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Abstract

It has been demonstrated that the traditional magic numbers evolve when nuclei far

from stability are explored. Recent experiments have provided evidence to support

the existence of new shell gaps at N=14 and N=16 in neutron-rich oxygen isotopes

associated with the vanishing of the N=20 shell gap. However, in the neutron-rich

carbon isotopes, the extent to which these gaps persist is unclear. In an effort to

answer this question we have attempted to probe the low-lying level structure of 17C

using the (d,p) transfer reaction to locate the single-particle orbitals involved in the

formation of the N=14 and N=16 shell gaps.

The experiment was carried out at the GANIL facility. A pure secondary beam of
16C at 17.2 AMeV produced by fragmentation in the LISE3 spectrometer was used to

bombard a CD2 target. The light ejectiles were detected using the TIARA and MUST2

silicon (Si) strip arrays while a Si-Si-CsI telescope was placed at zero degrees to identify

beam-like residues. In addition, four HPGe-EXOGAM clover detectors were used to

measure the gamma-rays arising from 17C bound excited states.

The measured angular distributions of 17C confirm the spin and parity assignments

of 3/2+, 1/2+ and 5/2+ for the ground and the first and second excited states located at

217 keV and 335 keV respectively. The spectroscopic factors deduced for these excited

states indicate a large single-particle strength (70%), in agreement with shell model

calculations. This results seem to indicate the non existence of the N=14 gap. With a

strong ` = 0 valence neutron component and a low separation energy, the first excited

state of 17C appears as a good one-neutron halo candidate.
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Introduction

The study of the nuclear structure was first investigated through reactions with stable

and near-stable nuclei. These studies brought experimental information supporting the

idea of shell structure in nuclei and, as a consequence, led to the single-particle model

that successfully explains the magic numbers as shell closures. The single-particle

model describes the nucleus as a system of non-interacting nucleons populating energy

levels generated by a mean field due to the whole nucleus.

However, there are only 270 stable isotopes and 50 naturally occurring radioactive

isotopes, while some models predict up to seven thousand radionuclei, the study of

which would challenge the description of the nuclear structure through the single-

particle model, derived from stable and near-stable nuclei.

With the development of the beam production techniques, many radioactive ion

beam facilities have been built as the will to explore these so-called exotic nuclei arose,

and the persistence of these magic numbers for nuclei far from stability was investigated

for the first time. Experimental evidence gathered during the last three decades pointed

out that the magic numbers evolve as one moves from the valley of stability towards

the drip lines.

The evolution of the N=20 shell gap in the vicinities of the neutron drip line has been

addressed by several studies, both theoretically and experimentally, in recent years.

Thanks to these works, the vanishing of the N=20 shell closure and the emergence

of a new magic number at N=16 in its place is now widely accepted and much better

understood. In particular, the melting of the N=20 shell gap and the emergence of new

magic numbers at N=16 and N=14 has been observed in neutron rich oxygen isotopes

[27].

The main goal of this work is studying if these new magic numbers are present in

neutron rich carbon isotopes by locating the single-particle energies for the d5/2, s1/2

and d3/2 orbitals in 17C via the 16C(d,p)17C one-neutron transfer reaction.

The spectroscopy of 17C has been investigated before. The ground state has a 3/2+

configuration and it has two low-lying excited states, very close to the n-separation
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threshold at 0.73 MeV, measured at 210 keV and 330 keV, assigned to 1/2+ and 5/2+

respectively [29]. However, there is no information on the single particle nature of

these excited states. Several unbound states have been observed, although the states

carrying the d3/2 strength have not been located yet since no direct measure of spin

and parity has been made so far.

Angular distributions of 16C(d,p) to the three bound states in 17C will be measured

and will allow us to deduce the spin and parity assignments that will be compared to

previous measurements and to measure their spectroscopic factors for first time. In

particular, the spectroscopic factor of the ` = 0 configuration in the 1/2+ first excited

state of 17C will give further information on the possible development of a neutron halo

for this state.

This thesis is organized as follows: Chapter 2 provides a detailed overview of the

relevant theory for this work, including the shell modell, magic numbers evolution,

direct reactions, and the theoretical models used to describe one-neutron transfer re-

actions. Current knowledge of the states in 17C is also presented in this chapter. The

details of the experimental setup are presented in Chapter 3, together with the de-

scription of the detection systems involved, the radioactive beam production and the

target thickness measurements. This chapter includes as well information concerning

the electronics and the data acquisition system. Chapter 4 explains the data analysis

performed and the results are then presented and discussed in Chapter 5, including

reaction cross sections and spectroscopic factors of the bound states in 17C.



Chapter 2

Theory

The earliest nuclear model is the liquid drop model, according to which the nucleus

behaves like a drop of an hypothetical incompressible fluid made of protons and neu-

trons. It was first proposed by George Gamow [1] in 1930, formulated in 1935 by Carl

Friedrich von Weizsäcker [2] and later developed by Niels Bohr and John Archibald

Wheeler in 1939 to explain the nuclear fission phenomenon [3]. Although it fails to

explain all the nuclear features, it explains the spherical shape of most nuclei and gives

an useful prediction of the nuclear binding energy.

The mathematical analysis of this theory produces an equation known as Bethe-

Weizsäcker formula or, most commonly, semi-empirical mass formula, that provides an

excellent estimation of the nuclear binding energy, B, in terms of the atomic number,

Z, and the mass number, A:

B = aVA− asA2/3 − aC
Z(Z − 1)

A1/3
− aA

(A− 2Z)2

A
± δ(A,Z) (2.1)

The five terms in previous equation are due to volume, surface, Coulomb, symmetry

and pairing effects respectively1, the first three are derived directly from the liquid

drop model, while the latter two terms were included to account for the non collective

properties of the nuclei.

Figure 2.1: Schematics of the 5 terms involved in the semi-empirical mass formula.

1A detailed derivation of each term can be found in references [4–6]
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Although the coefficients aV , aS, aC , aA and aP are adjusted to obtain the best

agreement with the experimental binding energy measurements, the semi-empirical

mass formula fails to reproduce the local peaks in the B/A experimental points in-

dicated in figure 2.2. This means that nuclei are more tightly bound than expected

by the liquid drop model in the vicinity of certain values of the number of protons

and neutrons known as magic numbers. This evidence hints at existence of internal

structure within the nucleus, leading to the nuclear shell model.

Figure 2.2: Semi-empirical mass formula predictions for the binding energy per nucleon, B/A,

as a function of mass number, A, with aV = 15.56MeV , aS = 17.23MeV , aC = 0.7MeV and

aA = 23.28MeV , for odd-even nuclei so that there is no pairing effect. Experimental values

are represented by points [5].

2.1 Nuclear Shell Model

The first hypothesis of the existence of shell structure within the nuclei was suggested by

James H. Bartlett in 1932 [7], who argued that the stability of 4He and 16O, and hence

the magic numbers 2 and 8, could be explained with closed shells in a model analogous

to the Bohr model of the atom. This idea was further developed by W. Elsasser in

1933 [8], who proposed a model where the nucleons fill energy levels generated by some

sort of effective potential well created by all the other nucleons. However, the theory

was refused at that time due to the lack of experimental evidence to support it.
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One and a half decade later, in 1948, Maria Goeppert-Mayer presented experimental

data indicating a particular stability of shells of 50 and 82 protons and 50, 82 or 126

neutrons [9], but the fact that the model was not capable of reproducing the higher

shell closures using simple potential wells was still not so convincing.

Much work was done to reproduce the observed shell structure until success was

finally achieved one year later in 1949, when Mayer [10] and Haxel, Jensen and Suess

[11] found simultaneously that the shell closures could be replicated by adding to the

potential well a strong spin-orbit interaction which splits the energy levels in terms

of the orientation of the intrinsic spin of the nucleon relative to its orbital angular

momentum.

The accomplishment of 1949 opened a new gate to progress in our understanding

of nuclear structure. Since then, many theoretical and experimental efforts have been

made with the aim of explaining through the shell model nuclear features such as

binding energies, spins and parities, excitation energies, decay widths, among others;

and the magic numbers became a fundamental observable in nuclear physics.

2.1.1 Mean field model

As the nuclei are subjected to the rules of quantum mechanics, the energy levels

that a single nucleon can occupy inside the nucleus can be calculated by solving the

Schrödinger equation for a nucleon moving in a potential well due to the nuclear core:[
− ~2

2m
∇2 + V (~r)

]
ψ(~r) = Eψ(~r) (2.2)

where m is the mass of the nucleon, E is the energy eigenvalue, ψ(~r) is the nucleon

wave function, and V (~r) is the potential felt by the nucleon. This equation will have

solutions only for certain values of energy E corresponding to the predicted single-

particle states, which are strongly dependent on the choice of the potential V (r).

Historically, one of the most fruitful approaches is to assume that the nucleons

are moving in an effective potential Veff (r) generated by all the other nucleons within

the nucleus. This effective potential includes the central nuclear potential VN and the

spin-orbit coupling term Vso, the Coulomb potential VC and the centrifugal effect due

to the relative angular momentum between the nucleon and the nucleus itself.

Veff (r) = VN(r) + Vso(r) + VC(r) +
l(l + 1)~2

2µr2
(2.3)

The Coulomb part of the potential is taken to be that arising from a uniform charge

distribution over a sphere of radius R, while the spin-orbit term is written as Vso(r)~l ·~s.
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Figure 2.3: Energy level sequence calculated for several potentials. From left to right the

spherical harmonic oscillator and the Woods-Saxon potential without and with the spin-orbit

term. The levels are tagged with the corresponding quantum numbers nlj, and their degeneracy

is given by 2j+1. When several energy levels lie close together they form a nuclear shell, the

gaps between these shells are labelled with the corresponding magic numbers.
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The problem here is that quantum chromodynamics (QCD), the theory describing

the strong interaction responsible for the nuclear force, does not provide any analytic

description of the nuclear potential VN(r) and the spin-orbit term Vso. The most usual

parametrization is the Woods-Saxon potential [12], a spherically symmetric potential

which decreases smoothly to zero for increasing r (figure 2.4), in accordance with the

nuclear matter distribution.

V WS
N (r) = − V0

1 + exp[(r −R)/a]
(2.4)

where R is a measure of the nuclear radius2, a is the diffuseness of the nuclear sur-

face and V0 is the well depth, which is adjusted to reproduce the expected separation

energies but uses to be around 50 MeV.

Figure 2.4: Effective potential for the last neutron in 17C, assumed to be in the d5/2 or-

bital (black line). The red line shows the nuclear mean-field, depicted with a Woods-Saxon

of V0 = 50MeV , r0 = 1.25 fm, a = 0.65 fm. The green line shows the spin-orbit term with

Vso = 6MeV , multiplied by 10 to enhance data clarity. The pink line reproduces the centrifu-

gal contribution. The blue dashed line indicates the Coulomb effect expected if the particle

was a proton instead of a neutron.

2.1.2 Residual interactions

Despite its simplicity, the single-particle shell model described here is really successful

in predicting spins and parities for odd nuclei. However, it relies on the hypothesis

that all nucleons except one are paired, and hence the nuclear properties arise from

2R = r0A
1/3
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the only unpaired nucleon, which is a crude approximation, particularly when nuclei

with several valence nucleons outside the last double-magic core are considered [4].

In such nuclei with more than one valence nucleon, the single-particle shell model

is not applicable as it is, but we can go one step further and treat all the nucleons

in the unfilled shell instead of just the last one. In order to do so, adding a residual

interaction to the single-particle hamiltonian is required to take into account the effects

not included in the effective potential, such as pairing effects between valence nucleons

and p-n interactions.

H = HSPM +Hres (2.5)

This residual interaction acts as a perturbation on the effective potential and allows

the single-particle states to mix, leading to a phenomenon called configuration mixing.

2.1.2.1 Spectroscopic factors

Within this panorama, arises the need to estimate what single-particle strength a real

state in the nucleus carries. In order to fulfill this need, the spectroscopic factors

(SF) are introduced as the overlap integral between the wave function in the entrance

channel and in the exit channel. For instance, the spectroscopic factor of the ground

state of 17C, which has a spin of 3/2+, is defined as:

C2S =
∣∣∣〈17Cgs|16C0+ ⊗ νd3/2

〉∣∣∣2 (2.6)

In simple terms, the spectroscopic factor provides a measure of the likeness between

a state in 17C with 16C coupled to a neutron in the corresponding orbital. The spec-

troscopic factor would be 1 in the ideal case of a pure single particle3 orbital occupied

by a single nucleon.

