlo, ǫsel|gen is the

trigger, sele
tion, and stripping e�
ien
y, and ǫPID|(sel|gen)
is the PID e�
ien
y, estimated

using the PID
alib tool dis
ussed in Se
. 2.5.3. The �|� symbol states that the e�
ien
y

is 
al
ulated using samples that passed the sele
tion 
orresponding to the phases on the

right of the symbol. These e�
ien
ies are 
orre
ted for di�eren
es between data and

Monte-Carlo in tra
king and trigger e�
ien
ies. This is done in LHCb by a standard

re
ipe based on kinemati
s-dependent 
orre
tion tables. Unfortunately, a problem was

very re
ently dis
overed in the tables used in the 
orre
tion of the trigger e�
ien
y and

is now under study in the 
ollaboration. The results presented in this dissertation will be


onsequently updated before the �nal publi
ation.

We perform a simultaneous unbinned maximum likelihood �t to the 24 re
onstru
ted

B mass spe
tra in order to extra
t the signal yields. We also perform a se
ond �t, letting

only the signal and 
ombinatorial ba
kground yields to vary, in order to extra
t sWeights.

These sWeights allow to estimate the distribution fB0
d,s

→K0
Sh

+h′−(m′, θ′) of signal events

over the Dalitz plane as

ǫ =

∑

e∈data
sW (e)

∑

e∈data

sW (e)
ǫ(e)

, (4.5)

where sW (e) and ǫ(e) are the sWeight asso
iated to the event e and the signal e�
ien
y

of the event e, respe
tively. We estimate the total e�
ien
y of signal events

ǫtot =

∫∫

sqDP

fB0
d,s

→K0
Sh

+h
′−(m′, θ′)ǫB0

d,s
→K0

Sh
+h

′−(m′, θ′)dm′ dθ′, (4.6)

where the integration is performed over the square Dalitz plot variables m′
and θ′, de-

s
ribed in Se
. 1.3.2. The e�
ien
y-
orre
ted signal yield of a parti
ular 
hannel is then

N corr
B0

d,s
→K0

Sh
+h′− = ǫtotNB0

d,s
→K0

Sh
+h′− , (4.7)

where NB0
d,s

→K0
Sh

+h′− is the yield from the signal �t. The bran
hing fra
tion of ea
h signal

mode is then

B(B0
d,s→ K0

S
h+h

′−) =
N corr

B0
d,s

→K0
Sh

+h′−

L.σpp→bb.fd,s
(4.8)
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where fd,s is the fra
tion of b quarks hadronising to B0
or B0

s mesons, L is the integrated

luminosity, and σpp→bb is the 
ross-se
tion of bb pair produ
tion in LHCb. The two last

parameters 
an
el out when we 
onsider ratios of bran
hing fra
tions of K0
S
h±h

′∓
modes,

and the un
ertainty on the fs/fd ratio is smaller than the un
ertainty on fd and fs
individually. Therefore, we aim at measuring the ratios

B(B0
d,s→ K0

S
h+h

′−)

B(B0→ K0
S
π+π−)

=
fd,s
fd

N corr
B0

d,s
→K0

Sh
+h′−

N corr
B0→K0

Sπ
+π−

. (4.9)

My personal 
ontribution to this analysis is detailed in the following, and is fo
used

on the extended maximum likelihood �t to data, and on the extra
tion of the signal

distribution over the Dalitz plane.

4.2 Tools and formalism of the B-meson invariant mass

�t

4.2.1 The unbinned maximum extended likelihood �t

Maximum-likelihood estimation is a widely used method of �tting parameters of a model

to some data. For a variable x, we 
onsider a model f , fun
tion of a parameter θ.2 Given

a set of measurements xi, the likelihood of the model is

L(θ) =
N
∏

i=1

f(xi, θ), (4.10)

whi
h is a fun
tion of θ. The maximum-likelihood estimator θ̂ for θ is then the value of θ
that maximizes the likelihood.

3

Maximum likelihood estimators are generally asymptoti-


ally unbiased and e�
ient for large data samples.

In the 
ase where several event spe
ies are present in the model, the number Ni of

events in ea
h event spe
ies is itself a random variable. In the general 
ase, it follows a

Poisson distribution with the observed number of event parameter Ni,0

f(Ni) =
NNi,0

i

Ni,0!
e−Ni . (4.11)

2

All the following assertions and formulae extend naturally to the 
ase where there are several param-

eters and/or variables.

3

As this value also maximizes the logarithm of the likelihood, it is often preferred to work with the

logarithm.
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In
luding this term in the model f(x, θ), and de�ning N0 =
∑

i

Ni,0 and N =
∑

i

Ni, the

extended likelihood is de�ned as

L(θ;Ni) =
e−N

N0!

N0
∏

i=1

f(xi, θ;Ni),− ln(L) = N +

N0
∑

i=1

ln (f(xi, θ;Ni)) . (4.12)

In this expression, the normalization term N0! of the Poisson law was dropped, as it does

not 
hange the estimator for θ.

4.2.2 Gaussian 
onstraints

One of the advantages of the likelihood estimator is that it is possible to �plug in� an

external knowledge about some parameters by adding a term to the log-likelihood fun
tion.

This e�e
tively 
onstrains the parameter by adding a penalty to the likelihood. We often


hoose so-
alled �Gaussian 
onstraints� that result in the likelihood

L′(θ) = L(θ)× e
− (θ−θ0)

2

2σ2
θ , (4.13)

where θ0 is the 
entral value of the 
onstraint and σθ is its un
ertainty. Gaussian 
on-

straints are often used to allow a proper 
onvergen
e of a �t where the sensitivity to one

or several parameters is poor.

4.2.3 The sPlots method

Subtra
ting ba
kground from distributions in physi
s analyses 
an be performed in sev-

eral ways. The sPlots method [65℄ uses the 
ovarian
e matrix extra
ted from a �t to a

dis
riminating variable X to disentangle the signal and ba
kground distributions of some


ontrol variables Yi. This 
ovarian
e matrix is extra
ted from a �t in whi
h only the yields

of the di�erent event spe
ies present in the dataset are varied.

Let a model with NS event spe
ies, ea
h with a yield noted Nk and a normalized PDF

noted fk. The sPlots method de�nes for ea
h event e and event spe
ies n the weight

sPn(e) =

NS
∑

j=1

Vnjfj(Xe)

NS
∑

k=1

Nkfk(Xe)

, (4.14)

where Vnj is the 
ovarian
e between the yields of spe
ies n and j. The estimated distribu-

tion of ea
h 
ontrol variable Yi for the event spe
ies n is denoted sMn(Yi) and is de�ned

by
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NnsMn(Yi)δYi =
∑

e⊂[Yi−δYi,Yi+δYi]

sPn(e). (4.15)

In the presen
e of spe
ies with �xed yields, Eq. 4.15 be
omes

Nn.sMn(Y ).δY =
∑

e⊂[Y−δY,Y+δY ]

sPn(e) + cn.M0(Y ), (4.16)

where M0(Y ) is the distribution of the variable Y for the ensemble of spe
ies with �xed

yields. The parameter cn is extra
ted from the 
ovarian
e matrix of the �t and is

cn = Nn −
NS
∑

j=1

Vnj, (4.17)

where Nn and Vnj are de�ned as in Eq. 4.14. The parameter NS is the number of spe
ies

with varying yields.

The RooFit implementation of the sPlot method does not allow to �x a part of the

yields in the �t. We dis
uss in Annex A the pitfalls of the 
urrent implementation and

propose a new implementation that we use in the following.

4.3 The B-meson invariant mass �t model

In this se
tion, we review the di�erent event spe
ies present in our dataset and their

models in the mass �t.

4.3.1 B0
and B0

s signal

The signal is modelled by a double Crystal-Ball distribution, whi
h is the sum of two

Crystal-Ball distributions [66℄, de�ned by

t = m− µ,

F (m) =

{

exp(−t2/2σ2) if t/σ > −α
( n
|α|)

nexp(−α2/2)(n−α2

|α| − t
σ
)−n

if t/σ ≤ −α
(4.18)

This distribution 
ombines a Gaussian-type 
ore, parameterized by µ and σ, and a

radiative tail, parameterized by α and n. Depending on the sign of α, the tail 
an be on

the left or on the right of the Gaussian 
ore. Figure 4.2 shows an example of a Crystal-

Ball distribution with a tail on the left, superimposed with a Gaussian distribution for


omparison.
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Figure 4.2 � Example of a Crystal-Ball distribution 
entered around 5280MeV/c2, with a tail on

the left (solid line). The distribution drawn with a dashed line is a Gaussian with the same µ
and σ (normalization has been 
hanged a

ordingly).

The two Crystal-Ball distributions of ea
h signal 
omponent share their Gaussian

parameters, and have their tails on opposite sides. The left-hand side tail a

ounts for

radiative energy loss, while the right-hand side tail a

ounts for small sto
hasti
 dispersion.

The fra
tion of the distribution with the tail on the left is denoted f , for a total of 7

parameters per signal 
omponent. Considering that there are two signal 
ontributions

per spe
trum (B0
and B0

s mesons), we have to 
onstrain some of the parameters in the

�t to data. For that purpose, we �rst perform a simultaneous �t to fully simulated signal

Monte-Carlo samples, using the following �t model:

• The turnover point α0 and the tail parameter n0 of the left-hand side tail are di�erent

for ea
h re
onstru
tion mode and data-taking period, but are the same for the B0

and B0
s mesons, as well as for Down-Down and Long-Long 
andidates.

• The parameters α1 and n1 of the right tail are the same in all the modes, data-taking

periods, and B meson types. They are thought to be related to tra
king e�e
ts, and

all the modes under study have similar kinemati
s at �rst order.

• The fra
tion f is assumed to be the same for the B0
and B0

s mesons, and the Down-

Down and Long-Long re
onstru
tion modes, but is taken as di�erent in the di�erent

re
onstru
ted modes.

• The parameters µ of both B0
and B0

s are free to vary in the �t and are the same

for all re
onstru
tion modes and invariant masses.
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• The width of the K0
S
π+π−

de
ays is varied in the �t and two (multipli
ative) s
ale

fa
tors for the widths of the K0
SK

±π∓
and K0

SK
+K−

de
ays are also free to vary in

the �t. The ratio of the widths of Down-Down and Long-Long 
andidates is assumed

to be the same, in order to redu
e the number of free parameters. The ratio of the

widths of B0
and B0

s is also assumed to be 
ommon between all re
onstru
tion modes

and data-taking periods.

Fits to Monte-Carlo samples are shown in Fig. 4.3, and the results are satisfa
tory.

In the �t to data, we �x all the tail parameters and the fra
tions, but let the Gaussian

parameters µ and σ vary, as well as the multipli
ative fa
tors.

4.3.2 Charmed 
ontributions

Sub-de
ays with 
harmed intermediate states, su
h as B0→ (D0→ K+π−)K0
S
, have di�er-

ent physi
s properties than the signal and are ba
kgrounds to our analysis. Furthermore,

they do not interfere with our signal be
ause of the long lifetime of the 
harmed mesons.

As su
h de
ays generally have larger bran
hing fra
tions than our signal we veto them

out. We thus apply a sele
tion on the invariant mass of the daughters of the 
harmed

hadron. Figure 4.4 shows this 
ontribution in data events re
onstru
ted a

ording to

the K0
S
K+π−

mass hypothesis and that passed the trigger requirements, along with the

distribution obtained from simulated B0→ K0
SK

±π∓
signal events.

We also have to take into a

ount misidenti�
ation of one of the daughters. For

instan
e, B → (D0 → K+π−)K0
S
de
ays 
an also 
ontribute to the K0

S
π+π−

spe
trum,

and are also vetoed there.

4.3.3 Λ ba
kground

Another sour
e of ba
kground 
omes from Λ baryons misidenti�ed as K0
S
mesons, as the

proton from the Λ de
ay has been wrongly identi�ed as a pion. Figure 4.5 shows the

distribution of K0
S
π+π−

data events on the proton PID of one of the K0
S
daughters and

the mass of the K0
S
using a proton hypothesis for this K0

S
daughter. A 
lear peak near

the Λ mass is present, indi
ating the presen
e of the Λ baryon ba
kground in data.

We veto out this 
ontribution by imposing that an event is either outside the

|m(K0
S as Λ) − m(Λ)| < 10MeV/c2 window, or the PID variable ProbNNp of ea
h of the

pion daughters is inferior to 0.05 unities. The e�
ien
y of this requirement is estimated

on MC, and shown to be around 99%.

4.3.4 Beauty baryons ba
kgrounds

The mass of beauty baryons is larger than 5600MeV/c2 and if a proton is misidenti�ed

as a pion or a kaon, may fall into our 
onsidered mass range. We apply an additional

sele
tion 
riterion on the proton PID, required to be inferior to 0.5 unities for both h+

and h′−, in order to veto these ba
kgrounds out.
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Figure 4.3 � Results of mass �ts on simulated signal samples (2011)(Down-Down), using the loose

BDT optimization, shown in logarithmi
 s
ale. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
, and K0

Sπ
+π−

are shown from top to bottom, while B0
de
ays are shown on the left and B0

s de
ays on the

right.
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Figure 4.4 � Re
onstru
ted K+π−
mass (in MeV/c2) from trigged Down-Down B0→ K0

SK
±π∓

data events before sele
tion (left) and from trigged Down-Down B0→ K0
SK

±π∓
simulated events

before sele
tion (right).
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Figure 4.5 � Left (Right): Distributions of sele
ted data events on the re
onstru
ted K0
S mass,


al
ulated using proton mass hypothesis on the π+
(π−

) with respe
t to the proton PID of the

same parti
le.

4.3.5 Combinatorial ba
kgrounds

The dominant sour
e of ba
kground in the analysis is the random 
ombination of tra
ks

from several de
ays. In the LHCb experiment, we do not dispose of a dedi
ated Monte-
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Carlo simulation for su
h 
ontributions. However, we 
ould use spe
i�
 stripping lines

looking for K0
Sh

+h′+ 
andidates. These 
andidates 
an only 
ome from random 
ombi-

nation of tra
ks or other sour
es of ba
kground that we did not 
onsider here, and are

expe
ted to be kinemati
ally 
lose to the 
ombinatorial ba
kground. These stripping lines

have been prepared but 
ould not be in
luded in this iteration of the analysis.

We 
onsider two di�erent shapes for the 
ombinatorial ba
kground: exponential and

linear. Both yield similar results, and we 
hoose the linear shape as a baseline for our

analysis. We add two multipli
ative fa
tors to the linear shape to a

ount for di�eren
es

between Long-Long and Down-Down re
onstru
tion modes and between invariant mass

spe
tra. The slopes for di�erent data-taking periods are 
onsidered independent.

4.3.6 Cross-feeds

Cross-feeds are the 
ontributions to a mass spe
trum K0
S
h±h

′∓
originating from a signal

de
ay B0
d,s→ K0

Sh
±h′′∓, where h′′ is misidenti�ed as an h′. These 
ontributions typi
ally

lie near a signal peak, and thus are dangerous to the �t as they 
an be absorbed in the

tails of signal distributions. We model them by double Crystal-Ball distributions, and �x

all of their parameters (in
luding the parameters µ and σ) to their value extra
ted from

the �t to Monte-Carlo. Figure 4.6 shows the results of some of these �ts.

Even with �xed shape, these 
ontributions are too 
lose to the signal to be prop-

erly a

ounted for by an un
onstrained �t. We thus 
onstraint their yields using known

e�
ien
ies and the yield parameters of the signal yield from whi
h they originate

N(B0→ K0
Sh

±h
′∓ as K0

Shh
′′) = N(B0→ K0

Sh
±h

′∓)f(B0→ K0
Sh

±h
′∓ as K0

Shh
′′), (4.19)

f(B0→ K0
Sh

±h
′∓ as K0

Shh
′′) = ǫPID|sel&gen(B0→ K0

Sh
±h

′∓ as K0
Shh

′′)
ǫsel|gen(B0→ K0

S
h±h

′∓)

ǫsel|gen(B0→ K0
S
h+h′′−)

.

(4.20)

The width of the Gaussian 
onstraint on the parameter f(B0→ K0
Sh

±h
′∓ as K0

Shh
′′)

is derived from un
ertainties on the relevant e�
ien
ies.

4.3.7 Partially re
onstru
ted ba
kgrounds

We already dis
ussed the nature and general properties of partially re
onstru
ted ba
k-

grounds in B0
d,s→ K0

Sh
+h

′−
de
ays in Se
. 3.1. Table 4.1 shows the 
ategories of partially

re
onstru
ted ba
kgrounds that 
ontribute to ea
h re
onstru
ted invariant mass. We

model the shapes of these 
ontributions using the fast Monte-Carlo method des
ribed in

Chapter 3, and �x all their shape parameters in the �t to data.

As these 
ontributions are expe
ted to be small and as their distributions overlap, we


onstrain the yields of ea
h partially re
onstru
ted ba
kground 
ategory using
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Figure 4.6 � Results of the �t of the re
onstru
ted invariant mass of the misidenti�ed signal

de
ays, using the loose optimization of the BDT on 2011, Down-Down simulated signal samples.

Top: on the left, B0 → K0
SK

+K−
as K0

SK
±π∓

; on the right, B0 → K0
Sπ

+π−
as K0

SK
±π∓

.

Bottom: on the left, B0
s → K0

SK
±π∓

as K0
Sπ

+π−
; on the right, B0

s → K0
SK

±π∓
as K0

SK
+K−

.

Table 4.1 � Categories of partially re
onstru
ted ba
kgrounds in
luded in ea
h invariant mass

spe
trum.

Category K0
S
π+π− K0

S
K±π∓ K0

S
K+K−

Charmed(B0
) Yes Yes Yes

Charmless(B0
) Yes Yes Yes

Charmed(B0
s ) Yes Yes No

Charmless(B0
s ) Yes Yes No

Missing γ(B0
, NR) Yes No No

Missing γ(B0
, resonant) Yes No No

N(Cat) = N(Sig)h(Cat)B(Cat), (4.21)

h(Cat) =
1

B(Sig)
ǫ(Sig)

ǫ(Cat)
, (4.22)
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Table 4.2 � Values and statisti
al un
ertainties on yield parameters extra
ted from the �t to data

(loose BDT optimization)

2011 2012(pre-June) 2012(post-June)
N(B0→ K0

S
K+K−)(DD) 281± 19 181± 15 671± 30

N(B0→ K0
SK

+K−)(LL) 222± 17 119± 12 344± 20
N(B0

s → K0
S
K+K−)(DD) 23± 9 2± 6 25± 13

N(B0
s → K0

S
K+K−)(LL) 7± 8 6± 5 8± 7

N(B0→ K0
S
K+π−)(DD) 52± 12 44± 11 73± 14

N(B0→ K0
SK

+π−)(LL) 37± 8 29± 8 30± 9
N(B0

s → K0
S
K+π−)(DD) 152± 15 92± 12 255± 19

N(B0
s → K0

S
K+π−)(LL) 91± 11 51± 8 118± 13

N(B0→ K0
S
K−π+)(DD) 52± 12 47± 11 91± 16

N(B0→ K0
S
K−π+)(LL) 26± 7 21± 8 56± 10

N(B0
s → K0

SK
−π+)(DD) 181± 17 113± 14 307± 22

N(B0
s → K0

S
K−π+)(LL) 115± 12 49± 9 143± 14

N(B0→ K0
Sπ

+π−)(DD) 803± 36 553± 30 1410± 46
N(B0→ K0

S
π+π−)(LL) 471± 27 286± 19 654± 30

N(B0
s → K0

Sπ
+π−)(DD) 65± 18 16± 15 83± 22

N(B0
s → K0

S
π+π−)(LL) 23± 12 15± 8 42± 14

where B(Cat) is the estimated in
lusive bran
hing fra
tion of the 
ategory, and Sig refers

to the Cabibbo-favoured signal mode of the 
orresponding K0
S
h±h

′∓
spe
trum. The pa-

rameter h(Cat) is Gaussian-
onstrained using information from Monte-Carlo simulation,

under the assumption that the e�
ien
ies of all the de
ays within a 
ategory are roughly

equal. In order to a

ount for the la
k of pre
ise knowledge of the e�
ien
ies on partially

re
onstru
ted ba
kgrounds, we multiply the width of the 
onstraint by a fa
tor two.

Ex
ept for radiative de
ays B0→ K0
S
π+π−γ and B0→ K0

S
η′, the bran
hing fra
tions

B(Cat) are not known. We use information from the PDG to obtain an estimate of

the minimum of ea
h in
lusive bran
hing fra
tion. We then perform a �t to data while

�xing the parameter h(Cat as K0
S
h±h

′∓) in order to extra
t an estimate of this bran
hing

fra
tion, and then �x it to the value obtained from this �t.

4.4 Results of the mass �t

Table 4.2 and Table 4.3 show the results of the �t to data on the loose and tight BDT

optimizations, respe
tively. Figure 4.7-4.10 show the 
orresponding �ts for the 2011 data-

taking period. All spe
tra are satisfyingly modelled.