2.2 Shell evolution

The traditional magic numbers 2, 8, 20, 28, 50, 82 and 126 realised by Maria Goeppert-

Mayer [9] were assumed to be a fixed constant of Nature for decades. However, the

recent development of the radioactive ion beam facilities allowed the nuclei located close

to the drip lines to be studied, probing more deeply the effect of the N-Z asymmetry

on the nuclear structure. Experimental results brought evidence showing that the

classical magic numbers evolve as one moves from the valley of stability to the drip

lines, indicating that they are not the constant benchmark they were once thought to

3For future reference, the expression single particle state refers to those states with a reasonably

large C2Sexp, typically 50% or more of the total strength.
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be. This discovery attracted much attention to the structure of exotic nuclei, and since

then many theoretical [14–17] and experimental [18–25; 27] efforts have been made to

study the evolution of the magic numbers in exotic nuclei.

The nucleon-nucleon (NN) interaction is responsible for this shell evolution: the nu-

clear mean field depends on the angular momentum and spin orientation of the nucleons

involved, therefore different orbit populations lead to changes in their single-particle

energies. Furthermore, features of the nuclear interaction barely influential binding

together stable nuclei such as pairing or coupling between bound states, resonances,

scattering states and decay channels effects can play a major role binding together

weakly bound nuclei.

2.2.1 New magic number N=16

One hint of the magic number N=16 lies in the nuclide chart: the sharp extension of

the neutron drip line at Z=9. The last bound isotope of carbon, nitrogen and oxygen

is found at N=16, while one would have expected the supposed double magic nuclei
28O to be bound. However, adding only one proton suddenly shifts the drip line up to

N=22 for fluorine isotopes.

Figure 2.5: Nuclide chart for light elements.

The first experimental evidence of the rising of the N=16 shell closure has been

provided by Ozawa et al. [18] by studying the neutron number dependence of the

interaction cross-sections and neutron separation energies (Figure 2.6) for light neutron

rich nuclei. A magic number would appear as a drop in the neutron separation energy

trend, due to a neutron after the gap being relatively loosely bound. The observation

of a break at N=16 for Z=8 indicates the emergence of a new magic number.

Magic nuclei are particularly stable due to the difficulty of exciting a closed shell

structure. This means that the level scheme of magic nuclei has a noticeable lack of

low-lying excited states. Thus, another experimental proof of shell evolution is given by
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Figure 2.6: Neutron separation energies, Sn, as a function of the neutron number, for odd

N even Z nuclei (a) and odd-odd nuclei (b). Each line represents different isospin numbers:

from 1/2 to 9/2 (a) and from 0 to 5 (b).

the behaviour of the energy of the first excited state with the neutron number, which

is expected to show a local maximum for magic nuclei. Figure 2.7 presents the first 2+

state dependence on the neutron number for even-even isotopes between carbon (Z=6)

and sulphur (Z=16). The maximum found in coincidence with the classical magic

number N=20, in silicon and sulphur isotopes, vanishes for magnesium and neon while

a new peak appears at N=16 in oxygen [19–22] and neon isotopes [23–25].

Figure 2.7: Neutron number dependence of the energy of the first 2+ state of even-even nuclei

between Z=6 and Z=16. The inset displays a nuclide chart as guidance to the reader. The

magic number N=20 disappears for nuclei with a larger N/Z ratio while a new one emerges

at N=16. Similar conclusions can be drawn for magic numbers N=8 and N=28.
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As mentioned above, this changing shell structure can be successfully explained

through the existence of an NN tensor force acting between protons and neutrons in

orbitals with same angular momentum, which has an spin-isospin dependence coupling

much more strongly orbitals with opposite spin [15]. Therefore, if the πd5/2 orbital is

empty (Z<9), this interaction vanishes and the νd3/2 orbital rises towards the fp-shell,

closing the N=20 shell gap while enlarging the N=16 one. However, the νd3/2 orbital

is lowered once a proton is put into the πd5/2 one, and as more protons populate the

πd5/2, the νd3/2 becomes more bound, leading to the N=20 shell gap (Figure 2.8).

Figure 2.8: Effective single-particle energies for 30Si (a) and 24O (b) relative to d5/2, showing

shell gaps at N=20 and N=16 respectively [15]. The origin of this change is the raising of

the νd3/2 orbital due its interaction with the πd5/2 orbital, which is at its strongest in 30Si

since the πd5/2 orbital is full and completely disappears when it is empty in 24O.

2.2.2 Subshell closure N=14

The large neutron subshell gap at N=14 between νd5/2 and νs1/2 orbitals recently

observed in 22O [26] has its origin in the NN interaction between like nucleons. Although

weaker than the neutron-proton interaction, it might lead to changes in the shell gaps

as in this particular case or the N=28 subshell gap.

The effect of this interaction is clearly manifested in oxygen isotopic chain: while

the neutron d5/2 and s1/2 orbitals lie very close in energy when νd5/2 orbital is empty

at N = 8, but the gap increases as the νd5/2 is filled reaching its maximum size of 4

MeV when it is fully occupied at N = 14. The bottom left part of figure 2.9 shows this

trend.



12 2.Theory

2.2.2.1 From O to C isotopic chains

A comparison between carbon and oxygen isotopic chains could provide useful infor-

mation on the effect of the NN interactions and allows a preliminary discussion on the

expected shell closures in carbon isotopes.

Analysing the systematics of the 2+ energies in carbon and oxygen isotopic chains

(see figure 2.7), we observe a similar behaviour up to N = 14, where the 2+ energy

rises for 22O while remains constant for 20C. This indicates that the subshell closure

observed at N = 14 observed in 22O is no longer present in 20C.

Figure 2.9: Evolution of the single-particle energies of the d5/2, s1/2 and d3/2 orbitals in oxy-

gen (left) and carbon (right) isotopes as a function of neutron number, where the new magic

numbers N=14 and N=16 are shown. The ESPE are derived from theoretical calculations

using USD and WBT interactions (Adapted from [13]).

The reason for this difference lies in the inversion of the d5/2 and s1/2 orbitals. This

means that, after filling the p-shell, the s1/2 orbital is populated first in carbon isotopes,

as indicated in figure 2.9.

2.3 Current knowledge on 17C

The neutron rich carbon isotope 17C has six protons and eleven neutrons, with the last

3 neutrons populating the d5/2 orbital and the last 4 protons filling the p3/2 orbital

according to the single-particle shell model (Figure 2.10).
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Figure 2.10: Shell structure of 17C showing the orbitals populated by the transferred nucleon.

Since the proton p1/2 orbital is empty, a stronger nucleon tensor force is expected

when going from oxygen to carbon isotopes. The 17C is, therefore, a suitable candidate

to study the implications the NN tensor force might have in the nuclear structure of

neutron rich carbon isotopes and determine whether the new magic numbers N=14

and N=16 are present by locating the neutron d5/2, s1/2 and d3/2 orbitals involved in

the N=14 and N=16 shell closures.

The low-lying structure of 17C has been studied in recent experiments [27; 28; 30–

36]. The ground state has a neutron separation energy of 0.734 ± 0.021 MeV [37],

and has an unambiguous assignment of spin and parity of 3/2+. Its wave function

was measured by Maddalena et al[28] to have three components: the dominant ` = 2

0d5/2⊗ 16C(2+), a smaller ` = 0 1s1/2⊗ 16C(2+), and another ` = 2 coupled to the

ground state of 16C 0d3/2⊗ 16C(0+):

|17Cgs〉 =16 C(2+)⊗ 0d5/2 +16 C(2+)⊗ 1s1/2 +16 C(0+)⊗ 0d3/2 (2.7)

It has been shown that the measured cross section is an order of magnitude higher

than expected by theoretical shell model calculations, indicating an underestimation

of the 0d3/2⊗ 16C(0+) component in the ground state of 17C.

Two low-lying excited states have been studied previously via one-neutron removal

[29], γ-ray spectroscopy [27], proton inelastic scattering (p,pγ) [30], multinucleon trans-

fer reaction [31], lifetime measurements [32; 33] and β-delayed neutron measurements

[34]. The excitation energies provided by these references show an excellent agreement

locating the first and second excited states in 17C at 0.210 and 0.330 MeV. Transverse-

momentum distributions measured by Kondo et al [29] confirmed 1/2+ and deduced

5/2+ assignments, respectively.
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Theoretical calculations performed with shell-model using effective interactions

WBP and WBT predict three bound states with spins and parities 1/2+, 3/2+ and

5/2+. Although all the interactions reproduce well the ground state they disagree on

the ordering of the excited states (Figure 2.11).

Figure 2.11: Low lying level scheme pf 17C [30]. Different theoretical calculations for WBP

and modified WBT interactions are shown.

Unbound states in 17C have also been measured using invariant mass spectroscopy

[31; 34–36] and β-decay experiments [34]. Three unbound states were found by one

neutron knockout of 18C [35] at 2.74, 3.03 and 4.03 MeV, but only the first one has

been assigned to be Jπ = 1/2−. β-delayed neutron study [34] reported levels at 2.71,

3.93, 4.05, 4.78 and 5.08 MeV, the first three assigned to 1/2−, 3/2− and (5/2−). A

proton inelastic scattering experiment [36] has observed states at 2.20, 3.05 and 6.13

MeV, none assigned to 3/2+. A three neutron transfer reaction study [31] located 10

states above the neutron separation energy, with no definitive identification of 3/2+

states and only one candidate at 2.06 MeV.

The literature seems to agree in finding resonant states around 3, 4 and 6 MeV,

though a remarkable disagreement appears in the spin and parity assignments since no

direct measure has been made so far (Figure 2.12).
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Figure 2.12: 17C unbound states reported in [31; 34–36]. Shell model predictions using WBP

are also presented for the 3/2+ states.

2.3.1 Halo nuclei

Pairing effects become decisive in binding nuclei as the neutron separation energy de-

creases when approaching the neutron dripline. There are several examples of unbound

nuclei with an odd number of neutrons while the neighbouring isotope with one more

neutron is bound. Some of these light bound nuclei, namely 6He, 8He, 11Li, 14Be,
17B, 19B, 22C, have also in common a radius significantly larger than systematics, the

so-called halo.

Figure 2.13: Light nuclide chart. Among bound nuclei, proton-halo and neutron-halo nuclei

are highlighted in red and blue respectively.
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Since the potential depth decreases with the binding energy and the centrifugal

barrier increases with the orbital angular momentum `, a larger radius suggests both

low binding energy and angular momentum. Consequently, halo configurations appear

most likely in loosely bound s and p states [38].

The low binding energies of neutron rich carbon isotopes make them suitable can-

didates to present halo structure. The study of odd-mass neutron rich carbon isotopes

has revealed the appearance of one-neutron halo configurations in the ground states

of 15C [39] and 19C [40]. It is interesting to notice that both nuclei have an intruder

s state as ground state, while 17C ground state has a dominant d component, and

therefore its halo nature is hindered due to the centrifugal barrier. On the contrary,

the first excited 1/2+ state in 17C, which neutron separation energy is only 0.52 MeV,

is a strong candidate to present a halo nature. A hindered B(M1) transition found in

the lifetime measurements of the excited states in 17C performed by D.Suzuki et al [32]

support this picture.

Although the existence of excited states with halo configuration is expected, very

little is known about them due to the lack of means to gather direct evidence. Over the

past decades, experimental evidence of halo structure in excited states is found only in

two systems: a neutron halo in 11Be (p-wave) [42] and a proton halo in 17F (s-wave)

[43; 44].

2.4 Direct reactions

Nuclear reactions are often classified in two main groups according to the time scale

of the interaction: the direct reactions and the compound-nucleus reactions. In the

compound nucleus reactions both projectile and target nuclei merge together to form

a highly excited compound nucleus, that remains bound long enough (10−16 s -10−18 s)

for its nucleons to collide and share the excitation energy. As a consequence, its decay

mode does not depend on the process through which it was formed.

Direct reactions, instead, are fast processes (10−22 s) that occur in a single step

involving only a few nucleons in the nuclear surface while the others remain barely

affected. Due to the fast interaction, energy and momentum transfer are relatively

small and therefore the states populated are low-lying in energy.

The outcome of a direct reaction depends on what type of reaction occurs. Among

the possible scenarios are elastic scattering, if both nuclei remain in their ground state,

or inelastic scattering, if one or both nuclei become excited; break-up reactions, where

the projectile is fragmented in several lighter nuclei, and knock-out reactions, in which

one or more nucleons are removed from the projectile. However, the most important
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type of direct reactions for this work is transfer reactions, where one or several nucleons

are transferred from one nucleus to the other.

2.4.1 Angular distributions

The most useful feature of direct reactions is the relationship between the angular

momentum transferred in the reaction and the angular distribution of the light particle,

that arise directly from the momentum conservation law.

Figure 2.14: Momentum vector diagram. The scattering angle θ and the momenta of the

incoming beam particle ~pi, the light ejectile ~pl and the heavy fragment ~pf are shown.

Considering the momentum diagram in figure 2.14, it is straightforward to realize

that the momentum vectors are related to the scattering angle θ by the cosinus law:

p2f = p2l + p2i − 2plpicosθ (2.8)

If we introduce p and δ defined as pi = p and pl = p − δ, the previous equation

becomes:

p2f = 2p2(1− cosθ)
(

1− δ

p

)
= p2θ2

(
1− δ

p

)
+ δ2 (2.9)

where the last step includes a first order Taylor expansion for cosθ.

Finally, solving this for θ2 gives:

θ2 =
p2f − δ2

p2
(

1− δ
p

) (2.10)

The orbital angular momentum transferred between beam and target in the reaction

is ~
√
`(`+ 1), which should not be greater than Rpf due to conservation of angular

momentum, where R stands for the radius at which most of the reactions take place.

Applying this on equation 2.10 we get:
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θ2 >

( ~
R

)2
`(`+ 1)− δ2

p2
(

1− δ
p

) (2.11)

An accurate description of the angular distribution is subject to other factors like

the beam energy, target effects and other features of the nuclear potential not taken

into account in this crude semi-classical derivation [6]. However, equation 2.11 predicts

that the minimum scattering angle increases with the angular momentum transferred `.

Since the target-like particle yield will be focused towards the forward direction where

the particles are least strongly deflected in the center of mass frame, the intensity

would be expected to peak at the minimum angle allowed by the angular momentum

conservation. Therefore the first maximum in the angular distribution provides a strong

indication of the angular momentum transferred `, as it is shown in figure 2.15 where

calculated angular distributions for ` = 0, 1, 2 and 3 are displayed.

Figure 2.15: Angular distributions for different angular momenta `. Note that the maximum

of the angular distribution shifts to larger angles as ` increases.

2.4.2 Single-nucleon transfer reactions

Single-nucleon transfer reactions represent one of the best suited tools to probe single-

particle states. Due to their peripheral character, the perturbation in the nucleus

because of transfer reactions is minimal with the transferred nucleon in an orbit around

it, leading to low-lying excited states. In addition, a comparison between the shape

of the experimental angular distribution and the theoretical cross section provides a
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measurement for the angular momentum transferred ` in the reaction. Since spin-

orbit effects on angular distributions are weak for reactions with unpolarized nuclei, a

experimental value of ` will constraint the Jπ assignments to spin-orbit partners.

Figure 2.16: Diagram of the single-neutron transfer reaction 16C(d,p)17C, where the neutron

in the deuterium is transferred to the 16C. 17C is depicted as a 16C core plus a neutron

populating a single-particle state.

With the advent of radioactive ion beam facilities, beams of exotic nuclei brought

the possibility of exploring nuclei at the edge of nuclear existence. Inverse kinematics

is required due to the short half lives of nuclei with such a large N/Z ratio, thus an

exotic beam is impinged on a light target.

2.4.2.1 Extraction of spectroscopic factors

As mentioned before in section 2.1.2.1, the overlap integral between the wave function of

one state in nucleus 16C and another in 17C defines the theoretical spectroscopic factor

for transfer between these states. Experimentally, the spectroscopic factor is provided

by comparing the measured cross section and theoretical cross-section. Theoretical

cross-sections are calculated for pure single-particle states but this is not necessarily

the case and the experimental cross-sections will in general be different from theoret-

ical predictions by a certain number [4]. This scaling factor between theoretical and

experimental cross-sections is the spectroscopic factor:

(
dσ

dΩ

)
exp

= C2S

(
dσ

dΩ

)
th

(2.12)

Thus, scaling the theoretical cross-sections with respect to the experimental ones

provides a measurement of the spectroscopic factors.
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2.4.3 Theoretical analysis

2.4.3.1 Born approximation

The Plane Wave Born Approximation (PWBA) applies the simplest scattering theory

to calculate the cross-section of a reaction. The target is treated as a central potential

V (r) and the incoming beam particles as plane waves ψ(z) = Aeikz, thus obtaining the

angular distributions I(θ) can be seen as a perturbation problem [6], giving:

I(θ) ∝
[
j`

(
pf
R

~

)]2
(2.13)

where j` is the spherical Bessel function of order `. Note that pf has been already

proved to be a function of θ in equation 2.10.

Alternatively, the differential cross-section is proportional to the squared transition

matrix element TA(d,p)A+1 that describes the transfer reaction A(d, p)A + 1 [47]. This

matrix element can be written as:

TA(d,p)A+1 = 〈φA+1φpχf |V |φAφdχi〉 (2.14)

where functions χ describe the relative motion of the nuclei, functions φ their internal

structure and V is the potential governing the transfer.

PWBA calculations can locate the first and eventually the second maximum of

the angular distributions, although they fail entirely to predict absolute cross-sections,

as the only interaction considered is that leading to the reaction while nuclear and

coulomb potentials, which could eventually cause scattering or absorption, are com-

pletely ignored.

2.4.3.2 Distorted Wave Born Approximation

The Distorted Wave Born Approximation (DWBA) goes one stride further by including

an optical potential acting between the two nuclei in the entrance or the exit channel

to take into account absorption and elastic scattering.

The optical model4 reduces the problem to the interaction of beam particles with

the potential well due to the target nuclei and treats it with the scattering theory,

assuming that the interaction is governed by the distance between the center of both

nuclei. However, an interaction with a potential well cannot change the energy of a

4The name of optical model is due to the analogy to scattering and absorption of light by a medium

of complex refractive index.
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nucleus or remove a nucleon from it as it eventually happens, it can only be deflected.

This behaviour can be assessed by using a complex potential well, in which the imagi-

nary part takes into account all the effects involved in the reaction other than elastic

scattering.

U = VC −
(V + iW )

1 + exp[(r −R)/a]
(2.15)

where V and W are the real and imaginary potential depths, R is the radius and a is

surface diffuseness parameter. VC stands for the Coulomb potential, usually described

by a homogeneously charged sphere:

VC =


ZbZAe

2

r
if r ≤ R

ZbZAe
2

r

(
3− r2

R2

)
if r ≥ R

(2.16)

where Zb and ZA are the charge of the two nuclei involved in the reaction. Both R and

a parameters can have different values for the Coulomb, the real and the imaginary

part.

This optical potential is usually phenomenological, with parameters that are ad-

justed to reproduce elastic scattering experimental data.

Thus, under the DWBA the transition matrix element T DWBA
A(d,p)A+1 becomes:

T DWBA
A(d,p)A+1 = 〈φA+1φpχf |VpA+1 − UpA+1|φAφdχi〉 (2.17)

where functions χi,f are solutions of Schrödinger equation for elastic scattering, gov-

erned by optical potentials Ui,f describing the elastic scattering, and Vi,f is a potential

that includes any possible interaction between the two nuclei in the entrance or exit

channels. Now if we consider the VpA+1 potential as:

VpA+1 = VpA + Vpn ≈ UpA+1 + Vpn (2.18)

leading to the usual expression of the DWBA transition matrix element for (d,p) trans-

fer reactions:

T DWBA
A(d,p)A+1 = 〈φA+1φpχf |Vnp|φAφdχi〉 (2.19)

DWBA is a good approach to describe transfer reactions, but it relies on the as-

sumption that the elastic scattering dominates the relative motion of the two nuclei in

the entrance and exit channels, if this does not happen the accuracy of its results will

be doubtful, as occurs in the case of weakly bound nuclei, where break-up channels

could have a major influence in the dynamics of the reaction.
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2.4.3.3 Adiabatic Distorted Wave Approximation

The Adiabatic Distorted Wave Approximation (ADWA) was formulated for (d,p) and

(d,n) reactions [48], although it can be used to treat transfer reactions involving other

loosely bound systems.

ADWA simplifies the (p+n)+A three-body problem into a two-body problem through

the adiabatic approximation, consisting in assuming that the internal motion in the n-

p system, during the reaction, is small compared to the motion of its center of mass.

Therefore the interaction governing the reaction is the sum of the interaction of the pro-

ton and the neutron with the target, VpA and VnA, at half the energy of the deuteron

and folded by deuteron wave-function instead of the interaction responsible for the

deuteron elastic scattering. The parametrizations of these adiabatic potentials are

taken from optical potentials that describe well the elastic scattering.

Several corrections have been made within the ADWA formalism. For instance, an

adiabatic potential with a finite-range correction and a local energy approximation was

proposed by Johnson and Tandy [49]:

UJT
Ad =

〈φd|Vnp(UAp + UAn)|φd〉
〈φd|Vnp|φd〉

(2.20)

In this manner, the transition matrix element is given by:

T ADWA
A(d,p)A+1 = 〈φA+1φpχf |Vnp|φAφdχ̃i〉 (2.21)

where functions χ̃i is solution of a Schrödinger equation governed by adiabatic po-

tentials Ui and χ̃f is a regular distorted wave describing elastic scattering in the exit

channel.

The adiabatic distorted wave approximation considers, in addition to elastic scat-

tering, the excitation to break up channels. Therefore, since break up can still be

followed by transfer, ADWA calculations are well suited to account for the effect of

deuteron break up on transfer cross sections.



Chapter 3

Experimental Details

3.1 Experimental Overview

In this experiment, states in 17C have been populated by the 16C(d,p)17C transfer

reaction induced by bombarding a 1.36 mg/cm2 thick target of deuterated polyethylene

(CD2) with a 16C beam at 17.2 AMeV delivered by the LISE3 spectrometer at GANIL,

with a beam intensity of 5·104 pps. Before reaching the target, this beam was tracked

using two CATS detectors in order to determine the hit position and the angle of

incidence of the beam particles on the target.

The highly efficient double-sided silicon strip detector array TIARA was used to

detect light particles at central and backward laboratory angles, in the Barrel and the

Hyball respectively. Both the energy and the angle were measured as they are required

to perform excitation energy and angular distributions calculations. Light particles at

forward angles were detected in four MUST2 Si-CsI telescopes. The kinematical lines

of the light particles and the angular coverage of the detectors involved are presented

in figure 3.1.

Four highly efficient EXOGAM clovers were placed at 90o surrounding the target, in

order to measure the γ-rays emitted by the bound excited states in beam-like fragments.

The Si-Si-CsI telescope CHARISSA was placed at zero-degrees to detect beam-like

fragments. The energy loss, residual energy, angle and time of flight were measured in

order to perform particle identification.

This experimental setup allows to perform triple coincidences on an event-by-event

basis by requiring a light particle, a heavy fragment and a γ-ray in coincidence. Figure

3.2 shows the experimental setup described here.
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Figure 3.1: Light particle kinematics for the most probable reaction channels. The angular

coverage of TIARA spans central and backward laboratory angles, where cross sections of

(d,p) reactions are maximal, in order that angular distribution measurements could be made.

Figure 3.2: Schematic representation of the experimental set up.



3.2 Secondary beam production at GANIL 25

3.2 Secondary beam production at GANIL

Many radioactive ion beam facilities have been built as the will to explore more ex-

otic nuclei arose. As a consequence, the radioactive ion beam production techniques

have developed a great deal, however, nowadays producing exotic ion beams is still

challenging because of their very short half lives and the low cross sections [51].

There are two different methods to overcome these difficulties and produce exotic

beams: the isotope separation on line (ISOL) technique [52] and the in-flight separation

technique [53], used in this work.

Figure 3.3: Schematic layout of the LISE3 spectrometer. The primary beam is accelarated

in CSS1 and CSS2 (blue) cyclotrons. The 16C ions are then selected from the emerging

secondary beam in LISE3 separator (green) and delivered to the experimental room.

A primary beam of 18O was produced by ionizing oxygen atoms with an Electron

Cyclotron Resonance Ion Source (ECRIS). The ions were thereupon accelerated, first

by a K = 25 injector cyclotron and afterwards by CSS1 and CSS2, two K = 400

cyclotrons, up to an energy of 65 AMeV and finally directed towards a 1200 mg/cm2

thick rotating production target of beryllium, so that the heat was spread over a much

larger area than the beam spot.