A naive, statisti
al only signi�
an
e of the B0
s → K0

SK
+K−

observation 
an be ob-

tained by performing a �t �xing all B0
s → K0

S
K+K−

yields to 0, and mesuring the di�er-
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Table 4.3 � Values and statisti
al un
ertainties on yield parameters extra
ted from the �t to data

(tight BDT optimization)

2011 2012(pre-June) 2012(post-June)
N(B0→ K0

S
K+K−)(DD) 122± 11 129± 12 299± 17

N(B0→ K0
SK

+K−)(LL) 149± 12 71± 8 140± 11
N(B0

s → K0
S
K+K−)(DD) 5± 3 2± 3 5± 4

N(B0
s → K0

S
K+K−)(LL) 4± 3 1± 2 1± 2

N(B0→ K0
S
K+π−)(DD) 34± 9 29± 8 48± 11

N(B0→ K0
SK

+π−)(LL) 28± 7 23± 6 24± 7
N(B0

s → K0
S
K+π−)(DD) 118± 12 65± 10 222± 18

N(B0
s → K0

S
K+π−)(LL) 78± 10 40± 7 73± 9

N(B0→ K0
S
K−π+)(DD) 42± 10 34± 8 74± 13

N(B0→ K0
S
K−π+)(LL) 22± 6 22± 7 41± 8

N(B0
s → K0

SK
−π+)(DD) 139± 14 90± 11 268± 19

N(B0
s → K0

S
K−π+)(LL) 91± 10 42± 8 102± 11

N(B0→ K0
Sπ

+π−)(DD) 514± 25 392± 23 898± 34
N(B0→ K0

S
π+π−)(LL) 386± 23 239± 17 441± 23

N(B0
s → K0

Sπ
+π−)(DD) 43± 10 16± 8 86± 14

N(B0
s → K0

S
π+π−)(LL) 21± 8 15± 6 38± 8

en
e in NLL. This method yields

∆NLL = −7.70 (loose)

∆NLL = −4.65 (tight)

whi
h 
orrespond to a signi�
an
e of 3.9 and 3.1σ, respe
tively. This di�eren
e in signif-

i
an
e may be related to the fa
t that 
rossfeed events are relatively more abundant in

the tight spe
tra than in the loose spe
tra.
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Figure 4.7 � Result of the simultaneous �t to data (Down-Down, 2011) with the loose BDT

optimisation. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear s
ale and the right on a logarithmi
 s
ale.
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Figure 4.8 � Result of the simultaneous �t to data (Long-Long, 2011) with the loose BDT

optimisation. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear s
ale and the right on a logarithmi
 s
ale.
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Figure 4.9 � Result of the simultaneous �t to data (Down-Down, 2011) with the tight BDT

optimisation. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear s
ale and the right on a logarithmi
 s
ale.
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Figure 4.10 � Result of the simultaneous �t to data (Long-Long, 2011) with the tight BDT

optimisation. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear s
ale and the right on a logarithmi
 s
ale.
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4.5 Validation of the mass �t model

A �t model 
an be tested by means of pseudo-experiments. Performing the �t to these

samples allows to 
he
k the sensitivity to 
ertain parameters, their 
ovarian
e, and the


onvergen
e properties of the model. For ea
h parameter θ and ea
h pseudo-experiment

i, we de�ne the bias

∆i(θ) = θt − θi (4.23)

and the pull statisti


pi(θ) =
∆i(θ)

σi(θ)
, (4.24)

where θt is the value used to generate the toys, θi is the value extra
ted from the �t

to pseudo-experiment i, and σi(θ) is the un
ertainty on θi. In the 
ase of an unbiased

estimator that properly 
overs un
ertainties, the pull statisti
 is expe
ted to follow a

standard Gaussian with mean 0 and width 1. Deviations of the mean from 0 indi
ate a

bias in the �t, while deviations of the width from 1 indi
ate an in
orre
t 
overage of the

un
ertainty.

We test the invariant-mass �t model by means of 500 pseudo-experiments. They are

generated using the �t model with all parameters set to the value extra
ted from the

�t, ex
ept for the yields, whi
h are varied a

ording to their Poisson distribution. We

summarise in Table 4.6 and in Table 4.7 the results of the �t validation pro
edure. When

the deviation from the standard Gaussian is signi�
ant, we 
orre
t the measured value of

a parameter θ with

θcorr = θ0 −
∆(θ)

2
(4.25)

and its un
ertainty δ(θ) with

δ(θ)corr =
δ(θ)

σ(p(θ))
. (4.26)

A systemati
 un
ertainty

δsyst(θ) =
∆(θ)

2
(4.27)

is asso
iated to this 
orre
tion.

Figure 4.14 shows the pull distributions for 2011 K0
S
K+K−

signal yields using the

loose BDT optimization. Tables 4.4 and 4.5 detail the signal yields for whi
h a bias larger

than 2σ was observed in the loose and tight BDT optimizations, respe
tively. The width

of the pulls distribution is always 
onsistent with the unity expe
tation.
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Figure 4.11 � Residuals distributions for yields of K0
Sπ

+π−
2011 signals. Top: B0 → K0

Sπ
+π−

signal, bottom: B0
s → K0

Sπ
+π−

signal. Left: Down-Down, right: Long-Long.

Table 4.4 � Signal yields for whi
h a bias was observed in the loose BDT optimization, along

with the bias. They are 
orre
ted for in the �nal results and a

ounted for in the un
ertainties.

Signal yield Bias

B0→ K0
SK

+π−
(Down-Down)(2011) 1.7± 0.5

B0→ K0
S
π+π−

(Down-Down)(2012a) 3.3± 1.4
B0→ K0

Sπ
+π−

(Down-Down)(2012b) 5.2± 2.0
B0→ K0

S
π+π−

(Long-Long)(2012a) 1.7± 0.8
B0→ K0

S
π+π−

(Long-Long)(2012b) 3.1± 1.4
B0

s → K0
SK

+π−
(Down-Down)(2011) 1.7± 0.7
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Figure 4.12 � Residuals distributions for yields of K0
Sπ

+K−
2011 signals. Top: B0→ K0

SK
−π+

signal, bottom: B0
s → K0

SK
−π+

signal. Left: Down-Down, right: Long-Long.

Table 4.5 � Signal yields for whi
h a bias was observed in the tight BDT optimization, along

with the bias. They are 
orre
ted for in the �nal results and a

ounted for in the un
ertainties.

Signal yield Bias

B0→ K0
S
π+π−

(Down-Down)(2012b) 3.3± 1.6
B0

s → K0
SK

+K−
(Down-Down)(2012b) 2.6± 0.7

B0
s → K0

S
K+π−

(Long-Long)(2011) 0.9± 0.5
B0

s → K0
S
K+π−

(Long-Long)(2012a) 0.9± 0.3
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Figure 4.13 � Residuals distributions for yields of K0
SK

+π−
2011 signals. Top: B0→ K0

SK
+π−

signal, bottom: B0
s → K0

SK
+π−

signal. Left: Down-Down, right: Long-Long.
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Figure 4.14 � Residuals distributions for yields of K0
SK

+K−
2011 signals. Top: B0→ K0

SK
+K−

signal, bottom: B0
s → K0

SK
+K−

signal. Left: Down-Down, right: Long-Long.
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4.6 Estimation of systemati
 un
ertainties

Systemati
 un
ertainties 
an arise from di�erent sour
es, su
h as biases or assumptions

made on model parameters. We 
onsider two types of systemati
 un
ertainties related to

the �t model.

The �rst type is related to parameters that are �xed to values determined from sim-

ulated events. We extra
t these systemati
 un
ertainties by performing several hundreds

of alternative �ts to data, varying all the �xed parameters a

ording to the 
orrelation

matrix of the �t to simulated samples. The distribution of di�eren
es between yields in

the nominal �t and alternative �ts is �tted using a Gaussian distribution. The systemati


un
ertainty on a yield X is then

∆X =

√

(µ

2

)2

+ σ2, (4.28)

where µ and σ are the mean and the width of the Gaussian. The �xed parameters of the

�t model are:

• signal model: the tail parameters of the CB fun
tions (α0, n0,
α1

α0
,

n1

n0
), and the

fra
tion of the two fun
tions, f ;

• partially re
onstru
ted ba
kground model: the two parameters of all the Argus

fun
tions. The threshold is varied within 1MeV/c2 of its nominal value;

• 
ross-feeds model: all the parameters for ea
h 
onsidered event spe
ies.

The se
ond type of systemati
 un
ertainties related to the �t model originates from

the 
hoi
e of the models used in the nominal �t. Toy experiments are used to estimate

the systemati
s due to these e�e
ts: a pseudo-dataset is generated a

ording to the result

of the �t of an alternative model to data; the pseudo-dataset is then �tted with both the

nominal model and the alternative model. The distribution of the di�eren
es of the yields

of the two �ts is �tted with a Gaussian fun
tion. The asso
iated systemati
 un
ertainty

is then estimated as in Eq. 4.28.

Both the partially re
onstru
ted ba
kground and the 
ross-feed shapes su�er from a

large statisti
al un
ertainty due to small Monte-Carlo samples, and it is believed that the

toy exer
ise des
ribed above 
overs any reasonable variation of the shapes. Hen
e, the un-


ertainty due to the 
hoi
e of the model will be estimated for the signal and 
ombinatorial

ba
kground models only. We 
onsider the following alternative models:

• signal: the Cruij� distribution, de�ned as

t = m− µ,

F (m) =

{

exp(−t2/(2σ2
L + α2

Lt
2)) if t/σ ≤ 0

exp(−t2/(2σ2
R + α2

Rt
2)) if t/σ > 0

(4.29)

is taken as an alternative des
ription of the signal;
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Table 4.6 � Systemati
 un
ertainties on signal yields related to �xed parameters of the signal

shapes (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.3 0.2 0.2 0.1 0.8 0.5

B0→ K0
S
K+π−

0.1 0.1 0.1 0.1 0.2 0.1

B0→ K0
SK

−π+
0.1 0.1 0.1 0.1 0.2 0.1

B0→ K0
S
π+π−

1.1 0.9 0.8 0.4 1.7 0.9

B0
s → K0

S
K+K−

0.1 0.1 0.0 0.0 0.2 0.2

B0
s → K0

SK
+π−

0.3 0.2 0.2 0.1 0.4 0.2

B0
s → K0

S
K−π+

0.3 0.2 0.2 0.1 0.5 0.3

B0
s → K0

Sπ
+π−

0.4 0.3 0.2 0.1 0.6 0.3

Table 4.7 � Systemati
 un
ertainties on signal yields related to �xed parameters of the signal

shapes (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.2 0.2 0.1 0.1 0.4 0.1

B0→ K0
SK

+π−
0.1 0.1 0.1 0.0 0.1 0.1

B0→ K0
S
K−π+

0.1 0.1 0.1 0.1 0.2 0.1

B0→ K0
Sπ

+π−
0.6 0.7 0.6 0.3 1.1 0.5

B0
s → K0

S
K+K−

0.0 0.0 0.0 0.0 0.1 0.0

B0
s → K0

S
K+π−

0.2 0.1 0.1 0.1 0.4 0.1

B0
s → K0

SK
−π+

0.2 0.1 0.1 0.1 0.4 0.1

B0
s → K0

S
π+π−

0.2 0.2 0.2 0.1 0.5 0.2

• 
ombinatorial ba
kground: the exponential distribution as taken as an alternative

to the linear shape;

• 
ommon parameters in the 
ombinatorial ba
kground model: in the nominal model,

the ratios of the slopes between data-taking periods and K0
S
re
onstru
tion modes

are 
onstrained. We 
onsider an alternative model where all these 
onstraints are

removed.

Tables 4.6 and 4.7 show the estimated systemati
 un
ertainties on signal yields that

originate from �xed parameters in the signal shapes. Tables 4.8 and 4.9 show the

estimated systemati
 un
ertainties on signal yields that originate from �xed parameters
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Table 4.8 � Systemati
 un
ertainties on signal yields related to �xed parameters of the 
ross-feed

shapes (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.2 0.4 0.1 0.2 0.7 0.4

B0→ K0
S
K+π−

0.5 0.3 0.4 0.2 0.8 0.4

B0→ K0
SK

−π+
0.5 0.2 0.4 0.2 0.8 0.4

B0→ K0
S
π+π−

0.9 0.8 1.0 0.4 2.0 0.9

B0
s → K0

S
K+K−

0.1 0.1 0.1 0.1 0.3 0.1

B0
s → K0

SK
+π−

0.4 0.2 0.3 0.1 0.6 0.3

B0
s → K0

S
K−π+

0.4 0.2 0.3 0.1 0.6 0.3

B0
s → K0

Sπ
+π−

0.3 0.2 0.2 0.1 0.4 0.2

Table 4.9 � Systemati
 un
ertainties on signal yields related to �xed parameters of the 
ross-feed

shapes (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.1 0.2 0.1 0.1 0.6 0.2

B0→ K0
SK

+π−
0.1 0.1 0.1 0.1 0.3 0.1

B0→ K0
S
K−π+

0.1 0.1 0.1 0.1 0.3 0.1

B0→ K0
Sπ

+π−
0.2 0.2 0.2 0.1 0.3 0.1

B0
s → K0

S
K+K−

0.1 0.1 0.1 0.0 0.2 0.1

B0
s → K0

S
K+π−

0.1 0.1 0.2 0.1 0.2 0.1

B0
s → K0

SK
−π+

0.1 0.1 0.2 0.1 0.2 0.1

B0
s → K0

S
π+π−

0.2 0.1 0.1 0.1 0.4 0.1

in the 
ross-feeds shapes.

Tables 4.10 and 4.11 show the estimated systemati
 un
ertainties on signal yields that

originate from �xed parameters in the partially re
onstru
ted ba
kground shapes.

Figure 4.15 shows �ts to simulated signal events using the Cruij� distribution, and

Tables 4.12 and 4.13 show the systemati
 un
ertainties evaluated using this distribution

as an alternative signal model.

Figure 4.16 shows �ts to 2011, Down-Down data using the exponential shape to model

the 
ombinatorial ba
kground and the loose BDT optimization. Tables 4.14 and 4.15

summarise the systemati
 un
ertainties asso
iated with the 
hoi
e of 
ombinatorial shape.

In the �t to data, we fa
torize the parameters of the 
ombinatorial ba
kground shapes

91



Figure 4.15 � Result of the simultaneous �t of the re
onstru
ted invariant mass on simulated

samples of the signal de
ays (Down-Down), using the loose optimization of the BDT and a

Cruij� distribution (logarithmi
 s
ale). K0
SK

+K−
, K0

SK
±π∓

and K0
Sπ

+π−
are shown from top

to bottom, while B0
de
ays are shown on the left and B0

s de
ays on the right.
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Table 4.10 � Systemati
 un
ertainties on signal yields related to �xed parameters of the partially

re
onstru
ted ba
kgrounds shapes (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.1 0.1 0.1 0.1 0.2 0.3

B0→ K0
S
K+π−

0.1 0.0 0.0 0.0 0.0 0.0

B0→ K0
SK

−π+
0.0 0.0 0.0 0.0 0.1 0.0

B0→ K0
S
π+π−

0.1 0.0 0.1 0.1 0.2 0.1

B0
s → K0

S
K+K−

0.0 0.0 0.0 0.0 0.0 0.1

B0
s → K0

SK
+π−

0.1 0.1 0.1 0.0 0.1 0.1

B0
s → K0

S
K−π+

0.1 0.0 0.0 0.0 0.1 0.1

B0
s → K0

Sπ
+π−

0.0 0.0 0.0 0.0 0.0 0.0

Table 4.11 � Systemati
 un
ertainties on signal yields related to �xed parameters of the partially

re
onstru
ted ba
kground shapes (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.1 0.0 0.1 0.0 0.1 0.0

B0→ K0
SK

+π−
0.0 0.0 0.0 0.0 0.0 0.0

B0→ K0
S
K−π+

0.0 0.0 0.0 0.0 0.0 0.0

B0→ K0
Sπ

+π−
0.1 0.0 0.0 0.0 0.1 0.0

B0
s → K0

S
K+K−

0.0 0.0 0.0 0.0 0.0 0.0

B0
s → K0

S
K+π−

0.0 0.0 0.0 0.0 0.1 0.1

B0
s → K0

SK
−π+

0.0 0.0 0.0 0.0 0.0 0.0

B0
s → K0

S
π+π−

0.0 0.0 0.0 0.0 0.0 0.0

in order to 
onstrain the ratio of their value between years and between K0
S re
onstru
tion

modes

α(K0
Sh

±h
′∓)(period)(K0

S mode) = kmodekperiodα(K
0
Sh

±h
′∓)(2011)(DD). (4.30)

We evaluate the systemati
 un
ertainty asso
iated with this 
hoi
e by removing these


onstraints. Tables 4.16 and 4.17 show this systemati
 un
ertainty on ea
h signal yield.
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Table 4.12 � Systemati
 un
ertainties related to the 
hoi
e of the shape of the signal distribution

(loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

2.2 1.3 1.2 0.8 4.2 1.4

B0→ K0
S
K+π−

4.4 2.3 2.8 1.6 5.5 2.6

B0→ K0
SK

−π+
4.4 1.9 2.7 1.6 5.9 2.7

B0→ K0
S
π+π−

10.8 4.1 5.1 3.0 14.4 5.8

B0
s → K0

S
K+K−

0.4 0.4 0.3 0.2 0.7 0.3

B0
s → K0

SK
+π−

6.8 3.8 4.4 2.6 8.0 3.4

B0
s → K0

S
K−π+

4.9 2.3 2.7 1.6 6.6 2.9

B0
s → K0

Sπ
+π−

3.4 1.4 1.8 1.1 5.0 2.3

Table 4.13 � Systemati
 un
ertainties related to the 
hoi
e of the shape of the signal distribution

(tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.9 2.3 1.1 0.7 1.6 1.5

B0→ K0
SK

+π−
2.8 1.7 1.4 1.1 4.1 1.2

B0→ K0
S
K−π+

2.8 1.4 1.3 1.2 4.5 1.2

B0→ K0
Sπ

+π−
7.3 3.9 3.8 2.5 12.1 4.4

B0
s → K0

S
K+K−

0.2 0.8 0.3 0.5 0.3 0.7

B0
s → K0

S
K+π−

4.9 2.9 2.8 1.8 5.8 1.7

B0
s → K0

SK
−π+

3.3 1.8 1.5 1.2 5.4 1.4

B0
s → K0

S
π+π−

2.6 1.5 1.4 1.0 4.6 2.0

4.6.1 Total un
ertainties on yields

Tables 4.18, 4.19, and 4.20 show the un
ertainties on yield parameters of the signal for

2011, 2012 pre-June, and 2012 post-June, respe
tively. The un
ertainties are dominated

by the statisti
al un
ertainty and the systemati
 un
ertainty related to the 
ombinatorial

shape. In parallel to the in
rease of the size of datasets, next iterations of this analysis

will thus have to s
rutinise the modelling of 
ombinatorial ba
kground. The study of

same-sign data samples, formed of K0
S
h+h′+ events, would improve this modelling and

redu
e the systemati
 un
ertainties related to the 
ombinatorial ba
kground.
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Table 4.14 � Systemati
 un
ertainties on signal yields related to the 
hoi
e of 
ombinatorial

ba
kground shape (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
SK

+K−
1.8 2.3 1.5 1.3 2.4 1.6

B0→ K0
S
K+π−

2.5 1.3 1.6 1.1 3.4 1.6

B0→ K0
S
K−π+

2.5 1.2 1.5 1.1 3.6 1.7

B0→ K0
Sπ

+π−
7.5 4.4 5.1 3.1 11.1 5.3

B0
s → K0

S
K+K−

0.4 0.5 0.3 0.1 0.9 0.3

B0
s → K0

S
K+π−

4.8 2.8 3.5 2.0 6.2 2.5

B0
s → K0

SK
−π+

2.9 1.3 1.8 1.1 4.2 1.8

B0
s → K0

S
π+π−

3.9 1.9 2.5 1.2 5.6 2.6

Table 4.15 � Systemati
 un
ertainties on signal yields related to the 
hoi
e of 
ombinatorial

ba
kground shape (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

1.6 2.0 1.9 1.2 2.1 5.0

B0→ K0
SK

+π−
1.9 1.3 1.0 1.1 2.9 0.9

B0→ K0
S
K−π+

1.8 1.1 0.9 1.2 3.3 0.9

B0→ K0
Sπ

+π−
5.8 5.7 4.4 3.0 9.0 5.0

B0
s → K0

S
K+K−

0.3 0.3 0.4 0.2 0.4 0.8

B0
s → K0

S
K+π−

3.5 2.6 1.9 1.7 5.5 3.0

B0
s → K0

SK
−π+

1.9 1.1 0.9 0.8 3.7 1.7

B0
s → K0

S
π+π−

2.4 2.3 1.7 1.0 4.7 2.1
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Figure 4.16 � Result of the simultaneous �t of the data (Down-Down, 2011) with the loose BDT

optimization. K0
SK

+K−
, K0

SK
±π∓

, K0
Sπ

±K∓
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear s
ale and the right on a logarithmi
 s
ale.
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Table 4.16 � Systemati
 un
ertainties on signal yields related to the 
hoi
e of 
ombinatorial

ba
kground model (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
SK

+K−
3.5 2.7 2.5 1.9 7.3 2.6

B0→ K0
S
K+π−

4.0 1.7 3.6 1.5 4.4 3.2

B0→ K0
S
K−π+

4.1 1.5 3.4 1.6 4.8 3.2

B0→ K0
Sπ

+π−
13.2 4.4 7.1 4.6 15.2 10.9

B0
s → K0

S
K+K−

1.3 1.2 1.0 0.7 2.7 0.8

B0
s → K0

S
K+π−

6.1 3.1 5.1 2.6 7.0 3.7

B0
s → K0

SK
−π+

4.0 1.7 3.0 1.4 4.7 3.0

B0
s → K0

S
π+π−

5.4 2.1 3.0 1.9 6.3 5.1

Table 4.17 � Systemati
 un
ertainties on signal yields related to the 
hoi
e of 
ombinatorial

ba
kground model (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

2.9 10.0 2.3 1.6 3.9 9.8

B0→ K0
SK

+π−
3.5 1.8 1.5 1.1 4.7 1.4

B0→ K0
S
K−π+

3.3 1.4 1.4 1.1 5.2 1.4

B0→ K0
Sπ

+π−
8.3 4.0 4.3 3.3 14.3 6.1

B0
s → K0

S
K+K−

1.0 4.4 0.8 0.7 1.2 3.9

B0
s → K0

S
K+π−

5.3 2.8 2.7 1.8 6.2 2.1

B0
s → K0

SK
−π+

3.3 1.5 1.4 1.1 5.3 1.6

B0
s → K0

S
π+π−

3.4 1.7 1.7 1.4 6.2 2.9

97



Table 4.18 � Signal yields for 2011 data samples, along with un
ertainties (loose BDT optimization). Comb. shape and Comb. model

refer to systemati
 un
ertainties related to the 
ombinatorial ba
kground shape and to 
ommon parameters in the 
ombinatorial

ba
kground model, respe
tively.