The 16C ions are then separated from the resulting cocktail beam using the LISE3

spectrometer by a selection according to their magnetic rigidity. An achromatic beryl-

lium degrader of 400 mg/cm2 was placed at the dispersive plane to combine A/Z

separation and energy loss analysis for optimum purity. Finally, the 16C beam was

delivered to the experimental room at 17.2 AMeV.

One of the drawbacks of fragmentation beams is that energy and angular spreads of

the secondary beams are rather big, owing to multiple Coulomb scattering and energy

loss straggling in the production target and in the degrader. However, the beam energy

spread is regulated by the slits at the dispersive plane of LISE3 and the uncertainty in

the beam emittance is corrected by using the Beam Tracking Detectors.
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3.3 Beam Tracking Detectors

3.3.1 CATS

The CATS (Chambres à Trajectoire de Saclay) is a beam detector system designed to

track the incident beam particles and provide the hit position on an event-by-event

basis. Placing two CATS detectors before the target will allow us to perform a path

reconstruction to know the beam interaction point on the target and the incident

angle, leading to an accurate determination of the light particle emission angle. They

are crucial for this experiment since the secondary beam is produced by fragmentation

leading to a beam spot size of the order of mm.

The CATS are multiwire proportional chambers with an active area of 70x70 mm2.

The anode, at center of the detector, is made up of 71 golden tungsten wires of 10 µm of

diameter and placed every 1 mm. At a distance of 3.2 mm we find the cathode planes,

two Mylar layers of 1.5 µm where 28 gold strips of 2µm were deposited. The cathode

pitch is 2.54 mm and the interstrip is 0.2 mm. Finally, closing the gas chamber, which

is filled with pure isobutane (C4H10) at a pressure ranging from 6 to 15 Torr, there are

two additional Mylar layers of 1.5 µm [57].

Figure 3.4: CATS scheme, layer by layer



3.4 Light charged particle detection 27

3.3.2 Working principle

The reduced field E/P (electric field divided by the gas pressure) is very high in the

detector, leading to two amplification regions. In the first region, the ionized elec-

trons from incident heavy ions immediately cause an electron multiplication along

their tracks. In the second region, close to the wires, there is a second charge multi-

plication comparable to the typical avalanche in usual MWPCs. This phenomenon of

double charge amplification makes possible to obtain a significant signal with a small

thickness of gas, thereby minimizing the disturbance of incident particles trajectories.

The fast component of the signal generated by electron avalanche in the first region

grants the detector a good timing resolution. The fast positive ions collection, due to

a small anode-cathode gap, gives high counting rate capabilities. Finally, the charge

induced on each cathode is obtained by integrating the signal with a QDC.

3.4 Light charged particle detection

3.4.1 Semiconductor Diode Detectors

In a p-n junction, without any external voltage applied, holes drift towards the n-region

and the electrons towards the p-region to recombine in the vicinity of the p-n interface.

This charge carriers motion creates an electric field across the junction that prevents

further diffusion leading to a steady charge distribution (figure 3.5).

Figure 3.5: When n-type and p-type semiconductors are brought into contact, the region

around the interface shows a lack of charge carriers due to the electron-hole recombination

and thus is called depletion region.
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Semiconductor diode detectors take advantage of the favourable properties that

arise in the depletion region of a p-n junction: if radiation enters the depletion region

and creates electron-hole pairs, the existing electric field causes electrons flow in one

direction, holes in the other, and the charge carriers can be collected into a signal whose

amplitude is proportional to the energy loss of the radiation [4; 50].

A large reverse bias is commonly applied to the p-n junction to boost the perfor-

mance of the p-n junction as radiation detector due to two reasons: it increases the

active volume of the detector by further depleting the p-n junction, and it increases

the electric field in the depletion region, thus the charge carriers will move faster and

hence the charge collection will be more efficient.

3.4.1.1 Dead Layer

When there is a difference in the concentration of impurities, the depletion region

extends even further into the high purity side, meaning that the heavily doped layer

remains undepleted and therefore outside of the active area of the detector. This

insensitive layer of the detector is called dead layer, through which the incoming charged

particles must pass before entering the active area, hence losing a fraction of its energy

before it can be measured.

3.4.2 Silicon Strip Detectors

Nowadays, the silicon strip detectors (SSD) are the most common choice when it comes

to detecting charged particles. These detectors can cover a wider solid angle, raising

the statistics, due to their large active area, which is, moreover, segmented into several

independent detector elements in order to measure the detection position.

Silicon strip detectors can be classified according to the approach used to provide

the position of the hit along the strip: double-sided silicon strip detectors (DSSSD)

and position sensitive silicon strip detectors (PSSSD).

In the DSSSDs there are strips on the front and the back sides of the detector, in

such a way (usually perpendicular to each other) that the hit position is determined

by which strip was fired on the front and the back. Instead, in the PSSSDs strips

are created in one side and are made of a resistive material, which divides the charge

collection into two signals that are taken at both ends of the strip. The collected charge

at each end is inversely proportional to the distance from the hit position.
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3.4.3 TIARA

The Transfer and Inelastic All-angle Reaction Array (TIARA) is a large solid angle

silicon detector array designed for transfer reactions in inverse kinematics. In the

configuration for this experiment, the angular coverage of TIARA spans from 36o to

169.4o. It allows to identify the reaction channel and to determine the excitation

energies by measuring position and deposited energy of the target-like particles.

The TIARA array comprises a set of several stand-alone silicon detectors, including

an octagonal barrel made up of eight resistive charge division detectors mounted sur-

rounding the target holder, an annular DSSSD detector called Hyball placed upstream

of the target and two CD shaped silicon strip detectors [61] (S1 and S2, which have not

been used in this experiment. Instead 4 MUST2 telescopes were used downstream).

3.4.3.1 Barrel

The Barrel detector consists of eight resistive charge division detectors forming a oc-

tagonal barrel, placed surrounding the target and parallel to the beam direction. Its

angular coverage ranges from 36o to 144o in the laboratory frame. This barrel arrange-

ment is 96.8 mm long and presents an octagonal cross-section of 27.6 mm side length

and 33.3 mm inner radius.

Each detector has a thickness of 400 µm and an active surface 94.6 mm long and

22.5 mm wide, which is segmented in four position-sensitive resistive strips along the

beam direction. The strip pitch is 5.65 mm and inter-strip gap is 100 µm.

Figure 3.6: The Barrel array mounted in the experimental room.
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The Barrel was upgraded to increase its dynamic range by installing a second layer

of eight 700 µm thick silicon detectors forming an Outer Barrel, each of them segmented

in four strips in the same way that the Inner Barrel is, although they are not position-

sensitive since this information is given by the Inner Barrel and would be redundant.

For 5.5 MeV α-particles, the position resolution along the beam axis is determined

to be better than 1 mm and the energy resolution provided is 140 keV (FWHM).

3.4.3.2 Hyball

The Hyball detector is an annular array of six individual wedge-shaped Double Sided

Silicon Strip Detector (DSSSD), situated 154.3 mm upstream of the target covering

the most backward angles from 137o1 to 169.4o [62]. All the six wedges are shaped in

such a way that, once assembled together, there is a hole in the center of the Hyball

to allow the beam to pass through.

Each wedge has a thickness of 400 µm and an active surface spanning 55o approxi-

mately in the azimuthal angle, delimited by inner and outer radii of 32.6 mm and 135.1

mm respectively. This active surface is segmented in 16 ring-shaped strips of 6.4 mm

pitch facing the target and in 8 azimuthal sectors spanning 6.8o at the other side.

Figure 3.7: The Hyball array, where we can see the segmentation in the front face of the

detector (target side).

For 5.5 MeV α-particles, the expected energy resolution is typically 40 keV for rings

and 70 keV for sectors (FWHM).

1In the present configuration the angular coverage of the Barrel spans from 36o to 144o, and the

outer rings in the Hyball are shadowed by the Barrel.
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3.4.4 MUST2

The MUST2 array is made of several telescopes (up to eight, but only four were

mounted for this experiment) designed for the detection of light particles produced by

direct reactions with radioactive beams in inverse kinematics. Each telescope presents

three detection layers to the incoming particles.

DSSSD A 300 µm thick Double Sided Silicon Strip Detector, with an area of 100x100

mm2 and 128 strips on each side. The typical strip resolution is around 40 keV

in energy and 500 ps in time for 5 MeV α-particles [63].

Si(Li) This layer is made of two 4.5 mm thick Lithium-drifted Silicon detectors, each

one segmented in 8 pixels. This layer was not used as the DSSSD provides a

energy range good enough with better resolution.

CsI 16 40 mm thick CsI crystal scintillators build up this layer. Protons up to 115

MeV can be stopped in these crystals.

Figure 3.8: MUST2 telescope and a detailed view of the different layers.

MUST2 has not been involved in the analysis since it covered forward angles whereas

our particles of interest (protons from 16C(d,p) reaction) are produced mainly at back-

ward angles.
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3.5 Recoil detection

3.5.1 CHARISSA telescope

The CHARged particle Instrumentations for Solid State Array (CHARISSA) is a zero-

degree telescope used to detect the heavy residues from direct reactions and perform

particle identification by energy loss methods. The detector is made of three detection

stages:

∆E A 65 µm thick Double Sided Silicon Strip Detector, with an active area of 50x50

mm2 and 16 strips on each side [62]. The experimental resolution achieved is

around 150 keV (FWHM) in energy for α-particles of 5.5 MeV.

E A 500 µm thick Double Sided Silicon Strip Detector, with the same size and seg-

mented in the same way as the previous one. For α-particles of 5.5 MeV, the

measured energy resolution is 110 keV (FWHM).

CsI A 25 mm thick CsI crystal scintillator with and active area of 49x49 mm2 is used

to stop the incoming particles and measure the residual energy. For α-particles

of 5.5 MeV, the energy resolution obtained is 230 keV (FWHM).

Figure 3.9: Charissa telescope. The segmentation of the front side of the first silicon is

noticeable. The CsI behind the silicon layers is also visible.
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3.6 γ-ray Detection

As γ-rays pass through a material they only interact in sudden and discrete interactions,

instead of the continuous energy loss of charged particles as they are not governed by

the Coulomb or the nuclear forces.

There are mainly three processes through which γ-rays can interact with matter:

photoelectric absorption, Compton scattering and pair production. The type of inter-

action is random but their relative probabilities depend on the atomic number of the

absorbing material and the photon energy, being the photoelectric absorption the pre-

dominant interaction at low energies (up to 200 keV), the pair production the dominant

process at high energies (above 5 MeV) and the Compton scattering the most probable

effect at intermediate energies.

3.6.1 Germanium Detectors

The biggest issue in semiconductor detectors intended for γ-ray spectroscopy is the

efficiency that can be achieved. This happens due to the large mean free path of the

γ-rays that requires a big active volume or depletion depth in order to enhance the

probability of γ-rays interacting within the detector and hence the detection efficiency.

The thickness of the depletion region, d, in a semiconductor junction is given by

the equation:

d =

√
2εV

eN
(3.1)

where V is the voltage, N the concentration of impurities in the semiconductor, ε is the

permittivity and e the electronic charge. As ε and e are constants and the breakdown

voltage sets an upper limit to V for proper operation, the only way to get greater

depletion depths is by reducing the impurities in the semiconductor. For this reason,

germanium crystals of high-purity (HPGe) are therefore the most suitable material for

high resolution γ-ray detectors [50].

Concerning the detector configuration, the most common approach is the coaxial

configuration because it allows to produce much larger active volumes than any other

known configuration. In this configuration, the detector is built in a long cylindrical

germanium crystal, where a hole is drilled along its axis and a metal contact is made

inside the hole. The second electrode is fabricated at the outer surface of the crystal,

as illustrated in figure 3.10.
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Figure 3.10: At the left a cross section perpendicular to the cylindrical axis of the crystal is

shown. At the right a cross section through the axis of the crystal is represented.

3.6.2 EXOGAM

EXOGAM is a highly efficient and segmented germanium detector array, specially

designed for γ-ray spectroscopy with exotic beams at the Grand Accélérateur National

d’Ions Lourds (GANIL). Each detector consists of four hyper-pure germanium crystals,

closely packed together in a four-leaf clover configuration in the same cryostat sharing

the same cooling system.

(a) EXOGAM clover (b) EXOGAM arrangement around TIARA

Figure 3.11: Schematic diagram of an individual clover of EXOGAM (a) and a representation

of the placement of the 4 EXOGAM clovers around the Barrel at 90o (b).
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Each germanium crystal is 90 mm thick and has an active surface area of 60x60

mm2, and is electronically segmented in four sectors (GOCCEs) to enhance the position

resolution and reduce the Doppler broadening [64]. The γ-ray energy is measured with

the central contact (ECC), where the charge from the whole crystal is collected.

In this experimental set up, four EXOGAM clovers were placed at 90o surrounding

the Barrel in a compact arrangement at around 55 mm from the target, in order to

increase the angular coverage and thus the detection efficiency, although it reduces the

energy resolution and maximizes the Doppler broadening.

3.7 Time of flight

Magnetic spectrometers bend the trajectories of charged ions according to their mag-

netic rigidity in order to perform particle identification. However, the dipole magnets

cannot distinguish between ions with equal charge-mass ratio. Time of flight measure-

ments provide a tool to separate ions having optically degenerate trajectories within

the spectrometer since different nuclei with the same magnetic rigidity are bound to

have different velocities and, therefore, different times of flight. Thus, times of flight

will be a very useful tool to help clean up the spectra and a key ingredient in our

particle identification routine.

3.7.1 TACs

These time of flights measurements have been performed by using several Time-to-

Amplitude Converters (TAC), which are electronic modules intended for the measure-

ment of small time intervals between two input signals, a start pulse and a stop pulse,

by producing an output signal proportional in amplitude to the time lapse between

them both, providing a time resolution of 0.1 ns approximately.

A list of the different times of flights measured during this experiment is presented in

table 3.1. It is worth mentioning that the signal of the detector placed more downstream

(usually CHARISSA or TIARA) is always chosen as the start signal while the signal

from the upstream is artificially delayed in order to guarantee that a stop signal will

always follow a start signal, rather than triggering the TAC for every single event in

the upstream detector (commonly CATS or EXOGAM), some of which might not have

a hit in the downstream detector from which the TAC would have to wait for the stop

signal. Therefore, the times of flight obtained are reversed.

2At GANIL the beam is pulsed (beam pulses of 2 ns every 100 ns), and hence the high-frequency

signal of the cyclotron can be used to measure a time of flight before the reaction target.
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Number Start signal Stop signal

1 HF2 CATS 1

2 CATS 2 CATS 1

3 CHARISSA CATS 1

4 Hyball CATS 1

5 Barrel CATS 1

6 CATS 1 EXOGAM

7 CHARISSA EXOGAM

8 Hyball EXOGAM

9 Barrel EXOGAM

Table 3.1: Time of flights measured during the experiment.

3.8 Data Acquisition and Electronics

3.8.1 Data Acquisition

The read out of the signals from all the detection systems involved in the experiment

(CATS, TIARA, MUST2, CHARISSA and EXOGAM) were processed by the GANIL

Data Acquisition System. In this configuration, each one of these detectors have its

own stand alone Data Acquisition (DAQ) system, managed by a local trigger produced

by its individual electronics.

These local triggers are sent to the GANIL Master Trigger (GMT) unit, which

produces, if the acquisition is not busy with another event, the Fast Analysis Gate

(FAG), a logic signal that decides if an event is to be accepted or not, and memorizes

the inputs that triggered the FAG.

If the event is accepted, a validation signal is sent to each local DAQ to read out

the data. While the acquisition is processing an event, the GMT is vetoed by the OR

of the busy signals of the local DAQs. The DAQ dead time is measured by counting

the signals from a pulser in coincidence with this veto signal. The ratio between the

counting of the pulser alone and the pulser in coincidence with the veto signal will

provide an estimation of dead time, which results to be 10.015 ± 0.003 %.
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Number Trigger

1 MUST2 1

2 MUST2 2

3 MUST2 3

4 MUST2 4

5 CATS1 %

6 CATS2 %

7 TIARA

8 CHARISSA %

9 EXOGAM %

10 TIARA or MUST2

11 Hyball

12 Barrel

Table 3.2: GMT inputs. In our case, any of these inputs except 7 and 10 prompts the FAG

and hence validates the event for further processing.

3.8.2 Scalers

A scaler is an electronic unit intended for counting the total number of incoming

signals. In particular, we have fed the triggers into the scalers to record how many

times each detector is fired. This will be specially useful later in the analysis to provide

a measurement of the number of beam particles passing through CATS, needed for the

cross-section normalization.
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Chapter 4

Data analysis

4.1 Measurement of the target thicknesses

In the present experiment, two different polyethylene targets have been used: a deuter-

ated polyethylene (C3D6, from now on referred as CD2) target, used to run the experi-

ment, and a pure polyethylene (C3H6, called CH2 from here on) target, useful to obtain

the (p,p) and (p,p’) angular distributions. According to the manufacturer, the quoted

thicknesses are 1.2 and 2 mg/cm2, respectively.

An accurate measurement of the target thickness is needed both for taking into

account the energy losses in the target when determining the total energy of the reaction

products and for cross-section normalization. Also it is required to estimate the mean

beam energy at the interaction point (since it cannot be known, the center of the target

will be taken to be the average reaction position), which is a variable that will play a

role in the cross-section normalization and the excitation energy reconstruction.

There are several methods to determine the target thickness, but the approach used

here relies on the measurement of the energy loss of α particles in the target to deduce

the thickness by comparing it to energy-loss calculations.

4.1.1 Setup and calibration

The setup used to measure the target thickness involves an α source and a silicon

detector. This detector was calibrated placing a 3-α source in front of it at a distance

of 27 cm. This source is a mixture of 239Pu, 241Am and 244Cm, and produces α lines at

5.157 MeV, 5.486 and 5.805 MeV respectively, plus other weaker lines at 5.144 MeV,

5.443 MeV and 5.763 MeV.
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The centroid channel numbers were determined from a gaussian fit to each α-line

(figure 4.1a). Then a linear fit was done to the theoretical energy versus centroid

position plot to determine the calibration parameters, that is, offset and gain (figure

4.1b).

(a) Spectrum (b) Calibration

Figure 4.1: Spectrum of the 3-α source (a) and the calibration plot (b). Despite the standard

deviation of the fit respect to the expected values is just 0.6 keV, the χ2 value is high due to

the fact that the statistical errors are quite small and cannot account for these differences.

4.1.2 Procedure and results

The target thickness was determined by measuring the energies of the 3-α source spec-

trum with the target placed between the source and the detector (table 4.1) and calcu-

lating, using range and stopping power tables [55; 56], the thickness of the CD2 and the

CH2 target required to reproduce the energy losses (table 4.2) from the initial energy

measured without target.

Target α1 α2 α3

CD2 3.860 ± 0.035 4.269 ± 0.031 4.628 ± 0.028

CH2 2.880 ± 0.058 3.360 ± 0.052 3.801 ± 0.051

Table 4.1: Energy (MeV) measured when a target is placed between source and detector. The

uncertainties are statistical.

Now with the target in, the separation deteriorates and the different decays are no

longer separated, only the three strongest peaks are visible, the energy value associated

to each one to obtain the energy loss is a weighted average of the energies of all the α

decays included under each one of them.
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(a) CD2 target (b) CH2 target

Figure 4.2: α energy spectra after passing through the CD2 target (a) and the CH2 target (b).

Target α1 α2 α3

CD2 1.288 ± 0.036 1.211 ± 0.032 1.167 ± 0.029

CH2 2.275 ± 0.059 2.125 ± 0.053 2.002 ± 0.052

Table 4.2: Energy loss (MeV) and statistical uncertainty.

In the next step, we have performed several calculations to determine the target

thickness required to reproduce the energy loss of each peak shown in table 4.2. These

calculations have been performed following the methods illustrated on figure 4.3 using

both range and stopping power tables for α particles passing through polypropilene

(C3H6) obtained from SRIM [55] and α-star [56] databases, in order to compare the

results obtained by different techniques and with different datasets. The following table

contains the resulting thicknesses:

(a) Range method (b) Stopping power method

Figure 4.3: Methods of target thickness measurement: the range technique (a) provides the

target thickness as the difference between the range at the incident energy and the one corre-

sponding to the residual energy after passing through the target. The stopping power approach

(b) consists in dividing the energy loss in small intervals, ∆E ≈ 1 keV, over which the stop-

ping power S is assumed to be constant. Therefore, the total target thickness is then obtained

by summing all the small thicknesses of the different energy loss intervals.
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α1 α2 α3

Range dE/dx Range dE/dx Range dE/dx

CD2

α-star 13.52+0.34
−0.34 10.96+0.28

−0.27 13.44+0.32
−0.32 10.89+0.32

−0.32 13.59+0.26
−0.26 11.02+0.25

−0.25

SRIM 13.03+0.32
−0.33 13.05+0.33

−0.33 12.97+0.31
−0.31 12.99+0.31

−0.31 13.12+0.30
−0.30 13.14+0.30

−0.30

CH2

α-star 21.94+0.45
−0.46 17.80+0.37

−0.37 21.96+0.45
−0.45 17.81+0.36

−0.37 21.95+0.48
−0.49 17.80+0.39

−0.39

SRIM 21.21+0.44
−0.44 21.25+0.44

−0.44 21.20+0.44
−0.44 21.23+0.44

−0.44 21.18+0.46
−0.47 21.22+0.47

−0.47

Table 4.3: Target thickness (µm). The uncertainties are due to statistical errors carried

through the calculations.

We observe that the tables from SRIM [55] and α-star [56] databases show a better

agreement for the range (1%) than for the stopping power (16%). Therefore, we have

only considered the results provided by the range calculation. The final target thick-

ness is 13.29 ± 0.12 µm and 21.56 ± 0.19 µm, for the CD2 target and the CH2 one

respectively.

Note that at this stage it is not possible to give an accurate measurement of these

thicknesses in mass per unit area as the purity of the targets is still not well known,

so neither are their densities. Nevertheless, these values are calculated in order to

compare the target thickness measurements with those provided by the manufacturer.

Hence, assuming that both targets are 100% pure1, we found 1.367 ± 0.012 mg/cm2

for the CD2 target and 1.940 ± 0.017 mg/cm2 for the target of CH2.

4.2 CATS calibration

4.2.1 Alignment

The CATS alignment method applied for the analysis will be presented in this section.

It is important to notice that an absolute charge measurement is not required for these

detectors as the relative gains between strips are the only thing that matters to get the

hit position.

Therefore, relative calibration was performed using a pulser signal fed into the

anode wires to induce a charge on the cathode strips. This was repeated 6 times using

different attenuation settings to cover the widest range possible.

1The question on purity concerns mainly the CD2 target. CH2 target is most probably 100% pure.
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Figure 4.4: Pulser spectrum for one strip in CATS. The first peak is the pedestal while the

others represent a different output voltage from the pulser.

4.2.1.1 Pedestal subtraction

When a strip is fired, all others strips are also recorded, even if there is nothing more

than noise on most of them. The accumulation of such events will lead to the appear-

ance of a peak around zero, that is called pedestal.

Figure 4.5: The pedestal is fitted with a Gaussian in order to obtain its position, which is

important to set an absolute zero.

Knowing that, the pedestal is fitted with a Gaussian in order to get the channel

number and subtract it to the data to set the zero:

Qped
i = Qraw

i − pedi (4.1)

where Qped
i is the value of the charge after the pedestal subtraction for the ith channel,

Qraw
i is the raw value of the charge and pedi is the position of the pedestal, given by

the mean of the Gaussian fit.
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(a) Before, Qrawi (b) After, Qpedi

Figure 4.6: Comparison of raw charges before (a) and after (b) the pedestal substraction in

the near-zero region.

4.2.1.2 Gain matching

Since an absolute calibration is not needed, the gain of all the strips have been matched

to the first one.

Figure 4.7: Gain matching linear fit.

For a given strip, the pulser peaks are fitted with Gaussians to determine their

positions and these positions are plotted against the positions in the strip chosen as

reference. Finally, the gain matching parameters are calculated doing a linear fit, and

then applied in the following way:

Qgm
i = ai + bi ∗Qped

i (4.2)

where Qgm
i is the gain matched charge for the ith channel, ai and bi are the offset and

the slope of the linear fit, respectively.
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(a) Before, Qpedi (b) After, Qgmi

Figure 4.8: Comparison of charges on the x-strips of CATS1 before (a) and after (b) the gain

matching.

4.2.1.3 Thresholds

Once the strips are gain matched, the pedestal was fitted with a Gaussian in order to

set the thresholds for the path reconstruction. Those thresholds were defined according

to the equation:

thresholdi = µi + 3 ∗ σi (4.3)

where thresholdi is the threshold for the ith channel, µi and σi are the mean and the

sigma values of the Gaussian fit of the pedestal, respectively. After applying these

thresholds, we have seen that the multiplicity distributions peak at 4 and 5 for CATS1

and CATS2, respectively. This means that most likely the beam passes through an

interstrip in CATS1 and through the middle of a strip in CATS2.