Yield Stat Bias Sig.

model

CF.

model

PartRe
 Comb.

model

Comb.

shape

Sig.

shape

Total

B0→ K0
S
π+π−

803.0 35.6 0.0 1.1 0.9 0.1 20.1 1.0 16.0 44.0

B0→ K0
Sπ

+π−

471.3 26.6 0.0 0.9 0.8 0.0 1.0 4.5 5.1 27.5

B0→ K0
S
K−π+

52.4 12.4 0.0 0.1 0.5 0.0 6.4 1.8 7.9 16.2

B0→ K0
S
K−π+

26.2 7.3 0.0 0.1 0.3 0.0 1.5 0.8 3.2 8.2

B0→ K0
SK

+π−

52.4 12.3 0.8 0.2 0.5 0.1 6.3 1.7 7.7 16.0

B0→ K0
S
K+π−

37.5 8.3 0.0 0.1 0.3 0.0 1.6 0.7 3.9 9.4

B0→ K0
S
K+K−

281.1 19.2 0.0 0.3 0.2 0.2 5.7 1.7 3.5 20.4

B0→ K0
SK

+K−

222.4 16.9 0.0 0.2 0.4 0.2 1.8 3.3 1.0 17.4

B0
s → K0

S
π+π−

65.4 18.1 0.0 0.4 0.3 0.0 8.0 6.2 4.5 21.2

B0
s → K0

Sπ
+π−

23.2 12.0 0.0 0.3 0.2 0.0 1.0 2.6 1.3 12.4

B0
s → K0

S
K−π+

181.0 16.9 0.0 0.3 0.4 0.1 6.5 4.1 8.9 20.6

B0
s → K0

S
K−π+

115.5 11.9 0.0 0.2 0.2 0.1 1.8 1.5 3.7 12.7

B0
s → K0

SK
+π−

152.2 15.1 0.8 0.3 0.4 0.2 7.6 4.5 10.5 20.4

B0
s → K0

S
K+π−

91.2 10.6 0.0 0.2 0.2 0.1 2.7 3.1 5.6 12.7

B0
s → K0

S
K+K−

22.8 9.4 0.0 0.1 0.1 0.1 2.0 0.5 0.2 9.6

B0
s → K0

SK
+K−

6.8 8.1 0.0 0.1 0.1 0.0 1.3 0.7 0.1 8.2

9
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Table 4.19 � Signal yields for 2012 pre-June data samples, along with un
ertainties (loose BDT optimization). Comb. shape and

Comb. model refer to systemati
 un
ertainties related to the 
ombinatorial ba
kground shape and to 
ommon parameters in the


ombinatorial ba
kground model, respe
tively.

Yield Stat Bias Sig.

model

CF.

model

PartRe
 Comb.

model

Comb.

shape

Sig.

shape

Total

B0→ K0
S
π+π−

553.1 30.3 1.7 0.9 1.0 0.2 3.3 2.5 4.5 31.0

B0→ K0
Sπ

+π−

286.4 19.5 0.8 0.4 0.4 0.1 3.2 1.5 1.9 19.9

B0→ K0
S
K−π+

46.9 10.7 0.0 0.1 0.4 0.1 5.9 0.5 4.7 13.1

B0→ K0
S
K−π+

21.2 7.8 0.0 0.1 0.2 0.0 2.1 0.3 2.6 8.5

B0→ K0
SK

+π−

43.9 11.0 0.0 0.1 0.4 0.0 6.3 0.5 4.9 13.6

B0→ K0
S
K+π−

28.7 7.8 0.0 0.1 0.2 0.1 1.9 0.3 2.5 8.5

B0→ K0
S
K+K−

180.7 15.3 0.0 0.2 0.1 0.1 0.8 1.8 1.5 15.5

B0→ K0
SK

+K−

119.2 11.8 0.0 0.1 0.2 0.1 1.6 1.9 0.5 12.1

B0
s → K0

S
π+π−

16.5 15.1 0.0 0.2 0.2 0.1 1.1 3.7 1.2 15.6

B0
s → K0

Sπ
+π−

15.4 7.7 0.0 0.1 0.1 0.0 1.4 1.3 0.7 8.0

B0
s → K0

S
K−π+

112.9 13.7 0.0 0.2 0.3 0.1 5.1 2.5 4.7 15.6

B0
s → K0

S
K−π+

48.6 9.1 0.0 0.1 0.1 0.0 2.0 1.3 2.5 9.7

B0
s → K0

SK
+π−

92.0 12.1 0.0 0.2 0.3 0.1 7.5 2.3 5.7 15.5

B0
s → K0

S
K+π−

50.8 8.5 0.0 0.1 0.1 0.0 2.7 0.7 3.1 9.5

B0
s → K0

S
K+K−

1.9 6.4 0.0 0.0 0.1 0.0 0.6 0.3 0.2 6.4

B0
s → K0

SK
+K−

6.0 4.9 0.0 0.0 0.1 0.0 0.8 0.1 0.1 4.9

9
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Table 4.20 � Signal yields for 2012 post-June data samples, along with un
ertainties (loose BDT optimization). Comb1 and Comb2

refer to systemati
 un
ertainties related to the 
ombinatorial ba
kground shape and to 
ommon parameters in the 
ombinatorial

ba
kground model, respe
tively.

Yield Stat Bias Sig.

model

CF.

model

PartRe
 Comb.

model

Comb.

shape

Sig.

shape

Total

B0→ K0
S
π+π−

1409.5 46.0 2.6 1.7 2.0 0.2 13.6 7.7 20.7 52.9

B0→ K0
Sπ

+π−

653.6 30.1 1.5 0.9 0.9 0.1 17.9 1.8 7.1 35.9

B0→ K0
S
K−π+

90.6 15.6 0.0 0.2 0.8 0.1 5.6 3.7 10.4 19.9

B0→ K0
S
K−π+

55.7 10.5 0.0 0.1 0.4 0.1 5.3 0.9 4.6 12.6

B0→ K0
SK

+π−

72.9 14.1 0.0 0.2 0.8 0.1 5.3 3.5 9.5 18.2

B0→ K0
S
K+π−

29.8 9.0 0.0 0.1 0.4 0.0 5.3 1.0 4.4 11.4

B0→ K0
S
K+K−

671.4 29.9 0.0 0.8 0.7 0.3 10.1 0.2 6.8 32.3

B0→ K0
SK

+K−

343.8 19.8 0.0 0.7 0.4 0.6 0.4 1.9 1.8 20.0

B0
s → K0

S
π+π−

83.3 21.6 0.0 0.6 0.4 0.0 5.4 8.5 6.7 24.8

B0
s → K0

Sπ
+π−

41.7 13.9 0.0 0.3 0.2 0.0 8.4 3.3 2.6 16.8

B0
s → K0

S
K−π+

306.8 22.1 0.0 0.5 0.6 0.1 5.7 6.1 11.6 26.3

B0
s → K0

S
K−π+

143.4 13.9 0.0 0.3 0.3 0.2 5.0 2.1 5.0 15.8

B0
s → K0

SK
+π−

255.3 19.2 0.0 0.4 0.6 0.2 6.1 7.1 12.0 24.5

B0
s → K0

S
K+π−

118.2 12.8 0.0 0.3 0.3 0.2 5.5 2.3 5.0 15.0

B0
s → K0

S
K+K−

25.5 12.9 0.0 0.2 0.3 0.1 3.8 1.3 0.6 13.6

B0
s → K0

SK
+K−

7.5 6.5 0.0 0.3 0.1 0.2 0.0 0.3 0.1 6.6

1
0
0



4.7 Modelling the signal distribution over the Dalitz

plot using sPlots
The e�
ien
y of signal events is estimated using Monte-Carlo samples, and varies a
ross

the Dalitz plane. As dis
ussed in Se
. 4.1, we need to estimate the distribution of signal

events over the Dalitz plane in order to properly 
orre
t the signal yields for the e�
ien
ies.

For this purpose, we use the sPlots method des
ribed in Se
. 4.2.3.

A spe
ial �t is performed in order to extra
t these sPlots. Firstly, the mass interval

limit on the left is taken as 5200MeV/c2 instead of 5150MeV/c2 in order to redu
e the im-

pa
t of the partially re
onstru
ted ba
kground. Furthermore, the sPlots method does not

in
lude 
ases where Gaussian 
onstraints are present in the model. Yields of 
ross-feeds

and partially re
onstru
ted ba
kgrounds are thus �xed to the value obtained from the nom-

inal �t. As partially re
onstru
ted ba
kgrounds are negligible in the 5200�5800MeV/c2

invariant-mass window, we only 
onsider the e�e
t of 
ross-feeds when 
orre
ting the

sPlots following Eq. 4.16.
The distributions of signal and 
ross-feeds events over the square Dalitz plane depend

on ea
h other, and must thus be determined simultaneously. Indeed, by de�nition the

distribution Mn(m
′
m, θ

′
m) of events from a signal mode n over the square Dalitz plane


orresponding to the signal mode m is

Mn(m
′
m, θ

′
m) = sMn(m

′
m, θ

′
m) =

∑

sPn(e) + cn.M0,n(m
′
m, θ

′
m), (4.31)

where cn is the parameter de�ned in Eq. 4.16, and M0,n(m
′
m, θ

′
m) is the estimated dis-

tribution of the 
ross-feeds events that 
ontribute to the invariant-mass spe
trum of the

signal n over the square Dalitz plot 
orresponding to the signal mode m. As there are


ross-feeds in ea
h invariant-mass spe
trum, we use the following iterative pro
edure:

• all distributions M i
0,n(m

′
m, θ

′
m) are set to 0 for i = 0;

• for ea
h step i > 0, we extra
t the distribution of ea
h signal spe
ies n over the

square Dalitz plane 
orresponding to the signal mode m using

Nn.sM
i
n(m

′
m, θ

′
m).δm

′
mδθ

′
m =

∑

sPn(e) + cn.M
i−1
0,n (m′

m, θ
′
m), (4.32)

where Nn, cn, and sPn(e) are the same variables as de�ned in Eq. 4.16, sM i
n is the

estimated distribution of the signal n over the Dalitz plane for iteration i, andM i−1
0,n

is the Dalitz-plot distribution estimated in iteration i− 1 of all the 
ross-feeds that


ontribute to the invariant-mass spe
trum of the signal mode n;

• the pro
edure is stopped when the χ2

al
ulated between the sM i+1

n and sM i
n distri-

butions rea
hes a predetermined lower threshold for ea
h n and m. In pra
ti
e, the


onvergen
e of the pro
edure is fast and this threshold is rea
hed at i = 2 or i = 3.

Figure 4.17 shows examples of distributions of sWeighted signal events over the square

Dalitz plot. Table 4.21 shows the total e�
ien
ies of all signal modes for the loose and

tight optimizations, ex
ept for B0
s → K0

SK
+K−

.
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Figure 4.17 � Distributions of sWeighted signal events over the Dalitz plot for B0 → K0
Sπ

+π−

(top,left), B0
s → K0

Sπ
+π−

(top, right), B0 → K0
SK

+π−
(middle, left), B0

s → K0
SK

+π−
(middle,

right), and B0→ K0
SK

+K−
(bottom), in 2011 Down-Down data samples.

4.8 Measurement of the bran
hing fra
tions

4.8.1 Internal 
onsisten
y

The measurement of a physi
al observable su
h as a bran
hing fra
tion does not depend on

K0
S
re
onstru
tion mode or data-taking period. In order to 
he
k the internal 
onsisten
y

of the model, we 
ompare ratios of yields in di�erent 
ategories, 
orre
ted for e�
ien
ies.

Table 4.22 shows the ratios of the di�erent modes with respe
t to B0→ K0
Sπ

+π−
. They

are obtained separately for the two K0
S
re
onstru
tion modes and the three data-taking

periods. The agreement between data 
ategories as indi
ated by the χ2
of the 
ombination
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Table 4.21 � Integrated signal e�
ien
ies, using distributions obtained from sWeights in units of

10−4
.

Signal 
hannel (sele
tion) 2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
π+π−

(loose) 4.90 1.89 4.25 1.66 4.57 1.62

B0
s → K0

S
K±π∓

(loose) 3.62 1.48 3.23 1.14 4.02 1.39

B0→ K0
SK

+K−
(loose) 2.93 1.57 2.64 1.50 3.96 1.29

B0
s → K0

S
π+π−

(tight) 3.18 1.75 4.98 1.46 3.36 1.08

B0→ K0
S
K±π∓

(tight) 3.24 1.60 4.17 1.23 4.05 1.00

Table 4.22 � Measured ratios of bran
hing fra
tions 
orresponding to di�erent data 
ategories.

The denominator is the bran
hing fra
tion of the B0 → K0
Sπ

+π−
mode. Quoted un
ertainties

in
lude statisti
al un
ertainties on yields and e�
ien
ies, along with un
ertainties on fs/fd. The
χ2

of the 
ombination is indi
ated for ea
h 
hannel.

Bran
hing fra
tion 2011 2012 pre-June 2012 post-June χ2

DD LL DD LL DD LL

B0→ K0
S
π+π− 1.0 1.0 1.0 1.0 1.0 1.0

B0
s → K0

Sπ
+π− 0.49±

0.14
0.23±
0.12

0.10±
0.09

0.23±
0.13

0.31±
0.09

0.38±
0.13

6.8

B0→ K0
S
K±π∓ 0.20±

0.04
0.15±
0.03

0.23±
0.04

0.20±
0.05

0.13±
0.02

0.22±
0.04

9.6

B0
s → K0

S
K±π∓ 2.25±

0.26
2.23±
0.28

1.59±
0.21

1.50±
0.24

1.81±
0.18

1.86±
0.22

12.5

B0→ K0
SK

+K− 0.62±
0.05

0.60±
0.06

0.55±
0.06

0.49±
0.06

0.58±
0.03

0.70±
0.05

7.2

shows some tensions, although the global p-value remains above the per
ent level. The

largest χ2/ndf (2.1) is observed for B0
s → K0

S
K±π∓

, and there is no 
lear trend a
ross the

di�erent 
hannels and data 
ategories.

4.8.2 Combination of bran
hing fra
tions

The measurements of bran
hing fra
tions from ea
h data-taking period andK0
S
re
onstru
-

tion modes are 
ombined. The 
entral value is the average of all measurements weighted

by

wi =
1

σ2
i

, (4.33)

103



where wi is the weight asso
iated by the measurement in 
ategory i and σi is the total

un
ertainty asso
iated with that measurement.

The total un
ertainty of the 
ombination is obtained by propagating the total un-


ertainties of ea
h measurement, ex
luding the systemati
 un
ertainty related to fs/fd,
whi
h is 100% 
orrelated between all data 
ategories. The statisti
al un
ertainty of the


ombination is 
omputed under the hypothesis of the absen
e of a systemati
 un
ertainty,

and the total systemati
 un
ertainty is evaluated as

∆sys =
√

∆2
tot −∆2

stat, (4.34)

where ∆tot and ∆stat are the total and statisti
al un
ertainties of the 
ombination, respe
-

tively.

The ratios of bran
hing fra
tions for ea
h previously observed mode are

B (B0
s → K0

Sπ
+π−)

B (B0→ K0
S
π+π−)

= 0.26± 0.04(stat.)± 0.02(syst.)± 0.01(fs/fd),

B (B0→ K0
S
K±π∓)

B (B0→ K0
S
π+π−)

= 0.17± 0.02(stat.)± 0.00(syst.),

B (B0
s → K0

S
K±π∓)

B (B0→ K0
S
π+π−)

= 1.84± 0.07(stat.)± 0.02(syst.)± 0.04(fs/fd),

B (B0→ K0
S
K+K−)

B (B0→ K0
Sπ

+π−)
= 0.59± 0.02(stat.)± 0.01(syst.),

(4.35)

4.8.3 B0
s → K0

S
K+K−

observation signi�
an
e

The signi�
an
e of the observation of the B0
s → K0

SK
+K−

mode is derived from a likeli-

hood s
an of ea
h B0
s → K0

S
K+K−

yield in the loose BDT optimization. The distribution

of likelihood is �tted using a bifur
ated Gaussian, smeared by a Gaussian to a

ount for

systemati
 un
ertainties. Figure 4.18 shows these likelihood s
ans for ea
h data-taking

period and K0
S
re
onstru
tion mode.

In order to estimate the signi�
an
e in ea
h 
ategory, we evaluate the di�eren
e be-

tween the log-likelihood of the nominal �t and that of a �t where the bran
hing fra
tion

is set to 0 (this di�eren
e is referred to as �likelihood ratio� and 
an be dire
tly read from

the likelihood s
ans of Fig. 4.18).

Table 4.23 shows the signi�
an
es derived from likelihood ratios in ea
h of the 
orre-

sponding s
ans. These signi�
an
es are then summed in quadrature to obtain the global

signi�
an
e of the B0
s → K0

S
K+K−

observation.

4

4

Statisti
al 
orrelations would make this approa
h invalid. They are however evaluated as below the

per
ent level, and are thus ignored.
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Figure 4.18 � Likelihood s
ans of B0
s → K0

SK
+K−

yields. The blue line indi
ates the total

likelihood (in
luding systemati
s), whereas the red, dotted line is statisti
al only. The dashed,

verti
al line indi
ates the N(B0
s → K0

SK
+K−) = 0 hypothesis. Left: Down-Down K0

S re
onstru
-

tion mode. Right: Long-Long K0
S re
onstru
tion mode. Di�erent data-taking periods are shown

on top (2011), middle (2012 pre-June), and bottom (2012 post-June).

4.8.4 Comparison with previous measurements

All reported bran
hing fra
tions have already been measured with the 1 fb

−1
LHCb dataset

from 2011, and the B0→ K0
S
K+K−

bran
hing fra
tion has been a

urately measured by

B fa
tories. We perform a naive 
omparison with previous measurements negle
ting


orrelations between datasets for the previous LHCb measurement.

5

5

These 
orrelations need a spe
i�
 treatment as the stripping, trigger, and sele
tion are di�erent in

the two analyses.
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Table 4.23 � Signi�
an
e of B0
s → K0

SK
+K−

yields for ea
h data 
ategory, in
luding systemati
s.

Global signi�
an
e is obtained by summing individual signi�
an
es in quadrature.

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

Signi�
an
e 2.6σ 0.7σ 0.2σ 1.2σ 2.0σ 1.2σ
Global 3.7σ

Figure 4.19 � Measured bran
hing fra
tions relative to that of B0→ K0
Sπ

+π−
for ea
h previously

observed B0
d,s→ K0

Sh
+h

′−
mode, in arbitrary units (a.u). The �PDG� measurement is 
omputed

negle
ting 
orrelations between B0→ K0
SK

+K−
and B0→ K0

Sπ
+π−

measurements. The 
entral

value is set to the PDG result when existing, otherwise it is set to the weighted average of the

LHCb measurements.

Figure 4.19 shows the 
omparison between available measurements for signal modes,

ex
ept for B0
s → K0

SK
+K−

. The bran
hing fra
tions are represented in arbitrary units,

and only the size of un
ertainties and distan
e between 
entral values are meaningful. The

agreement between the two LHCb results is satisfa
tory for all modes, with the ex
eption

of the B0→ K0
SK

+K−
mode. Table 4.24 shows the signi�
an
es of the di�eren
e between

the two LHCb results, assuming a 
orrelation of 30% between the two datasets.
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Table 4.24 � Signi�
an
e of the di�eren
e between the LHCb measurement with 2011 data only

and the 
urrent measurement.

B(B0
s→K0

Sπ
+π−)

B(B0→K0
Sπ

+π−)
B(B0→K0

SK
±π∓)

B(B0→K0
Sπ

+π−)
B(B0

s→K0
SK

±π∓)
B(B0→K0

Sπ
+π−)

B(B0→K0
SK

+K−)
B(B0→K0

Sπ
+π−)

Signi�
an
e (σ) 0.4 2.2 2.1 4.3

4.9 Con
lusion

We have observed the B0
s → K0

S
K+K−

de
ay using the 3 fb

−1
dataset from Run I with a

signi�
an
e of 3.7 σ. On
e the e�
ien
y of this signal de
ay is 
omputed, we will report

a bran
hing fra
tion measurement relative to that of B0→ K0
S
π+π−

.

The measurements of all previously observed B0
d,s → K0

S
h+h

′−
modes have been up-

dated, and is in good agreement with previous measurements, with the ex
eption of

B0 → K0
S
K+K−

. Indeed, the measurement of the B0 → K0
S
K+K−

bran
hing fra
tion

with the referen
e B-fa
tory measurement is good, but it is 4.3 σ away from the measure-

ment performed with LHCb 2011 data.
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Chapter 5

Dalitz-plot analysis of B0→ K0
SK

+K−

In this 
hapter, I des
ribe the Dalitz-plot analysis of B0→ K0
S
K+K−

de
ays. In Se
. 5.1,

I present the strategy of this analysis. I then des
ribe the reoptimization of the sele
tion


riterion on the BDT output variable in Se
. 5.2 and the event spe
ies present in the

dataset in Se
. 5.3. The study of ba
kground sour
es and their distributions over the

Dalitz plot is presented in Se
. 5.4, and the modelling of e�
ien
y variation over the

Dalitz plane is detailed in Se
. 5.5. I then present the data �t model in Se
. 5.6, and

the �t validation pro
edure in Se
. 5.7. The evaluation of systemati
 un
ertainties on the

isobar parameters is dis
ussed in Se
. 5.8, and the results of the �t to data are presented

in Se
. 5.9.

5.1 Analysis 
ontext and strategy

The BaBar and Belle experiments have performed a time-dependent �avour-tagged ampli-

tude analysis of B0→ K0
S
K+K−

de
ays, and measured the angle βeff in this mode [40,67℄.

These measurements are 
onsistent with the value of β extra
ted from b→ cc̄s transi-

tions. A parti
ularity of the B0 → K0
S
K+K−

mode is that the amplitude is dominated

by a nonresonant 
omponent that is not 
learly understood. The analysis of this mode

in the LHCb environment will provide another insight into this nonresonant 
omponent.

Additionally, a wide resonant stru
ture has been seen by both BaBar and Belle in the

K+K−
spe
trum. While Belle modelled it by the f0(1500), the BaBar experiment used a


ombination of the f0(1500), the f0(1710), and the f
′

2(1525). In the following, we take as

a referen
e the BaBar result [40℄, whi
h in
ludes the resonan
es shown in Table 5.1 along

with their lineshapes.

We aim at measuring the amplitude of B0→ K0
S
K+K−

de
ays over the Dalitz plane

using the isobar model des
ribed in Se
. 1.3.4. We do not 
onsider CP violation in

the model for this iteration of the analysis. Indeed, performing a CP -sensitive analysis
requires either �avour tagging or the presen
e of �avour-spe
i�
 stru
tures su
h as K∗±

resonan
es. The se
ond option is not relevant to this analysis as the baseline model only

in
ludes K+K−
resonan
es and no K0

S
K+

or K0
S
K−


ontributions. The size of the 
urrent
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Table 5.1 � List of the resonan
es 
omposing the BaBar result [40℄ and of their lineshapes.

�Relativisti
 BW� stands for Relativisti
 Breit-Wigner.

Resonan
e Lineshape

φ0
Relativisti
 BW

f0(980) Flatté

f0(1500) Relativisti
 BW

f
′

2(1525) Relativisti
 BW

f0(1710) Relativisti
 BW

χc0 Relativisti
 BW

NR(S-wave) Se
ond-order polynomial

NR(P -wave) Se
ond-order polynomial

data sample does not allow the use of �avour tagging. As the dataset is untagged, the B0

and B0
amplitudes are added in
oherently, and the de
ay rate as a fun
tion of the Dalitz

plot is

I(m2
K0

SK
+, m

2
K0

SK
−) =

∣

∣

∣
A(m2

K0
SK

+, m
2
K0

SK
−)
∣

∣

∣

2

+
∣

∣

∣
A(m2

K0
SK

+, m
2
K0

SK
−)
∣

∣

∣

2

, (5.1)

where A and A are the de
ay amplitudes of the B0
and the B0

, respe
tively. Repla
ing

these amplitudes by their expressions in the isobar model, we get

I =

∣

∣

∣

∣

∣

(

∑

j

cje
iφjFj(m

2
K0

SK
+, m

2
K0

SK
−)

)∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

(

∑

j

cje
iφjF j(m

2
K0

SK
+, m

2
K0

SK
−)

)∣

∣

∣

∣

∣

2

. (5.2)

The lineshapes Fj and F j are related by

Fj(m
2
K0

SK
+, m

2
K0

SK
−) = F j(m

2
K0

SK
−, m

2
K0

SK
+). (5.3)

The ex
hange operator between K+
and K−

has a signature

η = (−1)LK+K− , (5.4)

where LK+K−
is the orbital angular momentum between K+

and K−
. In the de
ay of a

pseudos
alar parti
le to three pseudos
alars, and in the 
ase of a K+K−
resonan
e j, this

signature is

ηj = (−1)Sj , (5.5)

where Sj is the spin of the resonan
e. This means that for a K+K−
resonan
e j,

Fj(m
2
K0

SK
+, m

2
K0

SK
−) = (−1)SjF j(m

2
K0

SK
+, m

2
K0

SK
−). (5.6)
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We de�ne

δjk = arg(FjFk), (5.7)

Cjk =
cjck
cjck

, (5.8)

βjk = φjk − φjk, (5.9)

ηjk = (−1)Sj+Sk . (5.10)

(5.11)

The parameter δjk is impli
itly a fun
tion of the Dalitz plot. The Cjk and βjk terms 
ontain

information on the dire
t and indire
t CP violation, respe
tively.

1

Developing the sums

and looking only at the interferen
e term between a resonan
e j and a resonan
e k, we
obtain

Ijk = 2cjckFjFk [(1 + Cjkηjk) cos(φjk + δjk) cos(βjk)− Cjkηjk sin(φjk + δjk) sin(βjk)]
(5.12)

where Fj,k is impli
itly fun
tion of m2
K0

SK
+ and m2

K0
SK

−.

In the 
ase of the 
urrent analysis, we do not expe
t su�
ient statisti
al power to mea-

sure the Cjk and βjk parameters. Considering the 
ase where no CP violation o

urs and

dete
tion asymmetry is negligible (Cjk = 1 and βjk = 0), we observe that the interferen
e
term is

Ijk ∝ (1 + ηjk) cos(φjk + δjk). (5.13)

This means that in our parti
ular 
ase of an untagged analysis of B0 → K0
SK

+K−
,


onsidering only K+K−
resonan
es, we are not sensitive to the relative phase between

even and odd partial waves (φjk). The residual sensitivity originates from CP violation,

possibly, whi
h allows in prin
iple to measure these e�e
ts even in an untagged, time-

independent analysis. A similar 
al
ulation has been performed in [68, 69℄. Se
tion 5.6

dis
usses the adaptations of the baseline model that we implement to address this issue.

The amplitude analysis of B0→ K0
SK

+K−
de
ays uses the following inputs from the

bran
hing fra
tion measurement:

• the same stripping, trigger requirements, presele
tion, and BDT training;

• tight PID sele
tion 
riteria are applied;

• yields of signal and ba
kground spe
ies are extra
ted using the same B-meson 
an-

didate invariant-mass �t model;

• the distribution of 
ross-feed events over the Dalitz plane is estimated using the

sPlot method des
ribed in Se
. 4.2.3.

1

In this expression, the possible produ
tion or dete
tion asymmetry between B0
and B0

is absorbed

in a di�erent magnitude 
onvention for ck and ck. This e�e
t has to be taken into a

ount before any

statement is issued from a measurement of Cjk.
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We reoptimize the BDT sele
tion 
riteria in order to get better un
ertainties on the

parameters of the isobar model. We also estimate the variations of the e�
ien
y a
ross

the Dalitz plane using a similar method to that of the bran
hing fra
tion measurement.

Using the Laura++ pa
kage [70℄, we perform an extended maximum likelihood �t to

data events sele
ted in a window of ±2.5σ around the B0
invariant mass. In order to

respe
t the Dalitz-plot boundaries, both the B-meson 
andidate mass and that of the K0
S

are 
onstrained to their nominal values, and momenta of the daughters are re�tted taking

these 
onstraints into a

ount.

Due to the large number of parameters in the �t model and the small sensitivity to some

of them, ea
h �t to data is performed 1000 times with randomized initial parameters in

order to �nd the best minimum. Multiple solutions 
ould appear in an amplitude analysis

due to many di�erent reasons. In parti
ular, this 
ould happen due to interferen
e between

two broad s
alar resonan
es. In that 
ase solutions typi
ally appear in pairs: one with

larger �t fra
tions of the two resonan
es and destru
tive interferen
e between them, and

another with smaller �t fra
tions and 
onstru
tive interferen
e. We 
onsider all solutions

within 4.5 NLL units from the best minimum, and study the asso
iated �t fra
tions.

2

We 
onsider variations of the �t model by adding and removing resonan
es, or 
hanging

their distribution a
ross the Dalitz plane. We 
ompare the agreement of ea
h model

with the data using the minimum negative log-likelihood and goodness-of-�t estimators.

Details of this pro
edure are given in Se
. 5.6.

5.2 Reoptimization of the BDT sele
tion

5.2.1 Strategy of the reoptimization

The BDT method des
ribed in Se
. 4.1 produ
es an output variable on whi
h we apply

a sele
tion to reje
t 
ombinatorial ba
kground events. Our goal is to use an optimized

BDT sele
tion 
riterion that yields the smallest un
ertainties on the isobar parameters

extra
ted from the �t to the Dalitz plane. While there exist widely used optimization

methods adapted to the measurement of bran
hing fra
tions, this is not the 
ase for

Dalitz-plot analyses. In this study, we �rst perform simpli�ed Dalitz plot �ts to several

datasets obtained with di�erent BDT sele
tions and 
ompare the un
ertainties on the

isobar parameters. We then attempt to �nd a simple �gure of merit that yields similar


on
lusions in order to fa
ilitate exporting the the results of this study to future Dalitz-

plot analyses of this mode.

In the 
ase of the measurement of the bran
hing fra
tion of an already-observed mode,

the �gure of merit

FoM(NS, NB) =
NS√

NS +NB

, (5.14)

2

4.5 negative log-likelihood units 
orrespond to three Gaussian standard deviations.
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where NS (NB) is the number of signal (ba
kground) events, is frequently adopted to

maximise the signi�
an
e of the measurement. In the 
ase of an unobserved mode, the

Punzi �gure of merit

FoM(NS, NB) =
ǫsig

√

a
2
+NB

(5.15)

is adopted, where ǫsig is the estimated e�
ien
y of the signal, and a is a parameter to

determine by the analyst. Although in the 
ase of a Dalitz-plot analysis, no su
h standard

solution exists, the �gure of merit

FoM(NS, NB) =
N2

S

(NS +NB)3/2
(5.16)

is sometimes used.

3

In order to optimize the 
ut value on the BDT output variable for the Dalitz-plot

analysis, we de�ne a series of lower 
uts, λWP, on the BDT variable λ (i.e. 
utting out

events with λ ≤ λWP). We refer to the di�erent values of λWP as �working points�. They


orrespond to values in between those from the loose and the tight optimizations (λloose
and λtight, respe
tively)

λWP = λloose + αWP(λtight − λloose). (5.17)

The parameter αWP
, whi
h has a di�erent value for ea
h working point, runs between 0

and 1.

4

We perform separate invariant-mass �ts on the samples 
orresponding to ea
h

working point, and extra
t the number of signal, 
ombinatorial ba
kground, and 
ross-feed

events as des
ribed in Se
. 5.3. We then use these yields and isobar parameters extra
ted

in the BaBar study of the B0 → K0
S
K+K−

mode [40℄ as a baseline model to generate

pseudo-data distributions over the Dalitz plot for ea
h working point. We �nally perform

a simpli�ed amplitude analysis on the pseudo-data 
orresponding to ea
h working point

using the BaBar results as a signal model, with the following guidelines:

• the same Dalitz-plot distribution of 
ombinatorial ba
kground is used for all working

points, as a relaxed BDT sele
tion 
riterion (des
ribed in Se
. 5.4) is applied to

samples from whi
h we extra
t this distribution;

• Gaussian 
onstraints in the invariant-mass �t model used to extra
t the yields of

the partially re
onstru
ted ba
kgrounds and 
ross-feeds are re-evaluated for ea
h

working point, as the 
orresponding e�
ien
ies vary;

3

The optimum value obtained by this �gure of merit typi
ally lies between those from NS/
√
NS +NB

and Punzi-type �gures of merit.

4

The tight optimization of the BDT is then stri
tly equal to the working point de�ned using αWP = 1.
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Table 5.2 � Values of the parameter αWP
for ea
h working point, along with the number of

signal events and the proportion of signal events in the signal region. We 
onsidered all together

data-taking periods and K0
S re
onstru
tion modes.

WP0 WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 WP9

αWP
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.85 0.95

NS 1474.2 1438.8 1377.8 1323.2 1271.0 1212.4 1152.5 1086.3 986.1 905.0

NS/Ntot(%) 89.2 90.4 91.2 92.1 93.0 94.0 94.6 95.2 96.0 96.0

• as we apply tight PID sele
tion 
riteria for all working points, we use tight PID

e�
ien
y maps;

• sele
tion e�
ien
y maps are estimated using a linear interpolation between the loose

and the tight sele
tion e�
ien
y maps, using the parameter αWP
;

5

• only the systemati
 un
ertainties related to biases, e�
ien
y modelling, ba
kgrounds

distributions modelling, and the knowledge of the yields of the di�erent event spe
ies

are estimated;

• when varying the yields within their un
ertainties in order to evaluate the 
or-

responding systemati
 un
ertainty, only their statisti
al un
ertainties, whi
h are

dominant, are taken into a

ount.

From this simpli�ed analysis, we extra
t the total un
ertainties on all the isobar pa-

rameters for ea
h working point.

5.2.2 Results of the reoptimization

Table 5.2 shows the values of αWP
used in the study and the names of the asso
iated

working points. The same table details the 
orresponding proportion of signal events

and the number of signal events, both extra
ted from an invariant-mass �t to data. To

obtain these numbers, we 
onsidered all together the di�erent data-taking periods and

K0
S
re
onstru
tion modes. As the working points get 
loser to the tight optimization, the

purity of the samples stabilize while the numbers of signal events 
ontinue to diminish.

Figure 5.1 shows the total relative un
ertainties on the �t fra
tions of ea
h resonan
e,

with respe
t to values obtained for �WP0�. The main 
on
lusion of this study is that it is

di�
ult to point a 
lear overall optimum, as variations are observed between resonan
es

and as, with the 
urrent dataset, un
ertainties are large. For instan
e, we noti
e that

optima of nonresonant 
ontributions tend to 
orrespond to tighter BDT sele
tion 
riteria

than those of resonant 
ontributions. Indeed, nonresonant 
ontributions are 
ompeting

with 
ombinatorial ba
kground over large parts of the Dalitz plane.

5

The absolute value of the e�
ien
y of the BDT sele
tion is not linear between the loose and the tight

sele
tion 
ut values, but only the variations of the e�
ien
y a
ross the Dalitz plane are relevant here.
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Figure 5.1 � Total relative un
ertainties on �t fra
tions of di�erent isobars (see the legend in ea
h

graph) for ea
h of the working points. Un
ertainties are s
aled with respe
t to those of �WP0�.

Left: Resonant 
ontributions. Right: nonresonant 
ontributions; where S and P 
orrespond to

S and P -waves, respe
tively, followed by the degree of the polynomial term atta
hed to that


ontribution. The 
onstant term of the S-wave (�PolNR_S0�) is the �xed referen
e amplitude

and thus it is not shown here.

Table 5.3 � Values of the BDT sele
tion 
uts that are 
hosen for the di�erent data-taking periods

and K0
S re
onstru
tion modes.

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

Sele
tion 
ut value -0.025 -0.104 0.081 0.01 -0.027 -0.055

Figure 5.2 shows the values of four di�erent �gures of merit evaluated for ea
h working

point, relative to the values obtained for �WP0�. As expe
ted, the optimum values for

the NS/
√
NS +NB and Punzi-type �gures of merit are 
lose to �WP0� and �WP9�, re-

spe
tively.

6

The �gure of merit N2
S/(NS +NB)

3/2
is maximal between �WP1� and �WP3�,

thus pointing to a sele
tion 
lose to the loose BDT optimization. The pro�le of this �g-

ure of merit and the 
orresponding optimal sele
tion are the most similar to the pro�le

of un
ertainties shown in Fig. 5.1. The �gure of merit that we 
hose for this analysis is

therefore that de�ned in Eq. 5.16. Table 5.3 summarizes the 
orresponding BDT sele
tion


ut values for the di�erent data-taking periods and K0
S
re
onstru
tion modes.

6

The loose and tight optimizations of the BDT have been obtained using an approximate invariant-

mass �t model and in ea
h spe
trum separately. It explains the fa
t that the optimum for the Punzi

�gure of merit is not �WP9�.
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Figure 5.2 � Values of di�erent �gures of merit evaluated in ea
h of the working points. The �BR�

label (bla
k points) refers to the NS/
√
NS +NB �gure of merit, whereas �Dalitz� (red points)

refers to N2
S/(NS +NB)

3/2
. The �Punzi2� (blue points) and �Punzi5� (yellow points) labels refer

the to Punzi �gures of merit 
al
ulated with a = 2 and a = 5, respe
tively.

5.3 Yields of the signal and ba
kground spe
ies

Data events are sele
ted in a invariant-mass window around the B0
signal peak. As we do

not perform an extended �t, yields of signal and ba
kground spe
ies are estimated from

the invariant-mass �t. The estimated number of events Nwindow
i for an event spe
ies i in

a mass window de�ned between mmin and mmax is

Nwindow
i = Ni

∫ mmax

mmin
fi(m)dm

∫ 5800

5150
fi(m)dm

, (5.18)

where Ni is the number of events from the event spe
ies i extra
ted from the mass

�t in the whole mass range, de�ned as the 5150�5800MeV/c2 interval, and fi(m) is the
distribution of the event spe
ies i. As mentioned in Se
. 5.1, we de�ne signal mass windows

following

mmin = µ− 2.5σ,mmax = µ+ 2.5σ, (5.19)

where µ and σ are the values of the 
orresponding parameters in the double Crystal-Ball

distribution that des
ribes the B0→ K0
SK

+K−
signal.

Table 5.4 shows the estimated number of events for ea
h event spe
ies, K0
S
re
onstru
-

tion mode, and data-taking period. In the following, we negle
t events from the partially
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Table 5.4 � Number of events for ea
h event spe
ies for the di�erent data-taking periods and K0
S

re
onstru
tion mode. Purity is de�ned as the proportion of signal events in the sample. �B0

CF� refers to the 
ross-feed from B0 → K0
SK

±π∓
events, whereas �B0

s CF� refers to the 
ross-

feed from B0
s → K0

SK
±π∓

events. Similarly, �PR1� and �PR2� refer to 
harmed and 
harmless

partially re
onstru
ted ba
kgrounds, respe
tively.

Year K0
S re
. mode Signal Comb. B0

CF B0
s CF PR1 PR2 Purity(%)

2011 DD 271.5 39.2 6.1 0.0 0.0 0.0 85.7

2011 LL 210.5 39.5 3.8 0.0 0.0 0.0 82.9

2012a DD 176.1 29.9 5.2 0.0 0.0 0.0 83.4

2012a LL 114.9 10.0 2.2 0.0 0.0 0.0 90.3

2012b DD 649.9 88.8 11.2 0.1 0.0 0.0 86.7

2012b LL 330.1 23.1 4.9 0.0 0.0 0.0 92.2

re
onstru
ted ba
kground. Due to the blinding of the B0
s → K0

S
K+K−

yield in the mass

�t, we 
an only estimate the number of events in the mass window through an edu
ated

guess. Postulating that

N(B0
s )(Year)(K

0
S) =

N(B0)(Year)(K0
S
)

λ2
, (5.20)

where λ is the sine of the Cabibbo angle, we �nd fewer than two events of B0
s → K0

S
K+K−

in the signal window for all data-taking periods and K0
S
re
onstru
tion modes 
ombined.