4.3 Beam path reconstruction

4.3.1 Position reconstruction

There are several algorithms to determine the charge centroid and can be classified

in two classes: the algorithms performing a calculation of the center of gravity of the

charge distribution and those assuming that the charge distribution can be described

with an analytical function, frequently Gaussians, Lorentzians or squared hyperbolic

secants.

Among the algorithms falling in the later group, the squared hyperbolic secants

method is the one used in this work because it is proven to give the best results [58].
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The squared hyperbolic secants algorithm [59; 60] relies on the assumption that the

charge distribution is well described by the analytic function:

Qx =
p1

cosh2
(
π(x−p2)

p3

) (4.4)

where p1 is the height of the distribution, p2 is the position of the centroid and p3 is

the width of the distribution.

Under the previous assumption, the parameters p2 and p3 are given by:

p2 =
p3
π
tanh−1

√Q1/Q3 −
√
Q1/Q2

2sinh
(
πw
p3

)
 (4.5)

p3 =
πw

cosh−1
(

1
2

(√
Q1/Q3 +

√
Q1/Q2

)) (4.6)

where w is the strip pitch, Q1 is the highest value of charge, and Q2 and Q3 are the

charges of the strips at the right and at the left of Q1, respectively.

4.3.1.1 Absolute position

Note that the position a2 is measured from the center of the strip where Q1 was

measured, it is not an absolute position. It is necessary then to take into account the

position of the strip fired within the detector, the absolute position in the LAB frame

is given by:

p′2 = p2 + w ∗ (i− 14.5) (4.7)

where p′2 is the absolute position in the lab frame, p2 is the position previously deter-

mined, i is the index (ranging from 1 to 28) of the strip where Q1 was measured, and

w is the strip pitch.

4.3.1.2 Corrections

The previous absolute position was obtained assuming that the CATS detectors were

centered on the beam axis. However, a correction has to be included in order to account

for any possible misalignment of the detectors. Although a surveyor has measured the

detector positions by laser alignment, the corrections have been determined empirically

to achieve the most accurate reconstruction of the mask at target position.
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CATS1 CATS2

X2(mm) Y (mm) X (mm) Y (mm)

+3.43 0.07 0.0 +0.7

Table 4.4: Position corrections.

4.3.2 Path reconstruction

After calculating the hit position on CATS1 and CATS2 and taking into account the

position of the CATS detectors with respect to the target (CATS1 at -1193 mm and

CATS2 at -684 mm), it is possible to perform a path reconstruction and extrapolate

the position on the z=0 plane, where the target is placed, by applying basic algebra:

xtarget = xCATS2 − xCATS2 − xCATS1

zCATS2 − zCATS1
∗
(
zCATS2 − ztarget

)
(4.8)

ytarget = yCATS2 − yCATS2 − yCATS1

zCATS2 − zCATS1
∗
(
zCATS2 − ztarget

)
(4.9)

4.3.3 Reconstruction validation

4.3.3.1 Mask on CATS

In order to ensure a good position reconstruction, a mask made of a metallic drilled

plate, whose holes form an asymmetrical pattern, was placed over both detectors (one

at a time). Comparing the position reconstruction with the mask itself allow us to

verify the position reconstruction and notice any possible inversion of strip.

(a) Mask on CATS1, Z=-1356mm (b) Mask on CATS2, Z=-849mm

Figure 4.9: The reconstruction at CATS position shows a well reproduced mask pattern.

2The beam axis is taken to be the Z axis, while the X and Y are the horizontal and vertical axis

respectively. The point (0, 0, 0) is assumed to be the center of the target.
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4.3.3.2 Mask on target

Once the positions obtained from CATS1 and CATS2 are proved to be trustworthy,

we follow the same philosophy to check the path reconstruction and a different mask

was placed at target position. A comparison between the reconstruction with the mask

pattern will give us an idea of the accuracy of the path reconstruction.

(a) Mask (b) Mask on target, Z=0mm

Figure 4.10: Reconstruction at target position (b) with a mask (a) at the target position.

Resolution

The best way to measure the position resolution at target position would be using a

beam with a negligible divergence, but this is not possible. Instead, we have used the

mask in our advantage, as it behaves like a collimator, reducing the beam divergence.

We got the position resolution by measuring the FWHM of the peak corresponding to

the central hole of the mask, once the deconvolution of its size has been performed.

The CATS position resolution has been deduced by applying the uncertainty prop-

agation law, assuming it was the same for both detectors.

X (mm) Y (mm)

Intrinsic resolution (FWHM) 0.414 0.440

Resolution at target position (FWHM) 1.528 1.621

Table 4.5: CATS position resolution and position resolution at the target plane.

4.3.3.3 Beam reconstruction at target position

The beam reconstruction at target position is shown in figure 4.11. It is worth remark-

ing that the beam is well focused on the target, although it extends over 8.96 mm and

6.27 mm, on X and Y axis respectively, at half maximum.
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Figure 4.11: Beam reconstruction on target. The square pattern surrounding the beam is the

target frame. A hint of MUST2 telescopes appears in the corners.

4.4 Barrel calibration

4.4.1 Offset subtraction

A pulser calibration is performed aiming to correct for any offset or non-linearities,

that would have a significant impact on the position measurement.

The offset is obtained by using a pulser, whose signals were fed into the preamplifiers

in order to have peaks within the widest range possible the attenuation settings were

modified.

Figure 4.12: Pulser spectrum for a strip-end. The pedestal is followed by six peaks.
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Figure 4.13: Offset determination of inner barrel strips.

For each strip, the position of the peaks is determined by fitting them to a Gaussian

function. These positions are plotted against the attenuation settings corresponding

to each one and finally, a linear fit provides the offset-subtracted raw energies:

xi = xrawi − ai (4.10)

where xi is the offset-subtracted raw energy, xrawi is raw energy value for the ith channel,

and ai is the offset given by the linear fit.

The offset determination has been applied to strips and back signals in both inner

and outer barrels.

(a) Before, xrawi (b) After, xi

Figure 4.14: Comparison of low channel spectra of barrel strips before and after the offset

subtraction.

4.4.2 Energy and position calibration

The α calibrations have been performed using a double-sided 3α-source placed at the

target position. As mentioned before, this source produces three main α lines at 5.157,

5.486 and 5.805 MeV, plus other weaker peaks that are hardly resolvable with TIARA.

The energy losses in the dead layer (1 µm) on the front side of the Si detectors were

taken into account for each decay at the barrel ends and a weighted average was taken

for each radionuclide: 4.896, 5.234 and 5.562 MeV.
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Since the strips in the barrel are position sensitive, the total energy of the particle

is obtained by adding the signals from the two strip ends, while the position is given

by the difference between the signals at the ends of the strip. Figure 4.15 illustrates

the correlations between the signal amplitudes from the two ends of a given strip.

Figure 4.15: Downstrip vs upstream signal amplitudes for a strip in the Inner Barrel, showing

the correlation between strip ends.

4.4.2.1 Energy calibration

The energy is given by summing the amplitude of the signal at both strip ends after

calibrating the charge. Eα = Gup
i x

1
i +Gdown

i y1i

Eα = Gup
i x

2
i +Gdown

i y2i
(4.11)

where Eα is the energy deposited in the detector, Gup
i and Gdown

i are the gain-matching

parameters for the upstream and downstream ends of the ith strip, and (x1i , y
1
i ) and

(x2i , y
2
i ) are two points3 extracted from figure 4.15 in order to solve the system (4.11)

and get the Gup
i and Gdown

i as follows:

Gup
i =

Eα(y2i − y1i )
x1i y

2
i − x2i y1i

Gdown
i =

Eα(x1i − x2i )
x1i y

2
i − x2i y1i

(4.12)

The gain-matching coefficients Gup
i and Gdown

i have been calculated for the three

Eα values and a weighted average was taken to perform the calibration.

3Note that there are no position requirements the points (x,y) have to meet to perform the energy

calibration. Thus, for the sake of simplicity, the same points used for the position calibration have

been used for the energy calibration.
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4.4.2.2 Position calibration

The position along the theoretical beam axis is determined by the difference between

the gain-matched strip end signals, which is divided by the total energy in order to

normalize the position between -1 and 1 for the upstream and downstream end, re-

spectively:

pi =
Gdown
i yi −Gup

i xi
Gup
i xi +Gdown

i yi
(4.13)

where pi is the position, xi and yi are the upstream and downstream signals, respec-

tively, of the ith strip, and Gup
i and Gdown

i are the corresponding gain-matching param-

eters previously obtained.

This would be true if the signals could reach near zero values, but this is not the

case because of the effect of the offset resistors. Thus pi instead of going from -1 to 1

spans from pupi to pdowni , but this new limits can be determined by picking two points

(xi, yi)
up and (xi, yi)

down from figure 4.15, as close as possible to each end of the strip:

pupi =
Gdown
i yupi −G

up
i x

up
i

Gup
i x

up
i +Gdown

i yupi
pdowni =

Gdown
i ydowni −Gup

i x
down
i

Gup
i x

down
i +Gdown

i ydowni

(4.14)

Finally, using pupi and pdowni it is possible to renormalize pi and get a new position

Pi ranging from 0 at the downstream end to 1 at the upstream end:

Pi =
pdowni − pi
pdowni − pupi

(4.15)

The position calibration has been performed for all three α-lines and an average

was done to the three sets of parameters to obtain the coefficients used.

Figure 4.16: Energy vs position for a strip in the Inner Barrel.
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4.4.3 Ballistic deficit correction

The amplitude of a signal produced by a semiconductor detector should be propor-

tional to the charge produced by the incoming particle, leading to a dependency of the

amplitude on the charge collection time: no charge will be lost if the measurement is

done in a very long time compared to charge collection time, but unfortunately the

shaping time has to meet some constraints to allow high rate operation and to keep a

good signal-to-noise ratio and some charge carriers can be lost, causing ballistic deficit

effects.

It would not be a problem if the charge collection time was constant, because it

would be corrected through the gain-matching stage, but this is not our case as the

charge collection depends on the hit position along the beam axis. If the particle hit

is close to a strip end, most of the charge would be collected in the nearest end within

the shaping time minimizing the ballistic deficit effect. On the other hand, a hit near

the center will produce charge carriers that need to travel across half the length of

the strip to produce the strip end signals. Therefore, the longer charge collection time

results in a stronger ballistic deficit effect.

With a shaping time of 1 µs, the barrel presents a non-linear dependency of the

energy as a function of the position because of the ballistic deficit effect as shown in

figures 4.16 and 4.17.

Figure 4.17: The ballistic deficit correction has been performed by taking 50 slices in position

on figure 4.16 and fitting them to 3 Gaussians. Their centroids were then plotted versus the

position of the slice along the strip. Finally a fit was done to describe the energy-position

dependency, only on the points with closed symbols to avoid those affected by energy losses in

the source layer, which is thick enough to stop α particles as .
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Figure 4.17 shows how this behaviour was corrected by fitting each α-line to a

2nd-order polynomial function. The average coefficients were taken to be applied as

follows:

EIB
i =

Eα

a+ bPi + cP 2
i

(4.16)

where EIB
i is the energy deposited in the ith strip, and a, b and c are the ballistic deficit

correction parameters. The result is displayed in figure 4.18:

Figure 4.18: Energy vs position, after applying the ballistic deficit correction.

4.4.4 Features of the Energy vs Position spectrum

The energy versus position plots presented in figures 4.16 and 4.18, and even the

downstream versus upstream signal plot in 4.15 show some characteristic features other

than the main three α-lines. The lack of events in positions between 0.5 and 0.6 is due

to the shadow cast by the target holder and the source frame. Energy loss effects are

also visible in the boundaries of this gap.

The events at low energies (below 0.5 MeV) are the pedestal events that are clearly

seen in the downstream versus upstream signal plot in figure 4.15 around (0, 0). The

large statistics accumulated here is due to the data acquisition: the barrel read out is

triggered by common gates provided by the OR of the back signals of two detectors,

therefore for each strip fired we are reading 7 strips in noise. These events will be

rejected in the analysis of 16C(d,p) data by requesting a coincidence between front and

back energy values.
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The structure at the downstream end below the α-lines is due particles hitting one

of the tracks running around the silicon strips to route the signals to the connectors

in coincidence with noise in the opposite end. This effect is more pronounced in the

downstream end because the wiring of these signals is crossing the PCB board to reach

the output connector at the upstream side of the PCB board. It is worth mentioning

that the effect of crosstalk is even less significant in the analysis of this work since most

of the interesting data is at backward angles, which corresponds to the upstream end

of the Barrel.