We thus ignore this 
ontribution in the following.

5.4 Ba
kground distributions

5.4.1 Combinatorial ba
kground modelling

The nature of 
ombinatorial ba
kground in this analysis is dis
ussed in Se
. 4.3.5. We

expe
t that events with a B 
andidate mass larger than 5550MeV/c2 originate only from


ombinatorial ba
kground,

7

thus we use the distribution over the Dalitz plot of events

from this sideband to model the 
ombinatorial ba
kground distribution.

The small number of upper-mass sideband events limits the understanding of the


ombinatorial ba
kground. In order to estimate more a

urately the distribution of these

events over the Dalitz plot, we relax the BDT sele
tion. We 
he
k the dependen
y of

this distribution with respe
t to the BDT output value by splitting the dataset in the

upper-mass sideband in ten samples with roughly the same number of events in di�erent

7

This threshold is larger than that used for the BDT training as in the K0
S
K+K−

mode 
ross-feeds

from B0
s → K0

S
K±π∓

are not negligible at 5450MeV/c2.
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Table 5.5 � Values of the BDT output variable used to split the 2011, Down-Down dataset, and

number of events in ea
h dataset.

Minimum BDT value -0.12 -0.10 -0.09 -0.06 -0.04 -0.01 0.02 0.06 0.12 0.22

Number of events 35 28 32 29 30 37 24 32 32 29

0 1.32879 1.76684 1.22134 0.95044 1.33461 0.788159 0.852551 0.993128 1.04696

1.32879 0 0.742006 1.42472 1.12517 1.4122 0.892134 1.17179 0.875465 1.53665

1.76684 0.742006 0 1.19314 1.167 1.43951 0.544585 1.49659 0.911559 1.52532

1.22134 1.42472 1.19314 0 0.822118 1.19435 0.848266 0.942575 1.28277 1.20279

0.95044 1.12517 1.167 0.822118 0 0.656304 0.723035 0.642815 0.836509 0.926649

1.33461 1.4122 1.43951 1.19435 0.656304 0 0.667184 0.956314 1.0316 1.38601

0.788159 0.892134 0.544585 0.848266 0.723035 0.667184 0 0.598707 0.70904 0.75438

0.852551 1.17179 1.49659 0.942575 0.642815 0.956314 0.598707 0 0.968396 0.622912

0.993128 0.875465 0.911559 1.28277 0.836509 1.0316 0.70904 0.968396 0 0.744651

1.04696 1.53665 1.52532 1.20279 0.926649 1.38601 0.75438 0.622912 0.744651 0
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Figure 5.3 � Cal
ulated χ2/ndf between distributions of upper-mass sideband events from 2011,

Down-Down data samples. Ea
h distribution 
orresponds to an interval of BDT output variable.

BDT intervals. Table 5.5 shows the BDT sele
tion 
ut values used to split the dataset and

Fig. 5.3 shows the 
al
ulated χ2/ndf between pairs of these distributions for 2011, Down-

Down events. As there is no 
lear trend, we relax the BDT sele
tion to that 
orresponding

to the loose optimization of the BDT.

Figure 5.4 shows the distribution of 
ombinatorial ba
kground events over the Dalitz

plane for all K0
S
re
onstru
tion modes and data-taking periods, using the relaxed BDT
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ut value.

5.4.2 Cross-feeds modelling

The sWeighting pro
edure that is des
ribed in Se
. 4.7 
an be used to estimate the distribu-

tion of 
ross-feed events a
ross the Dalitz plane as well. Figure 5.5 shows the distribution

a
ross the Dalitz plot of the two 
ross-feed spe
ies that are present in the mass window,

along with the un
ertainties on these distributions for 2011, Down-Down events.

5.5 E�
ien
y variations a
ross the Dalitz plot

As dis
ussed in Se
. 4, the e�
ien
y of signal events is not �at a
ross the Dalitz plane, for

instan
e be
ause of the limited geometri
al a

eptan
e of the LHCb dete
tor. This non-

uniformity has to be taken into a

ount in the �t to data, as it results in a distortion of

the observed distribution of signal events over the Dalitz plane. We use a similar approa
h

as in Se
. 4.1, breaking down the total e�
ien
y into three multipli
ative 
ontributions:

• ǫgen is the e�
ien
y of the generator-level 
uts applied to the Monte-Carlo samples

that are used to evaluate the rest of the e�
ien
ies;

• ǫsel|gen is the e�
ien
y of the trigger, re
onstru
tion, stripping, and sele
tion methods.

It is evaluated using signal Monte-Carlo samples, 
orre
ted for dis
repan
ies between

simulation and data. Vetoes on 
harmed 
ontributions are removed if they do not

in
lude a mis-ID hypothesis, as they are taken into a

ount in the Dalitz-plot �t;

• ǫPID|(sel|gen)
is the e�
ien
y of the PID requirements. It is evaluated by a data-driven

approa
h on signal Monte-Carlo samples, using the PID
alib pa
kage.

These three 
ontributions are then multiplied together to get the total e�
ien
y

ǫtot = ǫgenǫsel|genǫPID|(sel|gen)
(5.21)

In the following se
tion, I detail the 
al
ulation of these e�
ien
ies and their un
er-

tainties. Firstly, I present the methods used in the evaluation of un
ertainties, then the

extra
tion of generator-level e�
ien
ies, of the sele
tion e�
ien
y along with all the rel-

evant 
orre
tions of data/MC dis
repan
ies, and �nally of PID e�
ien
ies. As there is

no sour
e of sti� variation of e�
ien
y a
ross the Dalitz plane

8

, we smooth e�
ien
y

histograms using a two-dimensional 
ubi
 interpolation (�spline�).

8

Vetoes on 
harmed resonan
es 
onstitute su
h a sour
e but are 
onsidered independently.
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5.5.1 Un
ertainty estimation pro
edure

We evaluate the asymmetri
 un
ertainty on the e�
ien
y in ea
h bin of the Dalitz plot

independently. In the simple 
ase where the e�
ien
y is

ǫ =
Npassed

Ntotal
, (5.22)

the un
ertainty on the e�
ien
y ǫ 
an be determined using Clopper-Pearson intervals,

implemented in the TEffi
ien
y pa
kage [71℄. These intervals provide a 
overage of the

un
ertainty that is always 
onservative, thus suitable for the evaluation of systemati


un
ertainties. However, this te
hnique does not extend to weighted events, espe
ially if

the un
ertainty on the weights has to be taken into a

ount. In that 
ase, we evaluate

the un
ertainty as follows:

• 
reate 500 new samples using the bootstrapping method. This method 
reates a new

sample out of an original one by randomly resampling the events. Event weights

are randomized within their un
ertainties;

• evaluate the e�
ien
y histogram for ea
h sample;

• in ea
h bin of the e�
ien
y histograms, �t the distribution of e�
ien
ies in the

500 samples using a bifur
ated Gaussian. The upper and lower un
ertainties are

assigned to the right and left width parameters values, respe
tively.

All sour
es of un
ertainties are 
onsidered as un
orrelated, and are thus summed in

quadrature to estimate the total un
ertainty for a given 
ontribution. Likewise, the total

un
ertainty on the e�
ien
y is 
al
ulated by propagating the un
ertainties on ǫgen, ǫsel|gen,
and ǫPID|(sel|gen)

assuming no 
orrelation between them.

5.5.2 A

eptan
e of the generator-level 
ut

In order to save CPU, we apply in this analysis a generator-level 
ut requiring that both

the K+
and the K−

are generated inside of the dete
tor a

eptan
e. This a

eptan
e is

modelled as the θ ∈ [0.01 rad, 0.4 rad] interval, θ being the angle formed between a tra
k

and the z axis. Se
tion 2.5 presented the prin
iple of generator-level 
uts.

We generate a sample of 50,000 B0 → K0
S
K+K−

events with no generator-level 
ut

applied and a �at distribution over the square Dalitz plane. The K0
S re
onstru
tion

mode is not relevant here, nor is the di�eren
e between pre-June and post-June trigger


on�gurations in 2012. The generator-level e�
ien
y in ea
h bin of the Dalitz plot is the

ratio of the number of events that pass the 
ut

θK+,K− ∈ [0.01 rad, 0.4 rad]. (5.23)
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Figure 5.6 shows the results of this pro
edure for both 2011 and 2012 
onditions, along

with the generated distributions. The non-uniformity of the generated distribution a
ross

the Dalitz plane is a well-known feature of the flatSqDalitz generation, and does not

impa
t the extra
tion of e�
ien
ies. Figure 5.7 shows the asymmetri
 un
ertainties on

the generator-level e�
ien
ies, 
al
ulated using Clopper-Pearson intervals.

5.5.3 Sele
tion e�
ien
y

The sele
tion e�
ien
y is determined in ea
h bin of the Dalitz plot following

ǫsel|gen =
Nsel

Ngen

, (5.24)

where Nsel is the number of events that pass the stripping, trigger, presele
tion, and

BDT sele
tion. Corre
tion fa
tors are applied to a

ount for data/MC di�eren
es in the

tra
king and trigger e�
ien
ies.

Re-weighting of the MC

Tra
king e�
ien
y in LHCb depends, among other variables, on the momentum p and the

pseudorapidity η of ea
h parti
le, along with the number of tra
ks in the event. These

variables are not exa
tly modelled by the Monte-Carlo simulation. We use data events in

the signal mass window as a referen
e for the distribution of these variables in data, and

reweight Monte-Carlo samples to mat
h these distributions. The un
ertainty on these

weights is estimated using the bootstrap method des
ribed in Se
. 5.5.1.

Tra
king e�
ien
y 
orre
tion

The LHCb experiment disposes of referen
e tables to 
orre
t for data/MC dis
repan
ies

in tra
king e�
ien
y of Long tra
ks. These tables are produ
ed using de
ays that have

both a large produ
tion rate and large bran
hing fra
tions. Weights depending on a

two-dimensional binning of p and η are 
al
ulated using these tables.

Figure 5.8 shows the tra
king-e�
ien
y 
orre
tions that we apply depending on the

Dalitz-plot 
oordinates. These 
orre
tions are 
lose to unity, but show a dependen
y on

the Dalitz plot.

L0Hadron trigger e�
ien
y 
orre
tion

As des
ribed in Se
. 2.4, the trigger system in LHCb 
onsists of three steps: L0, Hlt1,

and Hlt2. The e�
ien
y of the Hlt1 and Hlt2 is well modelled in the simulation, but

there are signi�
ant di�eren
es in the L0Hadron_TOS line e�
ien
ies that we use in this

analysis.

9

Indeed, this line is �red up ea
h time there is a large enough deposit of trans-

verse energy ET in one 
luster of the hadroni
 
alorimeter, and modelling the response of

9

There are also data/MC di�eren
es in the L0Ele
tron_TOS line, but we do not use it.
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this 
alorimeter requires an ex
ellent understanding of hadroni
 showers in thi
k materials

and of the aging of these materials.

In order to 
orre
t the e�
ien
ies for the data/MC di�eren
es in L0Hadron_TOS e�-


ien
y, we split the sample between trigger-on-signal (TOS) and trigger-independent-of-

signal (TIS) samples. We require that events in the TIS sample do not �re L0Hadron_TOS

in order to build ex
lusive samples.

We dispose of tables where the e�
ien
y of the L0Hadron_TOS trigger as a fun
tion of

the energy of a given 
luster formed in the 
alorimeter. Clusters 
an be formed by one or

several parti
les, and also partially overlap. Ea
h 
luster i having a probability p(ET,i) of
�ring the trigger depending on its transverse energy ET,i, the total data-driven e�
ien
y

estimation of the L0Hadron_TOS trigger is

ǫTOS
data = 1−

∏

i

(1− p(ET,i)), (5.25)

whereas the e�
ien
y of the L0Global_TIS&!L0Hadron_TOS trigger is

ǫTIS&!TOS
data =

∏

i

(1− p(ET,i)). (5.26)

We estimate in ea
h bin of the Dalitz plot the 
orre
tion fa
tor on L0Hadron trigger

e�
ien
y for TIS(TOS) events as

k
TIS(TOS)
L0 =

ǫ
TIS(TOS)
data

ǫ
TIS(TOS)
MC

, (5.27)

where ǫ
TIS(TOS)
MC is the L0Hadron trigger e�
ien
y 
al
ulated on Monte-Carlo samples as

the proportion of events that do not pass the L0Hadron_TOS trigger.

We 
onsider possible un
ertainties originating from limited statisti
s and from tables

values. Both are estimated using the bootstrap method des
ribed in Se
. 5.5.1, and are

summed in quadrature. Figure 5.9 shows 
al
ulated 
orre
tions for Down-Down simulated

events in the TOS trigger 
ategory, where all data-taking periods are 
onsidered together,

along with upper and lower un
ertainties on these 
orre
tions. The 
orre
tion fa
tor

varies signi�
antly a
ross the Dalitz plot, thus stressing the importan
e of applying this


orre
tion.

Total sele
tion e�
ien
y

The total sele
tion e�
ien
y is 
al
ulated by summing the TOS and TIS 
ontributions

following
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Table 5.6 � Binning on the momentum and transverse momentum of ea
h parti
le used in the

PID
alib method.

Variable Binning

p 3000�9300�15600�18515�28325�40097�59717�100000

η 1.5�2.4975�2.7075�3.0575�3.3725�3.7225�4.0025�5.

ǫsel|gen =
fTOS
data

fTOS
MC

kTOS
L0 ǫsel|gen,TOS +

1− fTOS
data

1− fTOS
MC

kTIS&!TOS
L0 ǫsel|gen,TIS&!TOS

(5.28)

where f
TOS(TIS&!TOS)
data(MC) is the fra
tion of events in data (Monte-Carlo) for whi
h

L0Hadron_TOS is (not) �red, and ǫsel|gen,TOS(TIS&!TOS)
is the sele
tion e�
ien
y 
al
ulated

using Eq. 5.24 on the subset of Monte-Carlo samples in whi
h L0Hadron_TOS is (not)

�red.

Figure 5.10 shows the sele
tion e�
ien
y for 2011, Down-Down events, along with

the un
ertainties on e�
ien
ies, in the TOS and TIS&!TOS trigger 
ategories. Large

stru
tures that 
an be seen a
ross the Dalitz plane are expe
ted to originate from stripping

and trigger, while the BDT sele
tion method itself was designed not to bias the Dalitz

plot.

5.5.4 PID e�
ien
y

As des
ribed in Se
. 2.5.3, a realisti
 estimate of the e�
ien
y of a PID requirement

on Monte-Carlo samples 
an be estimated by the PID
alib pa
kage. This te
hnique

attributes a weight to ea
h event that estimates the expe
ted e�
ien
y of the PID re-

quirement on this event. In ea
h bin A of the Dalitz plot, the e�
ien
y is then

ǫPID|(sel|gen)(A) =

∑

e∈A
we

Ne∈A
, (5.29)

where we is the weight attributed by the PID
alib method to event e.

The PID
alib method takes into a

ount the dependen
y of PID e�
ien
y on the

momentum p and pseudorapidity η of ea
h parti
le, and on the number of tra
ks in the

overall event. We de
ide to integrate out the dependen
y on the number of tra
ks, and


onsider the binning des
ribed in Table 5.6.

Figure 5.11 shows the PID e�
ien
y of events of the 2011 data-taking period, in the

Down-Down K0
S
re
onstru
tion mode, along with the un
ertainties on these e�
ien
ies.
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5.5.5 Total e�
ien
ies

We 
ombine all the e�
ien
ies previously 
al
ulated using Eq. 5.21, and propagate the

un
ertainties a

ordingly. Figure 5.12 shows the results of the e�
ien
y 
al
ulation for

2011 events re
onstru
ted in the Down-Down mode.

The prin
ipal sour
e of un
ertainties on the total e�
ien
y is the sele
tion e�
ien
y,

and espe
ially the 
orre
tion on the L0Hadron e�
ien
y.
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Figure 5.4 � Distributions of 
ombinatorial ba
kground events over the Dalitz plane. Events

from Down-Down (Long-Long) K0
S re
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tion mode are shown on the left (right). Top: 2011

events. Middle: 2012 pre-June events. Bottom: 2012 post-June events.
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SK
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Figure 5.9 � Top, left: 
orre
tion fa
tors for TOS, Down-Down events. Top, right: splined


orre
tion fa
tors. Bottom: upper (lower) un
ertainties on 
orre
tion fa
tors are shown on the

left (right).
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5.6 Data-�t model

The main goal of this analysis is to provide a starting point for future analyses of the

B0 → K0
SK

+K−
mode in LHCb, as well as bringing additional information that 
an be


ombined with the latest result from BaBar. The baseline model of our analysis is similar

to that from BaBar, and we present it in Se
. 5.6.1. We aim at improving its des
ription of

the data by adding resonan
es, removing resonan
es, or 
hanging their parameterization.

We 
ompare the quality of di�erent models by means of goodness-of-�t methods, presented

in App. B. Se
tion 5.6.2 presents the results of this �t to data.

5.6.1 Baseline model

Table 5.7 details the intermediate resonan
es 
omposing the baseline �t model, and their

parameterizations.

The nonresonant (NR) 
omponent of the amplitude is des
ribed as the sum of a S-
wave and a P -wave, both modelled as a se
ond-degree polynomial in the parameter Ω,
de�ned as

Ω =
1

2
(mB +

1

3
(mK+ +mK− +mK0

S
)). (5.30)

Fits to data using di�erent models and sets of �xed parameter 
onsistently result in

a small (< 0.1%) �t fra
tion for the �rst-degree term of the P -wave. In order to improve

the stability of the �t, we remove this 
omponent. The nonresonant amplitude is then

the sum of �ve terms, PolNR(S0), PolNR(S1), PolNR(S2), PolNR(P0), and PolNR(P2),

where the �S� and �P� letters stand for S-wave and P -wave, respe
tively. The indexes 0,
1, and 2 designate the degree of the polynomial term in Ω.

Table 5.7 � Modelling of the resonan
es used in the model. Masses and widths are given in

MeV/c2.

Resonan
e Shape parameters Lineshape

φ0
m = 1019.455 ± 0.020, Γ = 4.26 ± 0.04 Rel. BW

f0(980) m = 965 ± 10, gπ = (0.165 ± 0.018) GeV2/c4, gK/gπ = 4.21 ± 0.33 Flatté

f0(1500) m = 1505 ± 6, Γ = 109 ± 7 Rel. BW

f0(1710) m = 1720 ± 6, Γ = 135 ± 8 Rel. BW

f
′

2(1525) m = 1525 ± 5, Γ = 73+6
−5 Rel. BW

χc0 m = 3414.75 ± 0.31, Γ = 10.3 ± 0.6 Rel. BW
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Figure 5.13 � Distribution of data events from all data-taking periods and K0
S re
onstru
tion

modes over the Dalitz plot (left) and the square Dalitz plot (right).
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Figure 5.14 � (left) Distribution of negative log-likelihood for all 
onverged �ts on data. (right)

Distribution of negative log-likelihood for 
onverged �ts 
lose to the best minimum.

5.6.2 Fit results

Figure 5.13 shows the distribution of data events over the Dalitz plot and the square

Dalitz plot, 
ombining datasets from all K0
S re
onstru
tion modes and all data-taking

periods.

We perform 1000 �ts to data using randomized initial values for all parameters, and

show the obtained likelihood values in Fig. 5.14. A 
lear best minimum is present, and

there are 15 se
ondary minima within a 3σ interval. Table 5.8 shows the isobar parameters

and �t fra
tions for the best minimum, along with the statisti
al un
ertainties. The sum of

�t fra
tions is di�erent from 100%, indi
ating signi�
ant interferen
e between resonan
es,

as expe
ted. Table 5.9 shows the interferen
e �t fra
tions between all the intermediate

states.

Figure 5.15 shows the �t fra
tions of all the intermediate states for the best minimum
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Table 5.8 � Isobar parameters and �t fra
tions for the best minimum, along with un
ertainties

as estimated by MIGRAD.

Resonan
e Fit fra
tion (%) c φ
φ0

(1020) 14.02 0.70±0.14 0.35 (�xed)

f0(980) 28.34 0.99±0.19 1.92±0.62
f0(1500) 4.50 0.40±0.09 -1.77±0.43
f

′

2(1525) 4.28 0.39±0.10 0.14±0.39
f0(1710) 1.70 0.24±0.07 -0.19±0.39
χc0 2.87 0.32±0.07 -1.29±0.30
PolNR(S0) 20.16 0.84 (�xed) 0.00 (�xed)

PolNR(S1) 9.38 0.57±0.11 -3.30±0.30
PolNR(S2) 2.97 0.32±0.13 3.84±0.37
PolNR(P0) 23.86 0.91±0.21 1.13 (�xed)

PolNR(P2) 8.41 0.54±0.15 -2.29 (�xed)

Sum 120.48

Table 5.9 � Measured interferen
e �t fra
tions 
orresponding to the best minimum. The A0�

10 indexes 
orrespond to, in order, φ0
, f0(980), f0(1500), f

′

2(1525), f0(1710), χc0, PolNR_S0,

PolNR_S1, PolNR_S2, PolNR_P0, and PolNR_P2.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A0 14.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -7.24 5.69

A1 28.34 1.17 0.00 -4.56 0.54 -1.80 -3.57 9.99 0.00 0.00

A2 4.50 0.00 2.47 -0.02 3.92 3.35 -1.24 0.00 0.00

A3 4.28 -0.00 0.00 0.00 0.00 0.00 0.00 0.00

A4 1.70 -0.11 -1.17 0.56 -1.01 0.00 0.00

A5 2.87 1.25 -0.13 -0.14 0.00 0.00

A6 20.16 -1.71 -8.31 0.00 0.00

A7 9.38 0.59 0.00 0.00

A8 2.97 0.00 0.00

A9 23.86 -19.02

A10 8.41

and the 15 
losest se
ondary minima. The �t fra
tions of the φ0

orresponding to di�erent

minima are similar, whereas mirror solutions for the χc0 and the f0(1710) are 
learly

distinguishable. The �t fra
tions of broad s
alars su
h as the f0(980) and the nonresonant
S-wave strongly vary between the solutions. We thus do not extra
t a Q2B bran
hing

fra
tion for these modes.
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Figure 5.15 � Fit fra
tions (in %) of ea
h intermediate state for the best minimum and the 15


losest se
ondary minima. Ea
h solution 
orresponds to an unique marker (
olour and form).

The best minimum is marked by a bla
k 
ir
le. The �t fra
tion measured by BaBar is indi
ated

by the red, verti
al line for ea
h resonan
e.

Figures 5.16 and 5.17 show proje
tions of the �t results on di�erent Dalitz-plot vari-

ables and the pulls distribution over the Dalitz plane, all the K0
S re
onstru
tion modes

and data-taking periods taken together. We noti
e several lo
alized dis
repan
ies, but an

overall satisfa
tory agreement, espe
ially for m′
and θ′.

We also 
al
ulate the angular moments, de�ned as

< Pl(cos(θK+K−)) >=

1
∫

−1

dΓPl(cos(θK+K−)d cos(θK+K−)), (5.31)

where Pl is the l
th

Legendre polynomial, Γ is the di�erential de
ay rate, and θK+K−
is

the heli
ity angle between K+
and K0

S
. They 
onstitute an alternative representation

to the ordinary DP proje
tion, and provide more information as they probe the angular

distribution of data. Indeed, 
onsidering that there is no partial-wave amplitudes of spin

3 or higher, the amplitude writes as

A(mK+K−, θK+K−) =AS(mK+K−, θK+K−)P0(cos(θK+K−))

+AP (mK+K−, θK+K−)eiφP (m
K+K−)P1(cos(θK+K−))

+AD(mK+K−, θK+K−)eiφD(m
K+K− )P2(cos(θK+K−)), (5.32)
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Figure 5.16 � Distributions of m2
K0

SK
+ (top, left), m2

K0
SK
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K+K− (bottom, left)

in data events (red dots) and in a Monte-Carlo sampled from the �t results (blue dots). Bottom,

right: pull distribution between data events and the �t result.

where AS,P,D and φP,D are real-valued fun
tions ofmK+K−
(φS is absorbed in the de�nition

of the phases). Using the orthogonality of Legendre polynomials

1
∫

−1

Pi(cos θK+K−)Pj(cos θK+K−)d cos θK+K− =
2

2l + 1
δij , (5.33)
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Carlo sampled from the �t results (blue dots).

we 
an relate the average of angular moments to the amplitude

10

< P0 > =
|AS|2 + |AP |2 + |AD|2√

2
;

< P1 > =
√
2ASAP cos(φP ) +

2
√
10

5
APAD cos(φP − φD);

< P2 > =

√

2

5
A2

P +

√
10

7
A2

D +
√
2ASAD cosφD;

< P3 > =
3

5

√

30

7
APAD cos(φP − φD);

< P4 > =

√
18

7
A2

D. (5.34)

The analysis is not �avour-tagged, and as a result we observe the sum of B0
and B0


on-

tributions. Assuming no CP violation and as the model only in
ludes K+K−
resonan
es,

the partial-wave amplitudes ful�ll

AS = AS

AP = −AP

AD = AD, (5.35)

where A refers to the B0
amplitude. As a result, terms that are a produ
t between odd

and even waves 
an
el out. The < P1 > and < P3 > terms only 
ontain su
h terms, and

10

Dependen
ies on mK+K−
have been dropped for 
larity purposes.
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Figure 5.18 � Distributions of angular moments as a fun
tion of mK+K− in data (red points) and

in a Monte-Carlo sampled from the �t results (blue line) for l = 0, 1, 2, 3 (top, left; top, right;

bottom, left; bottom, right).

we thus expe
t a 
onstant distribution 
ompatible with 0 in data.

11

Figures 5.18 and 5.19 show the proje
tion of data events and of the �t result on

these variables for l < 4 as a fun
tion of mK+K−
in the entire mass range and in the

mK+K− < 2GeV/c2 interval, respe
tively. The agreement between data and the model

is satisfying.

5.7 Fit validation

The stability of the �t model is ensured by means of toy studies 
omparable to those

des
ribed in Se
. 4.5. This pro
edure also allows to estimate the biases and the statisti
al

11

This is equivalent to the fa
t that we are not sensitive to relative phases between even and odd waves,

as < P1 > and < P3 > 
an be interpreted as the mean e�e
t of the interferen
e between even and odd

partial waves.
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Figure 5.19 � Distributions of angular moments as a fun
tion of mK+K− in data (red points) and

in a Monte-Carlo sampled from the �t results (blue line) for l = 0, 1, 2, 3 (top, left; top, right;

bottom, left; bottom, right), in the mK+K− < 2GeV/c2 interval.

un
ertainties on �t fra
tions. Table 5.10 summarizes the isobar parameters for whi
h a

signi�
ant bias is observed.

Fit fra
tions are non-linear 
ombinations of isobar parameters (see Eq. 1.56), and

the estimation of their statisti
al un
ertainty from the �t is di�
ult. We estimate the

asymmetri
 un
ertainty on �t fra
tions using the toy studies previously mentioned, by

�tting the resulting distribution of residuals with a bifur
ated Gaussian. We 
he
k that

the interval de�ned as su
h 
ontains 68% of toys, and thus that the un
ertainties are


orre
tly 
overed. Figure 5.20 show some of these residual distributions, and Table 5.11

shows the resulting un
ertainties, along with the measured biases.

Additionally, we perform a likelihood s
an of ea
h �t parameter in order to 
he
k

their 
onsisten
y with the un
ertainties on isobar parameters. Figure 5.21 shows the

result of this pro
edure on the parameters of the f0(980) 
ontribution, along with the

un
ertainty provided by the nominal �t. Table 5.12 details the un
ertainties as obtained
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Table 5.10 � Summary of signi�
ant biases of isobar parameters, along with the values obtained

for the best minimum.

Parameter Value Bias

c(φ0
) 0.6 -0.1

c(f0(980)) 0.7 -0.067

φ(f0(980)) 2.4 -0.95

c(f0(1500)) 0.34 -0.075

φ(f0(1500)) -1.4 -0.49

c(f
′

2(1525)) 0.27 -0.065

φ(f
′

2(1525)) 0.28 -0.55

c(f0(1710)) 0.23 -0.037

φ(f0(1710)) -0.0071 -0.28

c(χc0) 0.25 -0.051

φ(χc0) -1.3 -0.052

c(PolNR(S1)) 0.47 -0.0049

φ(PolNR(S1)) -3.1 -0.62

c(PolNR(S2)) 0.42 -0.0037

φ(PolNR(S2)) 3.9 0.34

c(PolNR(P0)) 0.79 -0.18

c(PolNR(P2)) 0.39 -0.073

φ(PolNR(P2)) -2.3 0.26

Table 5.11 � Statisti
al un
ertainties and biases of �t fra
tions estimated by �tting the distribu-

tion of residuals of toy experiments with a bifur
ated Gaussian.

Parameter Value (%) Bias (%) Lower un
. (%) Upper un
. (%)

FF (φ0
) 13 -0.32 1.4 2

FF (f0(980)) 18 -9.6 3.6 21

FF (f0(1500)) 4.2 -0.97 0.96 2.3

FF (f
′

2(1525)) 2.7 -0.52 0.64 1.8

FF (f0(1710)) 1.9 -0.65 0.46 2.1

FF (χc0) 2.3 -0.31 0.28 0.79

FF (PolNR(S0)) 26 2.3 5.7 16

FF (PolNR(S1)) 7.9 0.17 2.2 9

FF (PolNR(S2)) 6.6 -2.6 1.8 11

FF (PolNR(P0)) 23 -2.6 5.1 4.7

FF (PolNR(P2)) 5.5 -0.63 3.6 3.7
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Figure 5.20 � Distributions of residuals of the φ0
and χc0 �t fra
tions (left and right, respe
tively).

from MINOS and the un
ertainties from the likelihood s
ans for ea
h isobar parameter.

12

We noti
e that un
ertainties from the likelihood s
ans are systemati
ally larger than the

un
ertainties from MINOS. The values are however 
lose, and the signi�
ant asymmetry

of the un
ertainties for 
ertain parameters justi�es the use of MINOS un
ertainties in the

following rather than those from MIGRAD.

5.8 Evaluation of systemati
 un
ertainties

5.8.1 Fit-bias estimation

As des
ribed in Se
. 5.7, the model is validated using pseudo-experiments. For ea
h

parameter, we extra
t the average bias and, in 
ase it is signi�
ant, assign the systemati


un
ertainty

∆X =| δX
2

|, (5.36)

where δX is the bias measured on the parameter X .

5.8.2 General method to evaluate systemati
 un
ertainties

The method to extra
t systemati
 un
ertainties is similar to that exposed in Se
 4.6. We

divide systemati
 un
ertainties in two 
ategories:

12

The 1σ interval around a minimum 
an be de�ned by the 
losest values for whi
h the NLL is 0.5

larger than at that minimum.
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Figure 5.21 � Likelihood s
ans of the magnitude (left) and the phase (right) of the f0(1500),
shifted by the minimum value and in the [0,12.5℄ interval (
orresponding to a 5σ distan
e from

the minimum). The verti
al, dotted red line indi
ates the minimum found by the nominal �t.

The values for whi
h the NLL 
rosses the ∆(NLL) = 0.5 line (1σ) are indi
ated by the green

line.

• systemati
 un
ertainties related to assumptions on �xed parameters, su
h as e�-


ien
ies, resonan
e parameters, and yields;

• systemati
 un
ertainties related to the 
hoi
e of the model used to �t the data.

The �rst kind of un
ertainties is estimated by varying the �xed parameters within

their un
ertainties, taking 
orrelations into a

ount whenever possible, and �tting the

model to data with the randomized parameter. The un
ertainty ∆X on a parameter X
is then

∆X =

√

σ2
X + (

µX

2
)2, (5.37)

where µX and σX are mean and the rms of the distribution of residuals 
al
ulated between

the nominal �t and the �ts using randomized parameters.

The se
ond kind of un
ertainties is estimated by �tting the 
on
urrent model to data,

and using the result of that �t to generate pseudo-experiments. These pseudo-experiments

are then �tted using both the nominal and the 
on
urrent model. The systemati
 un
er-

tainty on a parameter X is then 
al
ulated using Eq. 5.37, where µX and σX are the mean

and the rms of the distribution of residuals 
al
ulated between the �ts using the nominal

model and those using the 
on
urrent model.
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Table 5.12 � Isobar parameters along with un
ertainties extra
ted from MIGRAD, MINOS, or the

likelihood s
ans.

Parameter Value Stat. (�t) Stat. (s
an) Stat. (MINOS)

c(φ0
) 0.6 ±0.072 ±0.088

0.096 ±0.062
0.048

φ(φ0
) 0.35 �xed �xed �xed

c(f0(980)) 0.7 ±0.16 ±0.17
0.22 ±0.064

0.062

φ(f0(980)) 2.4 ±0.79 ±0.65
0.71 ±0.41

0.63

c(f0(1500)) 0.34 ±0.054 ±0.058
0.085 ±0.043

0.038

φ(f0(1500)) -1.4 ±0.45 ±0.54
0.46 ±0.37

0.3

c(f
′

2(1525)) 0.27 ±0.056 ±0.063
0.06 ±0.058

0.046

φ(f
′

2(1525)) 0.28 ±0.43 ±0.47
0.45 ±0.37

0.29

c(f0(1710)) 0.23 ±0.044 ±0.048
0.054 ±0.034

0.033

φ(f0(1710)) -0.0071 ±0.4 ±0.47
0.39 ±0.34

0.24

c(χc0) 0.25 ±0.038 ±0.044
0.038 ±0.035

0.027

c(PolNR(S0)) 0.84 �xed �xed �xed

φ(PolNR(S0)) 0 �xed �xed �xed

c(PolNR(S1)) 0.47 ±0.089 ±0.096
0.088 ±0.098

0.14

φ(PolNR(S1)) -3.1 ±0.3 ±−0.034
0.39 ±0.24

0.16

c(PolNR(S2)) 0.42 ±0.11 ±0.12
0.13 ±0.18

0.23

φ(PolNR(S2)) 3.9 ±0.21 ±−0.29
0.20 ±0.22

0.6

c(PolNR(P0)) 0.79 ±0.12 ±0.12
0.13 ±0.11

0.088

φ(PolNR(P0)) 1.1 �xed �xed �xed

c(PolNR(P2)) 0.39 ±0.12 ±0.11
0.13 ±0.065

0.058

φ(PolNR(P2)) -2.3 �xed �xed �xed

5.8.3 E�
ien
ies

The method to evaluate e�
ien
ies a
ross the Dalitz plot along with the un
ertainties

on the e�
ien
y values has been dis
ussed in Se
. 5.5. We �t the model to data using

alternative e�
ien
y maps obtained by varying the nominal e�
ien
y maps within their

un
ertainties. We negle
t 
orrelations between data-taking periods and neighbouring bins

in the histograms, and show the results in Table 5.13.

5.8.4 Signal and ba
kground yields estimations

As explained in Se
. 5.3, signal and ba
kground yields are �xed in the �t to data, and

taken from the invariant-mass �t. In order to take into a

ount all possible 
orrelations,

we use the full 
ovarian
e matrix from the invariant-mass �t to obtain a set of alternative

yields and shape parameters. The integrals of the 
ontributions in the signal mass window

are re
al
ulated.

Table 5.14 shows the systemati
 un
ertainties related to the estimation of signal and
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Table 5.13 � Systemati
 un
ertainties on isobar parameters and �t fra
tions related to the esti-

mation of e�
ien
ies.

Resonan
e Fit fra
tion (%) c φ
φ0

0.17 0.03 �xed

f0(980) 4.5 0.1 0.68

f0(1500) 0.18 0.017 0.25

f
′

2(1525) 0.17 0.017 0.25

f0(1710) 0.12 0.012 0.21

χc0 0.052 0.013 0.14

PolNR(S0) 3 �xed �xed

PolNR(S1) 1.1 0.024 0.12

PolNR(S2) 1.6 0.035 0.16

PolNR(P0) 1 0.047 �xed

PolNR(P2) 1.1 0.049 �xed

Table 5.14 � Systemati
 un
ertainties on isobar parameters and �t fra
tions related to the esti-

mations of the yields of event spe
ies.

Resonan
e Fit fra
tion (%) c φ
φ0

0.044 0.003 �xed

f0(980) 0.23 0.0026 0.026

f0(1500) 0.012 0.0019 0.012

f
′

2(1525) 0.032 0.0032 0.0089

f0(1710) 0.0073 0.0016 0.01

χc0 0.0083 0.0015 0.0045

PolNR(S0) 0.34 �xed �xed

PolNR(S1) 0.072 0.0025 0.008

PolNR(S2) 0.054 0.0039 0.0019

PolNR(P0) 0.42 0.013 �xed

PolNR(P2) 0.11 0.0025 �xed

ba
kground yields on isobar parameters and �t fra
tions.

5.8.5 Ba
kground shapes

The distributions of ba
kground events over the Dalitz plot are 
onsidered separately for


ombinatorial and 
ross-feed 
ontributions. We perform 200 �ts to data, varying the

histograms representing these distributions within their un
ertainties. Neighbouring bins

are 
onsidered as un
orrelated, as are histograms for di�erent data-taking periods and K0
S

re
onstru
tion modes.
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Table 5.15 � Systemati
 un
ertainties on isobar parameters and �t fra
tions related to the mod-

elling of ba
kgrounds.

Resonan
e Fit fra
tion (%) c φ
φ0

0.028 0.002 �xed

f0(980) 0.26 0.0051 0.024

f0(1500) 0.015 0.0012 0.012

f
′

2(1525) 0.035 0.0021 0.011

f0(1710) 0.017 0.0012 0.0098

χc0 0.01 0.0011 0.006

PolNR(S0) 0.18 �xed �xed

PolNR(S1) 0.11 0.0036 0.01

PolNR(S2) 0.13 0.0039 0.0066

PolNR(P0) 0.13 0.0043 �xed

PolNR(P2) 0.16 0.0054 �xed

Table 5.15 shows the systemati
 un
ertainties on isobar parameters and �t fra
tions

related to the shape of the 
ombinatorial ba
kground shape and the 
ross-feeds.

5.8.6 Total experimental systemati
 un
ertainties

The previous systemati
 un
ertainties related to the imperfe
t knowledge of the event yield

spe
ies and experimental setup are summed in quadrature and reported independently

from other sour
es of systemati
 un
ertainties in the �nal result. Table 5.16 shows the

experimental systemati
 un
ertainties on the isobar parameters and �t fra
tions for the

preferred solution.

5.8.7 Resonan
e shape parameters

Resonan
e parameters su
h as masses and widths are rather well-known inputs from other

experiments. We vary the mass and the width of ea
h resonant 
omponent of the Dalitz-

plot model, negle
ting any 
orrelation, and show the results in Table 5.17.

We also 
onsider a systemati
 un
ertainty related to Blatt-Weisskopf barrier fa
tors,

des
ribed in Se
. 1.3.5. When varying the values of these fa
tors, we assume that it

remains the same for all resonan
es. We vary independently the barrier fa
tors of the

mother parti
le and the resonan
es, and add the resulting systemati
 un
ertainties in

quadrature. Table 5.18 shows this systemati
 un
ertainty.

The overall systemati
 un
ertainty related to resonan
e shape parameters on a given

quantity is the sum in quadrature of all the previously mentioned systemati
 un
ertainties.
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Table 5.16 � Summary of systemati
 un
ertainties on �t fra
tions arising from the knowledge of

event spe
ies and experimental setup.

Parameter E�
ien
y Shape 
f. Shape 
omb. Yield ratios Total

FF(φ0
) 0.17 TBD 0.028 0.044 0.18

FF(f0(980)) 4.5 TBD 0.26 0.23 4.5

FF(f0(1500)) 0.18 TBD 0.015 0.012 0.18

FF(f
′

2(1525)) 0.17 TBD 0.035 0.032 0.18

FF(f0(1710)) 0.12 TBD 0.017 0.0073 0.12

FF(χc0) 0.052 TBD 0.01 0.0083 0.053

FF(PolNR(S0)) 3 TBD 0.18 0.34 3

FF(PolNR(S1)) 1.1 TBD 0.11 0.072 1.1

FF(PolNR(S2)) 1.6 TBD 0.13 0.054 1.6

FF(PolNR(P0)) 1 TBD 0.13 0.42 1.1

FF(PolNR(P2)) 1.1 TBD 0.16 0.11 1.1

Table 5.17 � Systemati
 un
ertainties on isobar parameters and �t fra
tions originating from

�xed parameters in the lineshapes.

Resonan
e Fit fra
tion (%) c φ
φ0

0.065 0.019 �xed

f0(980) 4.1 0.098 0.19

f0(1500) 0.3 0.018 0.14

f
′

2(1525) 0.13 0.013 0.073

f0(1710) 0.21 0.012 0.086

χc0 0.042 0.0091 0.064

PolNR(S0) 1.7 �xed �xed

PolNR(S1) 0.8 0.017 0.08

PolNR(S2) 1 0.031 0.11

PolNR(P0) 0.38 0.029 �xed

PolNR(P2) 0.19 0.015 �xed

5.8.8 Fixed isobar parameters

As des
ribed in Se
. 5.6, some isobar parameters are �xed in the �t to data as the sensitiv-

ity of an untagged analysis to these parameters is limited.

13

A systemati
 un
ertainty re-

lated to the �xed parameters is assigned by varying their values within their un
ertainties

provided by the BaBar experiment. We negle
t 
orrelations between these un
ertainties.

Table 5.19 shows the resulting systemati
 un
ertainties.