4.5 Hyball energy calibration

The energy calibration has been done with the same 3α-run used for the Barrel. The

dead layer on the front side of the Si detectors (0.5 µm of aluminium) was taken into

account and the resulting energies were used: 5.071, 5.404 and 5.727 MeV4.

Since the Hyball resolution is better it allows to distinguish the weaker decays, the

energy spectrum of each strip is fitted with a combination of six Gaussian functions

to take into account not only the three main α peaks, but also the less intense decays.

Once the peak centroids have been determined, we assume a linear relationship between

the ADC channel number and the energy deposited:

EHY
i = ai + bi ∗ Egm

i (4.17)

where Egm
i and EHY

i are the gain-matched5 and the calibrated energies for the ith

channel, and ai and bi are the calibration parameters.

(a) α-peak finding and fit (b) α calibration

Figure 4.19: The energy calibration was obtained from a fit to a first order polynomial.

4As the effect of the dead layer is different for each ring, a different energy was taken for each one.

The quoted energies are weighted averages of all the ring energies, which are also the ones used for

sectors.
5The gain matching is achieved following a method similar to that described for the Barrel (see

section 4.4.1).
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4.6 Scattering angle

4.6.1 Barrel

Once the position of the light particle hit along the strip Pi is known, the corresponding

z coordinate is given by

z = L

(
Pi −

1

2

)
(4.18)

where L stands for the length of the Barrel strips.

Then, assuming that the reaction takes place at the (0,0,0), the scattering angle θ′

of the light particles hitting the Barrel is given by

θ′ = acos

(
z√

x2 + y2 + z2

)
(4.19)

where (x,y,z) is the position of the hit in the Barrel, being z is the coordinate along

the theoretical beam axis calculated as indicated in equation 4.28, and x and y the

coordinates orthogonal to the beam axis, which have been calculated geometrically

based on the Barrel strip dimensions and randomized within the strip size.

4.6.2 Hyball

The scattering angle θ′ of the particles hitting the Hyball is given by equation 4.19 as

well, where z is the position of the Hyball along the theoretical beam axis (-15 cm)

and x and y are given by

x = rcosφ y = rsinφ (4.20)

where r is the distance to the theoretical beam axis and φ is the angle between r and

X axis. Both r and φ are provided by the number of ring and sector hit, respectively.

4.6.3 Beam corrections

However, equation 4.19 relies on the assumption that the reaction always take place at

(0, 0, 0) and the beam arrives parallel to the Z axis and hits the target perpendicularly

and we have already seen that this not the case: the beam reconstruction at target

position (figure 4.11) shows that the beam spot extends over 9 mm and 6 mm on X

and Y axis respectively. And the beam axis can be tilted up to 2o with respect to the

theoretical beam axis.
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Therefore, a different approach is needed in order to take into account the direction

of the incoming beam particle and its point of interaction on target in the calculation

of the scattering angle θ:

θ = acos

(
xbeam(x− xtarget) + ybeam(y − ytarget) + zbeam(z − ztarget)√
(x−xtarget)2+(y−ytarget)2+(z−ztarget)2

√
x2beam+y2beam+z2beam

)
(4.21)

where (xbeam,ybeam,zbeam) is a direction vector of the beam path and (xtarget,ytarget,ztarget)

is the position of the point of interaction on target. The beam direction vector and

xtarget and ytarget coordinates are provided in an event-by-event basis by the CATS

reconstruction, however ztarget cannot be measured or extracted since there is no way

to know where the reaction took place inside the target, and hence ztarget is assumed

to be zero since the center of the target supposed to be the average reaction position.

The position of the hit in the Barrel (x,y,z) remains the same as in equation 4.19.

Figure 4.20: Representation of the scattering angle θ′ (equation 4.29) versus the corrected

scattering angle θ (equation 4.30) for particles detected in the Barrel. The shape of the

pattern, wider at the strip ends of the Barrel and narrower at 90o, is a clear indication that

the main contribution to the correction is due to the effect of the beam interaction point being

off-center, since its effect is maximal at the edges of the Barrel and cancels at 90o. The

inclination of the beam direction is barely influential as the beam path is not more tilted than

2o with respect to the theoretical beam axis.
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4.7 Energy loss corrections

The initial energy of the target-like ejectile is required for the reconstruction of the

excitation energy of the states populated in the beam-like fragment. However, in

semiconductor detectors there is an insensitive layer called dead layer, through which

the incoming particles must pass before entering the active area, and hence losing a

fraction of its kinetic energy before it can be measured. Furthermore, since the reaction

takes place within the target, another fraction of its kinetic energy is loss leaving the

target.

The nominal dead layer thickness was 1 µm of silicon and 0.5 µm of aluminium, re-

spectively, for the Barrel and the Hyball. Concerning the target, only half the measured

thickness was taken for the energy loss correction for consistency with the assumption

made in equation 4.19 of the reaction taking place at the center of the target.

The effective thickness of the target and the detector dead layer is calculated on

an event by event basis depending on the beam interaction point and the scattering

angle. Then, the energy losses in the detector dead layer and the target are estimated

using range tables in order to recover the initial energy of the ejectile.

The measured energy is first corrected for losses in the dead layer using the SRIM

tables for silicon to obtain the energy of the particle after leaving the target. Then,

the resulting dead-layer-corrected energy is corrected for losses in the target using the

CD2 SRIM tables to get the initial energy of the particle. The procedure is described

in figure 4.21.

(a) Dead Layer (b) Target

Figure 4.21: The correction for energy losses in the target the dead layer makes use of range

versus energy graphs for both dead layer and target materials: silicon (a) and CD2 (b). Emeas

is the measured energy and ∆xDL the effective dead layer thickness, from which the energy of

the particle at the entrance of the detector EDL is extracted as indicated (a). Same philosophy

is followed in (b) to obtain the initial energy Ei from energy of the particle at the exit of the

target EDL and the effective target thickness ∆xTarget.
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4.7.1 Particles stopped in TIARA

The initial kinetic energy of the particles stopped in TIARA is given by the measured

energy plus the energy lost in the detector dead layer and the target.

4.7.2 Punchthrough events

For punchthrough events, the initial kinetic energy of particle is the energy measured

in the inner barrel plus the energy lost in the detector dead layer and the target plus

the remaining energy after leaving the Inner Barrel.

A relationship between the energy at the entrance of the active volume of the silicon

detector, Eent, and the energy deposited in the Inner Barrel, Edep, for a given angle

of incidence is determined by mapping the energy versus range curve taking 50 points

(Eent,Edep) corresponding to the effective thickness of silicon given by the measured

scattering angle, as indicated in figure 4.22a. Once this relationship is known, a simple

interpolation of Eent at the energy measured in the Inner Barrel, Emeas, provides the

kinetic energy of the particle at the entrance of the active detector volume, ESi (figure

4.22b).

(a) Range versus energy in silicon (b) Eent versus Edep

Figure 4.22: The reconstruction of the energy at the entrance of the active detector volume,

ESi, is based on the range versus energy curve, in which bins of fixed length in range have

been projected in energy to obtain a set of points (Eent,Edep) (a). These points provide the

relationship that allows to extract ESi by extrapolating Eent at the energy measured in the

Barrel.

Once the energy at the entrance of the active volume of the silicon detector is

obtained, the correction described in figure 4.21 is applied in order to correct the

energy losses in the dead layer and the target.
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4.8 CHARISSA calibration

The energy calibration method applied for the DSSSD will be presented in this section.

Note that exactly the same method was used for all the strips, no matter in what layer

or on what side they are, that is why all the following plots correspond to the front of

the first silicon.

4.8.1 Gain matching

As for the previous detectors, the gain matching relies on a pulser run. This time, 6

different pulser signals were sent into the preamplifiers, one by one, to fire each strip

of the detectors covering the widest range possible.

For a given strip, the pulser peaks are fitted with Gaussians to determine their

centroid and these centroids are plotted against the centroids corresponding to the

strip chosen as reference6.

Subsequently, a linear fit provides the gain matching parameters, that are finally

applied according the equation below:

Egm
i = ai + bi ∗ Eraw

i (4.22)

where Egm
i is the gain matched energy and Eraw

i is the raw energy value for the ith

channel, while ai and bi are the offset and the slope of the linear fit, respectively.

(a) Before, Erawi (b) After, Egmi

Figure 4.23: Comparison of pulser data for the front side of the first silicon detector before

and after the gain matching.

6The first working strip on each side of each silicon was taken as reference and the slope and the

offset of every other strip in the same side have been extracted to match this one.
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4.8.2 Energy calibration

4.8.2.1 α calibration

The α calibrations have been done using a 3α-source placed at target position. As we

did for TIARA, the dead layer on the entrance side of the detector (0.3 µm) was taken

into account and the weighted average energy was used for each nuclide of the source:

5.1133, 5.4442 and 5.7653 MeV.

The energy spectrum of each strip is fitted with a combination of three gaussian

functions to take into account the three main α peaks and determine their centroids.

Once the peak locations has been determined, we assume a linear relationship between

the ADC channel number and the energy deposited in the silicon detector:

Eα−cal
i = ãi + b̃i ∗ Egm

i (4.23)

where Eα−cal
i is the α-calibrated energy, Egm

i the gain matched energy for the ith

channel, and ãi and b̃i are the offset and the slope, respectively, of the linear fit between

the gain matched centroid energies of the peaks and their corresponding deposited

energies.

(a) Centroid search (b) α calibration

Figure 4.24: Calibration fits.

4.8.2.2 Beam calibration

Unfortunately, the energy deposited by the α particles is far from the energy region

where we expect to measure our beam-like products, so a second calibration was done

using the data taken during the beam time to extend the calibration range towards

this region. For that purpose, we picked up several points in two different ways: using

the punch through energies and taking advantage of the kinematics of reactions such

as 16C(d,p)17C* and 16C(d,d)16C.
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It is important to mention that this beam calibration is applied after the previously

discussed α-calibration.

4.8.2.2.1 Punch through

When a charged particle passes through a given material, it loses energy continuously

along its path until either it is stopped or escapes the material. The energy at which

it is no longer stopped is known as punch through.

Figure 4.25 shows several energy loss patterns, that can be easily distinguished to

use as reference in the calibration. These are the punch-throughs of the 4He, 7Li and
16C ions. Their corresponding energies are shown in table 4.6.

Figure 4.25: The ∆E Vs E plot shows several energy loss patterns for isotopes between Z=2

and Z=7, but only the punch-throughs of 4He, 7Li and 16C can be identified.

Isotope
Theoretical values Experimental values

∆E (MeV) E (MeV) ∆E (MeV) E (MeV)

4He 2.43 33.02 2.40 26.39

7Li 4.92 66.62 4.84 51.14

16C 15.45 204.71 15.26 156.39

Table 4.6: Calibration points taken from the punch throughs.
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4.8.2.2.2 Kinematics

The method consists in selecting data from a single reaction by gating on the associ-

ated kinematical pattern in the E vs angle plot in Tiara. In this way we obtain the

experimental values for beam-like and target-like particle energies. Then, using just the

equations from the kinematics we deduce a theoretical value for the beam-like particle

energy from the experimental target-like particle energy.

The calibration technique is identical for both silicon detectors. However, for the

sake of simplicity, the following description is focused on the first silicon detector.

16C(d,p)17C*

Our first choice was gatting on the (d,p) channel and, therefore, on the γ-rays around

330 keV in order to select the events populating the second excited state of 17C.

A correlation between the fragment energy loss measurement provided by CHARISSA

and the energy deposited by the light ejectile in TIARA is shown in figure 4.26, from

where a point (∆Eexp
17C ,Eexp

p ) is taken:

Eexp
p (MeV) ∆Eexp

17C (MeV)

2.4991 13.7236

Table 4.7: Proton energy in TIARA and corresponding 17C energy loss in CHARISSA.

(a) Eexpp versus ∆Eexp17C
(b) Slice in Eexpp

Figure 4.26: Proton energy measured in TIARA, Eexpp , versus 17C* energy loss in the first

layer of CHARISSA, ∆Eexp17C
(a). In order to obtain a pair of (∆Eexp17C

,Eexpp ) correlated values,

a thin slice around Eexpp is projected in the X-axis and fitted with a Gaussian to determine

the corresponding ∆Eexp17C
value (b). Due to the lack of statistics, only one point at low energy

was taken.