13

The isobar parameters related to the 
onstant term of the nonresonant S-wave are not in
luded in

this, as they set the referen
e for both the phases and the magnitudes.
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Table 5.18 � Systemati
 un
ertainties on isobar parameters and �t fra
tions originating from

Blatt-Weisskopf barrier fa
tors.

Resonan
e FF c φ
φ0

1.1 0.07 �xed

f0(980) 1.1 0.062 0.092

f0(1500) 0.092 0.034 0.16

f
′

2(1525) 0.99 0.047 0.16

f0(1710) 0.096 0.029 0.088

χc0 0.095 0.031 0.019

PolNR(S0) 5.5 �xed �xed

PolNR(S1) 0.93 0.059 0.025

PolNR(S2) 1.3 0.0098 0.065

PolNR(P0) 5.5 0.12 �xed

PolNR(P2) 1.6 0.093 �xed

Table 5.19 � Systemati
 un
ertainties on isobar parameters and �t fra
tions originating from �xed

isobar parameters aside from the parameters of the 
onstant term of the nonresonant S-wave.

Resonan
e Fit fra
tion (%) c φ
φ0

0.35 0.073 �xed

f0(980) 6.5 0.07 0.85

f0(1500) 0.13 0.056 0.4

f
′

2(1525) 0.49 0.039 0.38

f0(1710) 0.079 0.035 0.33

χc0 0.1 0.047 0.099

PolNR(S0) 11 �xed �xed

PolNR(S1) 0.82 0.053 0.3

PolNR(S2) 3 0.043 0.064

PolNR(P0) 6 0.19 �xed

PolNR(P2) 2.4 0.13 �xed

5.8.9 Model un
ertainties

We 
onsider the possible presen
e of the following additional resonan
es: f0(1370),
f2(1270), f2(2010), f2(2300), and φ(1680). No signi�
ant 
ontribution from any of these

resonan
es is found, and they are then only in
luded in the model to evaluate systemati


un
ertainties.

In order to estimate a systemati
 un
ertainty related to an alternative model, we

generate 200 toy experiments using the �t of this model to data. We then �t ea
h of these

toys with the baseline model and the alternative model, and �t the distribution of the

148



Table 5.20 � Systemati
 un
ertainties on �t fra
tions originating from the addition of a resonan
e

in the model. They are then summed in quadrature in order to yield the total systemati


un
ertainty related to the model.

f0(1370) f2(1270) f2(2010) f2(2300) φ1370 Sum

φ0
0.58 0.89 0.67 0.00075 0.64 1.4

f0(980) 13. 8.5 3.4 0.023 3.9 17.

f0(1500) 2.2 0.64 0.39 0.0012 0.48 2.3

f
′

2(1525) 0.59 0.73 0.52 0.00079 1.7 2.0

f0(1710) 1.2 0.58 0.78 0.0011 0.69 1.7

χc0 0.13 0.22 0.17 0.00039 0.16 0.34

PolNR(S0) 14. 12. 8.1 0.018 5.9 21.

PolNR(S1) 8.5 11. 3.8 0.012 1.9 14.

PolNR(S2) 7.0 5.4 2.9 0.010 2.5 9.6

PolNR(P0) 3.7 4.6 4.8 0.0048 4.4 8.8

PolNR(P2) 1.9 3.6 2.2 0.0042 1.4 4.8

di�eren
es of the �t fra
tions between the two �ts with a Gaussian. The 
orresponding

systemati
 un
ertainty is then

∆X =

√

(µ

2

)2

+ σ2, (5.38)

where µ and σ are the mean and the width of the Gaussian.

Table 5.20 summarizes the model un
ertainties on ea
h �t fra
tion related to the addi-

tion of one of these resonan
es in the model. As expe
ted, this is the largest 
ontribution

to the systemati
 un
ertainties.

The addition of the a00(980) or the a
±
0 (980) 
auses the �t to 
onverge to a solution

that is rather far away from the global minimum. We thus do not assign a systemati


un
ertainty for it.

5.9 Con
lusion

We have performed a preliminary Dalitz-plot analysis of the B0→ K0
S
K+K−

de
ay mode

in LHCb, using 3 fb

−1
of data from Run I, taking the result from BaBar [40℄ as a referen
e

model. The distribution of events over the Dalitz plot is overall well modelled, as shown

by Figs. 5.16 and 5.17. Table 5.21 shows the �t fra
tions of the di�erent resonan
es along

with their statisti
al and systemati
 un
ertainties.
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Table 5.21 � Fit fra
tions of ea
h resonan
e, along with their statisti
al and systemati
 un
ertain-

ties. Ea
h value is in %. The quoted value is 
orre
ted for the bias. The �Total� 
olumn refers

to the total systemati
 un
ertainty; �Exp.� refers to the experimental systemati
 un
ertainty,

�FixParams� to the systemati
s un
ertainty related to �xed isobar parameters, �Res. par.� to

the systemati
 un
ertainty related to �xed resonan
e parameters, and �Add. res.� refers to the

systemati
 un
ertainty related to alternative models.

Value Stat. Bias Exp. FixParams Res. par. Add. res. Total

FF(φ0
) 13. ±1.7

2.1 0.090 0.18 0.35 1.1 1.4 1.8

FF(f0(980)) 13. ±23.
2.2 5.5 4.5 6.5 4.3 17. 20.

FF(f0(1500)) 3.7 ±2.3
1.0 0.53 0.18 0.13 0.32 2.3 2.4

FF(f
′

2(1525)) 2.9 ±1.3
1.3 0.15 0.18 0.49 1.0 2.0 2.3

FF(f0(1710)) 2.2 ±1.8
1.8 0.28 0.12 0.079 0.23 1.7 1.7

FF(χc0) 2.2 ±0.67
0.45 0.13 0.053 0.10 0.10 0.34 0.40

FF(PolNR(S0)) 25. ±18.
5.6 0.99 3.0 11. 5.8 21. 25.

FF(PolNR(S1)) 7.3 ±9.0
1.8 0.63 1.1 0.82 1.2 14. 15.

FF(PolNR(S2)) 4.5 ±12.
1.5 2.1 1.6 3.0 1.7 9.6 11.

FF(PolNR(P0)) 21. ±5.9
4.8 2.2 1.1 6.0 5.5 8.8 12.

FF(PolNR(P2)) 4.4 ±5.1
20. 1.0 1.1 2.4 1.7 4.8 5.9

The �t model has many (16) solutions within 4.5 NLL units from the best minimum,


orresponding to di�erent interferen
e patterns and �t fra
tions. Resolving these solu-

tions, whi
h 
ould be made possible with a larger dataset, would help to make a �nal

interpretation of the result. However, the �t fra
tion of the φ0
does not depend on a

spe
i�
 minimum, and its value is 
ompatible with the result from the B fa
tories. We

thus determine the Q2B bran
hing fra
tion of this mode

B(B0→ K0
S
(φ0→ K+K−) =

(

1.63±0.2
0.3 (stat)± 0.2(syst)± 0.2(BF)

)

× 10−6, (5.39)

where the un
ertainties are statisti
al, systemati
, and due to the un
ertainty on B (B0→
K0

S
K+K−

), respe
tively. This bran
hing fra
tion is 
ompatible with the PDG value

BPDG(B
0→ K0φ0) = (7.3± 0.7)× 10−6. (5.40)

We also extra
t bran
hing fra
tions for the B0 → K0
Sχc0(→ K+K−), B0 →

K0
S
f

′

2(1525)(→ K+K−), and B0→ K0
S
f0(1710)(→ K+K−) modes

B(B0→ K0
S
χc0(→ K+K−)) =

(

0.28±0.08
0.06 (stat)± 0.05(syst)± 0.04(BF)

)

× 10−6,

B(B0→ K0
S
f

′

2(1525)(→ K+K−)) = (0.36± 0.16(stat)± 0.29(syst)± 0.05(BF))× 10−6.

B(B0→ K0
S
f0(1710)(→ K+K−)) = (0.27± 0.22(stat)± 0.21(syst)± 0.03(BF))× 10−6.

(5.41)
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The bran
hing fra
tion of B0→ K0
S
f

′

2(1525)(→ K+K−) is in good agreement with PDG

values. There is no su
h referen
e for B (B0 → K0
Sχc0(→ K+K−)), but the value is


onsistent with both BaBar and Belle measurements. Finally, the bran
hing fra
tion of

f0(1710) di�ers signi�
antly from the (2.2± 0.45)× 10−6
value of the PDG.
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Con
lusion

The Run I dataset from the LHCb experiment, 
orresponding to 3 fb

−1
re
orded at 
entre-

of-mass energies of 7 and 8TeV, has been analyzed in order to sear
h for the B0
s →

K0
SK

+K−
de
ay and update LHCb measurement of the bran
hing fra
tion of other B0

d,s→
K0

S
h+h

′−
modes. Furthermore, an untagged, time-independent Dalitz-plot analysis of

B0→ K0
SK

+K−
is performed in order to extra
t Q2B bran
hing fra
tions.

The B0
s → K0

S
K+K−

mode is observed for the �rst time with a global signi�
an
e of

3.7 σ. The results obtained of the other B0→ K0
S
h±h

′∓
relative bran
hing fra
tions are

B (B0
s → K0

Sπ
+π−)

B (B0→ K0
Sπ

+π−)
= 0.26± 0.04(stat.)± 0.02(syst.)± 0.01(fs/fd),

B (B0→ K0
SK

±π∓)

B (B0→ K0
S
π+π−)

= 0.17± 0.02(stat.)± 0.00(syst.),

B (B0
s → K0

S
K±π∓)

B (B0→ K0
S
π+π−)

= 1.84± 0.07(stat.)± 0.02(syst.)± 0.04(fs/fd),

B (B0→ K0
S
K+K−)

B (B0→ K0
S
π+π−)

= 0.59± 0.02(stat.)± 0.01(syst.),

(5.42)

They are 
ompatible with results obtained by B-fa
tories, and 
oherent with previous

measurements from LHCb, at the ex
eption of B0→ K0
SK

+K−
. These results are used as

a baseline to extra
t signal yields and ba
kground distributions for the amplitude analyses

of B0→ K0
Sπ

+π−
, B0

s → K0
SK

±π∓
, and B0→ K0

SK
+K−

.

The �rst �avour-untagged, time-independent Dalitz-plot analysis of B0→ K0
S
K+K−

in LHCb is performed with a reoptimized BDT sele
tion. The amplitude is modelled as

the sum of a φ0
, f0(980), f0(1500), f0(1710), f

′

2(1525), χc0, and a nonresonant 
omponent.

This nonresonant amplitude is des
ribed similarly to that from the latest BaBar analysis,

as a sum of an S-wave and a P -wave, both modelled as se
ond-degree polynomials. Fit

fra
tions are extra
ted, and quasi-two-body bran
hing fra
tions are measured for the

Q2B modes B0→ K0
S
φ0
, B0→ K0

S
f

′

2(1525), B
0→ K0

S
χc0, and B

0→ K0
S
f0(1710). These

bran
hing fra
tions are 
ompatible with results from B fa
tories, with the ex
eption of

the latter.

The study of B0
d,s→ K0

S
h+h

′−
de
ays will bene�t from a growing dataset in the next

few years; amplitude analyses of the suppressed modes su
h as B0
s → K0

Sπ
+π−


ould
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be
ome possible for the �rst time. Amplitude analyses of the favoured modes su
h as

B0→ K0
SK

+K−
will enter a new phase, with the addition of a tagging information that

will allow to disentangle B and B 
ontributions. Indeed, this information is ne
essary not

only to perform CP violation measurements, but also to measure the relative phases of

even and odd partial waves.
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Appendix A

Corre
ting sWeights in the presen
e of

�xed yields

Subtra
ting ba
kground from the signal in physi
s analyses 
an be performed in several

ways. We des
ribed in Se
. 4.2.3 the sPlots pro
edure [65℄, whi
h is an e�
ient and

widespread method to do so; it is implemented in the RooStats pa
kage [72℄. In this

appendix, we fo
us on the e�e
t of �xed yields on the results, whi
h is do
umented in

Ref. [73℄, Annexes B.1 and B.2.

Se
tion A.1 shortly reminds the sPlots subtra
tion pro
edure and its modi�
ations

in the presen
e of �xed yields that was presented in Se
. 4.2.3. Se
tion A.2 then reviews

the implementation of sPlots in RooStats and the issues it may introdu
e. Finally, an

alternative 
onstru
tor to the RooStats::SPlot 
lass that would solve these issues is

proposed in Se
 A.3, along with some tests.

A.1 sPlots with �xed yields

We 
onsider a model with NS event spe
ies; the yield of a spe
ies k is noted Nk and

its normalized PDF fk. The sPlots pro
edure allows to use the information from a

�t performed on a dis
riminating variable X to extra
t the distributions of the 
ontrol

variable Y for the di�erent spe
ies.

A main ingredient of the sPlots 
al
ulation is the 
ovarian
e matrix V of the �t, whi
h


an be taken from the output of a �t routine (e.g. TMinuit [74℄). Alternatively, its inverse


an be dire
tly 
omputed using:

V −1
ij =

N
∑

e=1

fi(e)fj(e)

(
NS
∑

k=1

Nkfk(e))2
, (A.1)

where the sum is running over N events, and fi(e) designates the value of the PDF fi for
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the event e. We 
an then use the 
ovarian
e matrix to 
ompute, for ea
h event spe
ies n,
the per-event sWeight sPn(e), using:

sPn(e) =

NS
∑

j=1

Vnjfj(Xe)

NS
∑

k=1

Nkfk(Xe)

. (A.2)

The distribution of the event spe
ies n on the 
ontrol variable Y is then estimated by:

Nn.sMn(Y ).δY =
∑

e⊂[Y−δY,Y+δY ]

sPn(e). (A.3)

We now introdu
e another event spe
ies in the model, with a �xed yield N0 and a nor-

malized PDF f0. The 
ovarian
e matrix 
hanges, and its inverse be
omes:

V −1
ij =

N
∑

e=1

fi(e)fj(e)

(
NS
∑

k=1

Nkfk(e) +N0f0(e))2
, (A.4)

whereas the per-event sWeight be
omes:

sPn(e) =

NS
∑

j=1

Vnjfj(Xe)

NS
∑

k=1

Nkfk(Xe) +N0f0(Xe)

=

NS
∑

j=1

Vnjfj(Xe)

NS
∑

k=1

Nkfk(Xe)

NS
∑

k=1

Nkfk(Xe)

NS
∑

k=1

Nkfk(Xe) +N0f0(Xe)

. (A.5)

This expression di�ers from Eq. A.2 only by an event-by-event fa
tor that depends on the

yields Nk and the PDFs fk.
In the 
ase where the distribution of the 
ontrol variable for the spe
ies with �xed

yield, M0(Y ), is known, the distribution of the 
ontrol variable Y for the spe
ies n is:

Nn.sMn(Y ).δY =
∑

e⊂[Y−δY,Y+δY ]

sPn(e) + cn.M0(Y ), (A.6)

where
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cn = Nn −
NS
∑

j=1

Vnj (A.7)

is a 
oe�
ient depending uniquely on the 
onsidered event spe
ies. It quanti�es the

impa
t of the spe
ies with �xed yields on sMn(Y ), and vanishes only if N0 = 0.

One of the issues of extra
ting sWeights using a tool that treats the varied and �xed

yields on an equal footing is related to the 
al
ulation of the 
ovarian
e matrix. To

illustrate this, we 
onsider a model in
luding three spe
ies: a signal S, a 
ombinatorial

ba
kground C, and another ba
kground B with a �xed yield. Using Eq. A.4, we 
al
ulate

the inverse of the 
ovarian
e matrix, and obtain:

V −1 =





(V −1)SS (V −1)SC (V −1)SB
(V −1)CS (V −1)CC (V −1)CB

(V −1)BS (V −1)BC (V −1)BB



 , (A.8)

whi
h in
orre
tly in
ludes terms related to the spe
ies with �xed yields. As the terms

(V −1)SB and (V −1)CB do not vanish a priori, the inverse of this matrix has no 
lear link

with the 
orre
t 
ovarian
e matrix. Also, we noti
e that in the 
ase where fB = fC or

fB = fS, the matrix is no longer invertible (it has two identi
al 
olumns and lines), whereas

sWeights should still be 
al
ulable. This shows that there is something fundamentally

�awed with this approa
h.

A.2 RooStats implementation of the sPlots method

The RooStats::SPlot method, used to 
al
ulate sWeights, 
omputes the inverse of the


ovarian
e matrix using Eq. A.1 with a list of yields that the user provides as an argument.

The 
ovarian
e matrix itsef is then obtained from its inverse. As shown in Se
. A.1, in

the 
ase where there are some �xed yields in the arguments, this results in an in
orre
t


ovarian
e matrix.

However, building the RooStats::SPlot obje
t using only the varied yields is also

in
orre
t, as it would result in using Eq. A.1 and Eq. A.2 rather than Eq. A.4 and

Eq. A.5. Corre
ting the sWeights event-by-event using Eq. A.5 is not possible either, as

the 
ovarian
e matrix is not 
orre
tly 
al
ulated.

A.3 Proposed method and test

It is 
lear from Se
. A.1 that it is ne
essary to di�eren
iate the �xed yields from the others

in the RooStats::SPlot obje
t. To address this requirement, we propose an alternative


onstru
tor to the RooStats::SPlot obje
t, shown in Fig. A.1 along with the original
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onstru
tor. We stress that this alternative 
onstru
tor does not perform the 
orre
tion

shown in Eq. A.6. However, it 
al
ulates and stores the cn 
oe�
ients in a new attribute of

the 
lass, as shown in Fig. A.2 and Fig. A.3. We also add a test to the original 
onstru
tor,

to 
he
k if all the arguments are indeed varying yields.

We test this alternative 
onstru
tor and the cn extra
tion tool using a toy model


ontaining 3 event spe
ies: a signal S, a 
ombinatorial ba
kground C, and a peaking

ba
kground B with a �xed yield. The PDFs of these spe
ies on the dis
riminating variable

X and on the 
ontrol variable Y are taken as:

• Signal (S): Gaussian (µ = 0, σ = 0.1) for X ; Gaussian (µ = 0, σ = 0.05) for Y .

• Combinatorial ba
kground (C): Constant for X ; Gaussian (µ = -0.5, σ = 0.05) for

Y .

• Fixed ba
kground. (B): Gaussian (µ = 0, σ = 0.05) for X ; Gaussian (µ = 0.5, σ =

0.05) for Y .

Both variables X and Y are de�ned in the interval [-1,1℄. This model is 
hosen in order

to ensure a sizable nuisan
e of the spe
ies with �xed yield on the dis
riminating variable,

whereas its impa
t on the 
ontrol variable is easy to spot. We generate a sample of

16,000 events, in
luding 5,000 signal events, 1,000 �xed ba
kground events, and 10,000


ombinatorial ba
kground events. We then assume a wrong hypothesis on the yield of the

�xed ba
kground (NB = 1200), in order to simulate the general 
ase where the value of

the �xed yield is not pre
isely known. We show the result of the one-dimensional �t on

the variable X using this model, along with the proje
tion of this �t on the variable Y ,
in Fig. A.4.

We 
onsider two approa
hes, A and B: the former is the 
al
ulation of the sWeights

with the original RooStats::SPlot method, providing only the list of varying yields to

the RooStats::SPlot 
onstru
tor; the latter is the proposed approa
h, where we use the

alternative RooStats::SPlot 
onstru
tor providing the list of all yields and the list of

�xed yields.

For ea
h of these two methods, Fig. A.5 shows the samples with signal and ba
kground

weights applied, both before and after the 
orre
tion of Eq. A.6. The results are satis-

fa
tory for approa
h B after the cn 
orre
tion, for both the signal and the 
ombinatorial

ba
kground distributions. On the 
ontrary, approa
h A provides an a

eptable des
ription

of the signal shape, but shows large dis
repan
ies for the 
ombinatorial ba
kground.

For ea
h event spe
ies, Table. A.1 also shows the sum of sWeights and of its asso
iated

cn, 
ompared to the �tted yield. A

ording to Ref. [73℄, the sum has to be 
ompatiable

with the yield, whi
h is 
learly not the 
ase for approa
h A.
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Spe
ies

∑

e sPA(e)+cA
∑

e sPB(e)+cB Fitted yield

Signal -7336.15 4975.27 4975.35

Comb. 16361.5 10007.5 10007.5

Bkg - - 1200.

Table A.1 � Summary of yields and sum of sWeights for the two approa
hes. As shown in

Ref. [73℄, in both approa
hes the sum of all yields extra
ted from the �t is not equal to the total

number of events.
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Changes in the implementation of the usual 
onstru
tor:

SPlot : : SPlot ( 
onst 
har ∗ name , 
onst 
har ∗ t i t l e ,

RooDataSet& data , RooAbsPdf∗ pdf ,


onst RooArgList &y i e l d sL i s t , 
onst RooArgSet &projDeps ,

bool in
 ludeWeights , bool 
loneData , 
onst 
har ∗ newName ) :

TNamed(name , t i t l e )

{

/∗ Or ig ina l body o f the SPlot 
ons t ru
 to r . ∗/
// Add 
he
k that y i e l d s L i s t 
onta in s only vary ing y i e l d s

i t e r = y i e l d s L i s t . 
 r e a t e I t e r a t o r ( ) ;

RooRealVar ∗var ;
whi l e ( ( var=(RooRealVar∗) i t e r−>Next ( ) ) ) {

i f ( var−>isConstant ( ) ) {

//Throw ex
ept ion and e r r o r message .

}}

d e l e t e i t e r ;

//Cal l method to bu i ld sWeights

th i s−>AddSWeight ( pdf , y i e l d sL i s t , projDeps , in
 ludeWeights ) ;

}

Implementation of the alternative 
onstru
tor:

SPlot : : SPlot ( 
onst 
har ∗ name , 
onst 
har ∗ t i t l e ,

RooDataSet& data , RooAbsPdf∗ pdf ,


onst RooArgList &a l lY i e l d sL i s t , 
onst RooArgList &f ixedYie ld s ,


onst RooArgSet &projDeps ,

bool in
 ludeWeights , bool 
loneData , 
onst 
har ∗ newName ) :

TNamed(name , t i t l e )

{

/∗ Or ig ina l body o f the SPlot 
ons t ru
 to r . ∗/
// Add 
he
k that y i e l d s L i s t 
onta in s only vary ing y i e l d s

//Che
k that f i x ed y i e l d s are in the a l l Y i e l d s arguments

i t e r = f i x edY i e l d s . 
 r e a t e I t e r a t o r ( ) ;

whi l e ( ( arg=(RooAbsArg∗) i t e r−>Next ( ) ) )
i f ( ! ( a l l Y i e l d s L i s t . 
onta in s (∗ arg ) ) )
{

//Throw ex
ept ion and e r r o r message .

}

//Cal l new method to bu i ld sWeights , with f i x ed y i e l d s

th i s−>AddSWeight ( pdf , a l lY i e l d sL i s t , f i x edYie ld s , projDeps , in
 ludeWeights ) ;

}

Figure A.1 � Snippets of 
ode showing the original (top) and the alternative (bottom) 
on-

stru
tors for the RooStats::SPlot 
lass. Providing an empty RooArgSet as the �xedYieldsList

argument of the alternative 
onstru
tor yields the same results as 
alling the original 
onstru
tor

with the same arguments.
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void SPlot : : AddSWeight ( RooAbsPdf∗ pdf , 
onst RooArgList &a l lY i e l d sL i s t ,


onst RooArgList &f ixedYie ld s ,


onst RooArgSet &projDeps , bool in
 ludeWeights )

{

/∗Usual body o f the method : s t o r e s the 
onstant parameters ( other than

y i e l d s ) va lue s ∗/
// Sto re s whi
h indexes o f the a l l Y i e l d sL i s t are the va r i ab l e ones .

TI t e ra to r ∗ i t = a l l Y i e l d s L i s t . 
 r e a t e I t e r a t o r ( ) ;

RooAbsArg∗ arg ;

unsigned i n t iArg ( 0 ) ;

s td : : ve
tor<unsigned int> varIndexes ;

whi l e ( ( arg = (RooAbsArg∗) i t−>Next ( ) ) != NULL){

i f ( ! ( f i x edY i e l d s . f i nd ( arg−>GetName ( ) ) ) )

var Indexes . push_ba
k ( iArg ) ;

iArg++;}

//We now have two indexes over whi
h we i t e r a t e

Int_t nAllSpe
 = a l l Y i e l d s L i s t . g e t S i z e ( ) ;

Int_t nVarSpe
 = a l l Y i e l d s L i s t . g e t S i z e ( ) − f i x edY i e l d s . g e tS i z e ( ) ;

/∗Usual body o f the method :

−s t o r e s the i n i t i a l y i e l d parameters

−
 a l 
 u l a t e the va lue o f the 
omponent pdf f o r ea
h event and

s p e 
 i e s . ∗/
// Inve r s e o f the 
ovar i an
e matrix

TMatrixD 
ovInv ( nVarSpe
 , nVarSpe
 ) ;

/∗ I n i t i a l i s a t i o n ∗/
f o r ( Int_t i e v t = 0 ; i e v t < numevents ; ++i e v t ){

fSData−>get ( i e v t ) ;

// Sum f o r the denominator

Double_t dsum ( 0 ) ;

f o r ( Int_t k = 0 ; k < nAllSpe
 ; ++k)

dsum += pdfva lue s [ i e v t ℄ [ k ℄ ∗ y i e l d v a l u e s [ k ℄ ;

f o r ( Int_t n=0; n<nVarSpe
 ; ++n)

f o r ( Int_t j =0; j<nVarSpe
 ; ++j )

i f ( in
 ludeWeights == kTRUE)


ovInv (n , j ) += fSData−>weight ( )
∗ pd fva lue s [ i e v t ℄ [ var Indexes [ n ℄ ℄
∗ pd fva lue s [ i e v t ℄ [ var Indexes [ j ℄ ℄ / ( dsum∗dsum) ;

e l s e


ovInv (n , j ) +=

pdfva lue s [ i e v t ℄ [ var Indexes [ n ℄ ℄

∗ pd fva lue s [ i e v t ℄ [ var Indexes [ j ℄ ℄ / ( dsum∗dsum) ; }

// Inve r t to get the 
ovar i an
e matrix

TMatrixD 
ovMatrix (TMatrixD : : kInverted , 
ovInv ) ;

Figure A.2 � First part of the implementation of the new 
onstru
tor.
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// Create and l a b e l the v a r i a b l e s

// used to s t o r e the SWeights

f o r ( Int_t k=0; k<nVarSpe
 ; ++k){

/∗Usual v a r i a b l e s ∗/

//
_n 
 o e f f i 
 i e n t s

wname = std : : s t r i n g ( y i e l dva r s [ var Indexes [ k℄℄−>GetName())+"_
" ;

var = new RooRealVar (wname . 
_str ( ) ,wname . 
_str ( ) , 0 ) ;

double 
Val = y i e l d v a l u e s [ var Indexes [ k ℄ ℄ ;

f o r ( Int_t n = 0 ; n<nVarSpe
 ; ++n)


Val −= 
ovMatrix [ k ℄ [ n ℄ ;

var−>setVal ( 
Val ) ;

fSWeightCoefs . add (∗ var ) ; //new a t t r i b u t e o f the 
 l a s s .

}

// Create and f i l l a RooDataSet with the SWeights

RooDataSet ∗ sWeightData = new RooDataSet ( " data s e t " , "" , swe ight s e t ) ;

f o r ( Int_t i e v t = 0 ; i e v t < numevents ; ++i e v t ){

fSData−>get ( i e v t ) ;

// sum f o r denominator

Double_t dsum ( 0 ) ;

f o r ( Int_t k = 0 ; k < nAllSpe
 ; ++k)

dsum += pdfva lue s [ i e v t ℄ [ k ℄ ∗ y i e l d v a l u e s [ k ℄ ;

// 
ovar i an
e weighted pdf f o r ea
h sp e 
 i e

f o r ( Int_t n=0; n<nVarSpe
 ; ++n){

Double_t nsum(0) ;

f o r ( Int_t j =0; j<nVarSpe
 ; ++j )

nsum += 
ovMatrix (n , j ) ∗ pd fva lue s [ i e v t ℄ [ var Indexes [ j ℄ ℄ ;

i f ( in
 ludeWeights == kTRUE)

swe ightve
 [ n℄−>setVal ( fSData−>weight ( ) ∗ nsum/dsum) ;

e l s e

swe ightve
 [ n℄−>setVal ( nsum/dsum) ;

/∗ F i l l the data s e t with swe ightve
 ∗/
}}

// Add the SWeights to the o r i g i n a l data s e t

fSData−>merge ( sWeightData ) ;

/∗ R e i n i t i a l i s e a l l parameters and y i e l d s ∗/
return ;

}

Figure A.3 � Se
ond part of the implementation of the new 
onstru
tor.
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Figure A.4 � Result of the �t on X, proje
ted on the X dimension (left) and the Y dimension

(right). The signal is displayed in blue, the 
ombinatorial ba
kground in red, and the peaking

ba
kground in bla
k. As expe
ted, the proje
tion of the result on the Y dimension shows that

we overestimated (on purpose) the number of ba
kground events.
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Figure A.5 � Distribution of Y in data samples sWeighted a

ording to signal (
ombinatorial)

weights. Results of the approa
h A(B) are shown on the left (right). The red points 
orrespond

to the distribution of the sum of sWeights, whereas the blue points represent the �nal distribution

(after 
orre
tion using Eq. A.6).

163



A.4 Con
lusion

Models that in
lude an event spe
ies with �xed yields require a spe
i�
 treatment when

using the sPlots method, that the RooStats::SPlot implementation does not provide.

In this note, we propose a straightforward modi�
ation of this 
lass that allows to extra
t

the 
orre
t sPlots in the 
ase of �xed yields. We also implement some pre
autions in

the 
ode to help analysts avoiding the use of the wrong method. These modi�
ations do

not remove the need to 
orre
t the distributions using Eq. A.6, but allow to 
al
ulate

the cn 
oe�
ients inside the RooStats::SPlot obje
t in a way that is 
oherent with the

sWeights extra
tion.

We tested this additional 
ode, both in terms of 
ompatibility with the former imple-

mentation (not shown here), and in terms of expe
ted results. The results are satisfa
tory,

and show a 
lear improvement 
ompared to the original approa
h, espe
ially in terms of

normalization properties.
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Appendix B

Goodness-of-�t 
riteria

Estimating the relative quality of two �ts is usually done by a χ2

al
ulation or a likelihood

estimation. However, while these methods yield a good indi
ator of the quality of a �t,

they tend not to distinguish a lo
alized dis
repan
y between two �ts, espe
ially when the

�t is performed on more than one dimension. The addition or removal of a resonan
e

in a Dalitz-plot model 
onstitutes su
h a lo
alized di�eren
e, and thus we use additional

tools to assess the relative quality of the �t of two models on data. These additional tools

provide us with so-
alled goodness-of-�t 
riteria, de�ned on an event-by-event basis. In

the following, we des
ribe two of these methods, presented in [75℄.

These methods de�ne for two given samples a statisti
 T that takes a value of t when

omparing data and a Monte-Carlo sample generated using a model �tted on data. Given

the expe
ted distribution g of this statisti
 in the 
ase where the model is the parent PDF

of data, we de�ne the p-value of a �t

p =

+∞
∫

t

g(T )dT. (B.1)

This p-value is what is used to 
ompare two di�erent �ts to data.

Mixed-sample estimation

The idea of mixed-sample estimation is that the mixing between two samples is maximal

if and only if f and g have been generated by the same underlying PDF. Figure B.1

shows the example of two samples generated using the same PDF and di�erent PDFs to

illustrate that idea.

A mixing indi
ator I on two points x and y 
an be de�ned as

I(x, y) =

{

1 if x and y belong to the same sample,

0 otherwise.

(B.2)
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Figure B.1 � Example of two samples (red and blue points) generated with the same underlying

PDF (left), and di�erent PDFs (right).

The mixing statisti
 T(A,B) for two samples A and B, 
ontaining na and nb points, is

de�ned as

T =
1

nk(na + nb)

na+nb
∑

i=1

nk
∑

k=1

I(i, k), (B.3)

where nk is an arbitrary number of neighbours of a point that are 
onsidered. A large

value of this parameter redu
es statisti
al �u
tuations, but it also redu
es the resolution

of the method as further points are 
onsidered.

This statisti
 is maximal for minimally mixed samples, and 
an be used to assess the

quality of the �t of a model to data. Indeed, if the �tted model is used to generate a

Monte-Carlo sample, this statisti
 
al
ulated using data and the simulated sample yields

an indi
ation on the quality of the �t.

In the 
ase where the two underlying PDFs are the same, this statisti
 
onverges to a

Gaussian distribution of mean

µT =
na(na − 1) + nb(nb − 1)

(na + nb)(na + nb − 1)
. (B.4)

The width of this distribution depends on the PDF and on the 
hoi
e of nk, but has

a limiting value
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lim
n,nk→∞

σ2
T =

1

nnk

(
nanb

n2
+ 4

n4
an

4
b

n4
), (B.5)

where n = na + nb. We assume that this limiting value is rea
hed in our 
onditions.

1

The distribution g used to 
al
ulate the p-value in Eq. B.1 is then the limit Gaussian

distribution.

Point-to-point dissimilarity methods

In the 
ase where the real parent distribution f(x) of data is known,

d =
1

2

∫

(f(x)− f0(x))
2dx (B.6)

is a distan
e between this parent distribution and the �tted model f0(x). In pra
ti
al


ases, the real parent distribution f(x) of data is unknown, but Eq B.6 
an be generalized

by introdu
ing a 
orrelation fun
tion ψ(x, x′), and the fun
tion

T =
1

2

∫∫

(f(x)− f0(x))(f(x
′)− f0(x

′))ψ(x, x′)dxdx′. (B.7)

is de�ned. This generalization allows to 
al
ulate a similar quantity for samples rather

than distributions. Indeed, developing the expression and repla
ing integrals by sums we

de�ne for two samples A and B the statisti


T =
1

nA(nA − 1)

∑

x∈A

∑

x′∈A
ψ(x, x′)dxdx′ +

1

nB(nB − 1)

∑

x∈B

∑

x′∈B
ψ(x, x′)dxdx′

− 1

nAnB

∑

x∈A

∑

x′∈B
ψ(x, x′)dxdx′. (B.8)

The �rst and se
ond terms of this expression 
an be 
onsidered as statisti
al un
ertain-

ties on data and Monte-Carlo samples, the third term being a 
orrelation term between

the two. Monte-Carlo samples are often generated with large amount of points, so the

se
ond term 
an be negle
ted as it is 
omputationally heavy.

Two forms of the 
orrelating fun
tion ψ(x, x′) have been studied in [75℄:

• ψGaus = exp( (x−x′)2

2σ(x)σ(x′)
)

1

Indeed, the 
onvergen
e to this limit is demonstrated as being very fast in [75℄.
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• ψLog = log(|x− x′|+ ǫ)

The parameter ǫ is an arbitrary number that keeps the ψLog from exhibiting a pole when

x and x′ are too 
lose. The widths σ(x) and σ(x′) in the Gaussian 
orrelating fun
tion are

shown in [75℄ to be optimal in terms of dis
riminating power when they are proportional

to the inverse of the PDF:

σ(x) =
σ̄

f(x)
. (B.9)

The preferred range for the parameter σ̄ is [Γ̄,2Γ̄℄ where

Γ̄ =

∑

FFiΓi
∑

FFi
, (B.10)

the index i running over all resonan
es in the model, and Γi and FFi designate their

widths and �t fra
tions, respe
tively.
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Appendix C

Fast MC method for ba
kground

studies - other 
hannels

We show in this se
tion the results of smearing various partially re
onstru
ted ba
kgrounds

using resolution fun
tions extra
ted from a B0→ (K∗0→ K0
Sπ

0)(ρ0→ π+π−) sample.

C.1 B0→ K0
S (η→ π+π−π0)

This 
hannel belongs to the K0
S
π+π−

spe
trum, but its kinemati
s are di�erent from the

ones of B0→ K∗0ρ0.
Figure C.1 shows the distribution of the mK0

Sh
+h

′
near the threshold for re
onstru
ted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h′
, with a well-reprodu
ed behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC 
ase. Fig. C.2 shows

the distributions of events over the Dalitz plane for re
onstru
ted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no stru
ture. Overall, the result we

obtain on this 
hannel are satisfa
tory.

C.2 B0→ K0
Sπ

+π−γ

This 
hannel also belongs to the K0
S
π+π−

spe
trum. As the missed parti
le in this 
hannel

is massless, its mK0
Sh

+h′
distribution goes under the signal peak, whi
h makes it espe
ially

dangerous for our analysis.

Figure C.3 shows the distribution of the mK0
Sh

+h
′
near the threshold for re
onstru
ted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h′
, with a well-reprodu
ed behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC 
ase. Fig. C.4 shows

the distributions of events over the Dalitz plane for re
onstru
ted and fast MC events,
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Figure C.1 � Left: Distributions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red) B0→

K0
Sη events. Right: Resolutions ofmK0

Sh
+h′

for re
onstru
ted (blue) and fast MC (red) B0→ K0
Sη

events.
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Figure C.2 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B
0→ K0

Sη mode, with DD re
onstru
-

tion of the K0
S . Left: Re
onstru
ted events. Middle: Fast MC events. Right: Pulls between the

two distributions.

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no stru
ture. Overall, the result we

obtain on this 
hannel are satisfa
tory.

C.3 B0→ (K∗0→ K0
Sπ

+)π+π−

In this 
hannel, we are missing a 
harged parti
le (π+
). We expe
t the mK0

Sh
+h′

distribu-

tion to be similar to that in B0 → K∗0ρ0, but the Dalitz plane distributions of the two

modes are expe
ted to di�er.

Figure C.5 shows the distribution of the mK0
Sh

+h
′
near the threshold for re
onstru
ted
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Figure C.3 � Left: Distributions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red) B0→

K0
Sπ

+π−γ events. Right: Resolutions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red)

B0→ K0
Sπ

+π−γ events.
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Figure C.4 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B0 → K0
Sπ

+π−γ mode, with DD

re
onstru
tion of the K0
S . Left: Re
onstru
ted events. Middle: Fast MC events. Right: Pulls

between the two distributions.

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h
′
, with a well-reprodu
ed behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC 
ase. Fig. C.6 shows

the distributions of events over the Dalitz plane for re
onstru
ted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no stru
ture. Overall, the result we

obtain on this 
hannel are satisfa
tory.

v
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Figure C.5 � Left: Distributions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red) B+→

K∗+π+π−
events. Right: Resolutions of mK0

Sh
+h′

for re
onstru
ted (blue) and fast MC (red)

B+→ K∗+π+π−
events.
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Figure C.6 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B+ → K∗+π+π−
mode, with DD

re
onstru
tion of the K0
S . Left: Re
onstru
ted events. Middle: Fast MC events. Right: Pulls

between the two distributions.

C.4 B0→ (K∗0→ K0
Sπ

0)(φ→ K+K−)

This mode does not belong the K0
S
π+π−

spe
trum. However, it is still interesting to test

the limits of the method with this mode, similar to B0→ K∗0ρ0 but with a φ instead of

the ρ0.
Figure C.7 shows the distribution of the mK0

Sh
+h

′
near the threshold for re
onstru
ted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h′
, with a well-reprodu
ed behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC 
ase. Fig. C.8 shows

the distributions of events over the Dalitz plane for re
onstru
ted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions
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are similar, and the pulls are rather small and show no stru
ture. Overall, the result we

obtain on this 
hannel are satisfa
tory.
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Figure C.7 � Left: Distributions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red) B0→

K∗0φ events. Right: Resolutions of mK0
Sh

+h
′
for re
onstru
ted (blue) and fast MC (red) B0→

K∗0φ events.
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Figure C.8 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B
0→ K∗0φ mode, with DD re
onstru
-

tion of the K0
S . Left: Re
onstru
ted events. Middle: Fast MC events. Right: Pulls between the

two distributions.

C.5 B+→ (K∗0→ K0
Sπ

+)(φ→ K+K−)

This mode does not belong the K0
S
π+π−

spe
trum. However, it is still interesting to test

the limits of the method with this mode, similar to B0→ K∗0ρ0 but with a φ instead of

the ρ0, and missing a π+
.

173



Figure C.9 shows the distribution of the mK0
Sh

+h′
near the threshold for re
onstru
ted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h
′
, with a well-reprodu
ed behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC 
ase. Fig. C.10 shows

the distributions of events over the Dalitz plane for re
onstru
ted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no stru
ture. Overall, the result we

obtain on this 
hannel are satisfa
tory.
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Figure C.9 � Left: Distributions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red) B+→

K∗+φ events. Right: Resolutions of mK0
Sh

+h
′
for re
onstru
ted (blue) and fast MC (red) B+→

K∗+φ events.
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Figure C.10 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B+→ K∗+φ mode, with DD re
on-

stru
tion of the K0
S . Left: Re
onstru
ted events. Middle: Fast MC events. Right: Pulls between

the two distributions.
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C.6 B0
s→ (K∗0→ K0

Sπ
0)(φ→ K+K−)

This mode does not belong the K0
S
π+π−

spe
trum. However, it is still interesting to test

the limits of the method with this mode, similar to B0→ K∗0ρ0 but with a φ instead of

the ρ0.
Figure C.11 shows the distribution of the mK0

Sh
+h′

near the threshold for re
onstru
ted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h′
, with a well-reprodu
ed behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC 
ase. Fig. C.12 shows

the distributions of events over the Dalitz plane for re
onstru
ted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no stru
ture. Overall, the result we

obtain on this 
hannel are satisfa
tory.
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Figure C.11 � Left: Distributions of mK0
Sh

+h′
for re
onstru
ted (blue) and fast MC (red) B0

s →
K∗0φ events. Right: Resolutions of mK0

Sh
+h′

for re
onstru
ted (blue) and fast MC (red) B0
s →

K∗0φ events.
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