This correlation is used to obtain a theoretical energy loss, ∆Eth
17C , derived from the

proton energy by considering the kinematics of the reaction (figure 4.27).
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(a) Energy versus angle (b) θ17C versus θp

Figure 4.27: 16C(d,p)17C* kinematics. Energy versus angle for both fragment and ejectile (a)

and fragment angle versus ejectile angle (b).

Finally, we have a point (∆Eth
17C ,∆Eexp

17C) to add to the calibration.

Target-like particle Beam-like particle CHARISSA

Ep (MeV) θp (o) θ17C (o) E17C (MeV/u) ∆Eth
17C (MeV)

2.4991 160.48 0.4461 15.8254 13.739

Table 4.8: Kinematics of the 16C(d,p)17C* reaction

16C(d,d)16C

The next reaction chosen to gate on is the elastic scattering. Since the cross-section is

higher and therefore also the statistics, two points are taken from this reaction channel.

(a) Eexpd versus ∆Eexp16C
(b) Slice in Eexpd

Figure 4.28: Correlation between the deuterium energy, Eexpd , and 16C energy loss, ∆Eexp16C

(a). Slice in Eexpp and fitted with a Gaussian to obtain the associated ∆Eexp16C
(b).

Eexp
d (MeV) ∆Eexp

16C (MeV)

1.43129 12.9567

6.55737 13.2197

Table 4.9: Deuterium energy in TIARA and corresponding 16C energy loss in CHARISSA.
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The reaction is different, but the aim remains the same: to find the expected 16C

energy loss, ∆Eth
16C . In order to do so, we use the reaction kinematics (figure 4.29).

(a) Energy versus angle (b) θ16C versus θd

Figure 4.29: 16C(d,d)16C kinematics. Energy versus angle for both fragment and ejectile (a)

and fragment angle versus ejectile angle (b).

Target-like particle Beam-like particle CHARISSA

Eexp
d (MeV) θd (o) θ16C (o) E16C (MeV/u) ∆Eth

16C (MeV)

1.43129 83.342 1.4538 17.0233 12.938

6.55737 75.647 3.0630 16.7056 13.164

Table 4.10: Kinematics of the 16C(d,d)16C reaction

As a result, we obtain two points (∆Eth
16C ,∆Eexp

16C) to include in the calibration.

4.8.2.2.3 Calibration

Finally, a linear fit was done to the theoretical energy vs experimental energy plot to

determine the calibration parameters.

(a) ∆E beam calibration (b) E beam calibration

Figure 4.30: The calibration reveals that the first silicon remains barely unchanged. The sec-

ond silicon needed an important correction to provide accurate measurements at high energies.
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4.9 EXOGAM energy calibration

The EXOGAM calibration has been done using 60Co, 133Ba and 152Eu sources, which

have been selected in order to cover the widest energy range possible. In particular,

the 133Ba was chosen in order to have some additional peaks at low energies and hence

enhance the reliability of the energy calibration in the region where we are expecting

to measure our γ-rays.

The centroid position of each known peak was determined from a Gaussian fit plus

a linear background. These positions were plotted against the quoted energy for each

γ-ray line (table 4.11) and, finally, the calibration parameters were then obtained by a

second-order polynomial fit (fig4.31).

Eγ (MeV) Intensity (%)

1.1732 99.85

1.3325 99.98

(a) 60Co.

Eγ (MeV) Intensity (%)

0.0806 32.98

0.2764 7.16

0.3029 18.34

0.3560 62.05

0.3838 8.95

(b) 133Ba.

Eγ (MeV) Intensity (%)

0.1218 28.67

0.2447 8.37

0.3443 27.65

0.4111 2.29

0.4440 3.15

0.7789 12.99

0.8674 4.26

0.9641 14.54

1.0858 10.15

1.1120 13.44

1.4080 20.86

(c) 152Eu.

Table 4.11: Energies and intensities of the γ-ray lines used in the EXOGAM calibrations.

(a) 60Co [65], (b) 133Ba [66], (c) 152Eu [67].

The energy spectra corresponding to each source are shown in figure 4.31. The cal-

ibration was rather stable and did not change through the duration of the experiment.

4.9.1 Addback

Ideally, a γ-ray interacts with only one crystal depositing its full energy, thus the

resulting charge collected will be proportional to its energy. However, a γ-ray may

scatter from one crystal to a neighbouring one, resulting in the total energy being

shared by several crystals. In order to take into account cases such as this, a process
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(a) 60Co spectrum (b) 133Ba spectrum

(c) 152Eu spectrum (d) EXOGAM γ energy calibration

Figure 4.31: 60Co, 133Ba and 152Eu spectra and gamma calibration.
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known as addback is applied to determine the energy of the incident γ-ray by adding

the charge collected in each fired crystal within a clover detector. This way, the peak

efficiency is enhanced and a better peak-to-background ratio is obtained.

4.10 Doppler correction for EXOGAM

The energy deposited by a γ-ray in the germanium crystals must be corrected, as it is

affected by the Doppler shift due to the speed of the emitting nucleus with respect to

the detector. For a nucleus travelling at a velocity β and emitting a γ-ray of energy

E0, the energy observed in the detector would be:

Eobs =
E0

γ(1− βcosθ)
(4.24)

From this equation, we can see that the observed energy depends on the angle θ of

γ-ray emission with respect to the path of the emitting nucleus. A lower energy will be

measured for a γ-ray hitting the detector at backward angles while the γ-rays forward

emitted will deposit a higher energy. This phenomenon is known as Doppler shift.

Figure 4.32: Doppler shift phenomenon.

If the angle of emission θ and the speed β were exactly known, the Doppler shift

could be corrected perfectly. However, the uncertainty in their determination will affect

the Doppler correction and, in consequence, worsen the energy resolution due to the

Doppler broadening effect. The Doppler broadening has been estimated by taking into

account the contribution of each uncertainty affecting θ (γ-ray hit, fragment hit and

reaction point) or β (beam energy spread).



4.11 EXOGAM Efficiency 69

Figure 4.33: Estimation of the Doppler broadening effect. The dominant contribution within

the γ-ray detection angular coverage is due to the EXOGAM position resolution.

4.11 EXOGAM Efficiency

Given the nature of the γ-ray interaction with matter, a γ-ray has a high possibility

of passing through the detector without leaving any trace at all. This means that

the detector will be unable to detect all the incoming γ-rays. Therefore, a crude

geometrical calculation cannot account for the intrinsic detection efficiency and hence

the total detection efficiency is defined as the ratio of the number of γ-rays actually

detected in the full-energy peak and the total number of γ-rays emitted:

ε =
N

A BR t(1−DT )
(4.25)

where N is the integral of the full-energy peak, A the source activity, BR the intensity

of the γ-ray line, t the exposure time and DT the DAQ dead time fraction.

The total detection efficiency of EXOGAM has been measured placing 60Co, 133Ba

and 152Eu sources at target position. The photopeaks selected for this purpose were

the same as those used for the energy calibration, their energies and intensities can be

found in table 4.11.

The activity of each source was provided with an accuracy of ±1% for a given

date, so they have been extrapolated to the date when the measurements were done

according to the universal law of radioactive decay (table 4.12).
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Source Initial Activity Date Calculated Activity Date

60Co 5638 Bq 23/09/2013 5313 Bq 12/03/2014

133Ba 9789 Bq 17/07/2013 9374 Bq 13/03/2014

152Eu 17798 Bq 03/06/2011 15846 Bq 14/03/2014

Table 4.12: Activities

In order to extract the numbers of counts under the photopeak, the background

has to be removed. Therefore, a background run was removed from the spectrum.

Next step is fitting each photopeak to extract the integral, but unfortunately all the

fitting procedures employed here were unsuccessful as the shape of the photopeaks are

not well described by any function tried (Gaussian, asymmetric-Gaussian, Lorentzian,

Landau, etc. with linear or parabolic backgrounds).

Another approach was needed and an algorithm7 was utilized to subtract the back-

ground [68], then the number of counts under the photopeak can be obtained as the

difference between the integral of the source spectrum and the same integral in the

background spectrum.

(a) 60Co peak at 1.332 MeV (b) 133Ba peak at 0.276 MeV (c) 152Eu peak at 0.122 MeV

Figure 4.34: Photopeak integration. Source spectra in blue/red/green and background in yel-

low, the coloured area represents the range of intregration.

The number of counts N under each peak is now known and the efficiency can be

obtained by applying equation 4.25. Figure 4.35 shows the results, where the efficiency

curve is fitted with the following function [50]:

εi = e
a+b ln E

E0
+c

(
ln E

E0

)2

(4.26)

The photopeak efficiency points corresponding to the 152Eu γ-ray lines are well

described by the efficiency curve. According to this curve, the expected efficiency at

7This algorithm estimates the background spectrum, which was verified to reproduce the underlying

component of the histogram.
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217 keV and 335 keV is 16.47 (25) % and 13.65 (20) %, respectively. The uncertainty

is dominated by the source activity.

Figure 4.35: Photopeak detection efficiency (dots with statistical error bars) and EXOGAM

efficiency curve.

4.12 Time of flight calibration

Each TAC module was calibrated over a range 640 ns or 1.28 µs wide depending on

the TAC dynamic range, by using a time pulser in order to send periodically a stop

signal every 40 or 80 ns, respectively (figure 4.36a).

(a) Time-pulser run (b) Time of flight calibration

Figure 4.36: Time of flight calibration.
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The peaks are fitted with Gaussians to determine their positions and these positions

are plotted against the time past since the start signal was sent. Finally, the calibration

parameters are calculated by doing a linear fit (figure 4.36b), and then applied in the

following way:

ToF = a+ b ∗ ToF raw (4.27)

where ToF is the calibrated time of flight, ToF raw is the raw time of flight value, a

and b are the offset and the slope of the linear fit, respectively.

Note that after this calibration, the times of flight are expressed in nanoseconds

but the measurements are not absolute since they are affected by a delay due to the

cabling and the electronic processing.

4.13 Event selection

The very first condition applied in the data analysis consists in requiring a coinci-

dence between front and back signals of the same silicon detector, with energy values

compatible with each other.

(a) Hyball (b) Barrel

(c) CHARISSA ∆E (d) CHARISSA E

Figure 4.37: Front versus back energies in the silicon detectors with the gates used to select

events.
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Figure 4.37 shows the front versus back plots with the gates around the pattern of

the events having a similar energy in both sides. These gates are used to select the

events that are accepted for further analysis.

This condition is intended to clean up the data by removing any possible noisy

signal triggering a silicon detector.

4.14 Particle identification

This section outlines the different selection criteria that were applied to identify the

beam particle, the beam-like and the target-like particles are presented. These condi-

tions are intended to clean up the spectra and gate on a specific reaction channel.

4.14.1 Beam particle identification

The HF-CATS time of flight, measured between the cyclotron radiofrequency and the

first CATS detector, is a very useful parameter since it is the only measurement gov-

erned by the flight path before the reaction target, and therefore provides an excellent

tool to select the beam particles and to remove any possible beam contamination from

the analysis.

Figure 4.38 shows that most of the events have the same time of flight, indicating

that the purity of the 16C beam is close to 100%.

4.14.2 Hit on target condition

In addition to allowing for measurements of the position and incident angle of incoming

ions, the beam position reconstruction on the target plane discussed in section 4.3.3.3

serves the purpose of developing a condition for selecting the events that reached the

target.

Knowing that the radius of the target is 1 cm, this condition is applied by defining

a circle of radius of 0.9 cm around the position of the center of the target measured by

the surveyor, as shown in figure 4.39. The events falling outside this circumference are

rejected while the events within it are accepted.

A radius 1 mm smaller than the actual target radius was chosen taking into account

the resolution of the position reconstruction on target so as to reject reactions of the

beam particles with the target frame or the target holder.
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Figure 4.38: Energy loss in the second silicon of CHARISSA versus the ToF HF-CATS1.

Two red lines limit the time of flight interval of accepted events for further analysis.

Figure 4.39: Beam reconstruction on the target plane with the contour on the target superim-

posed. We can see that the beam focusing was excellent and the majority of the events meet

this condition.
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4.14.3 Fragment identification

4.14.3.1 Z=6 fragments selection

The identification of the 17C and the 16C isotopes among the beam-like particles de-

tected in CHARISSA is delicate, especially due to the lack of a useful energy signal

from the CsI crystal that prevents us from achieving isotopic separation. Besides, 35

% of the recorded events in the CsI are affected by pile-up.

Unfortunately, the ∆E-E scatter plot presented in figure 4.40 provides just charge

identification. Therefore, only a selection of Z=6 fragments was possible from the

∆E-E plot.

4.14.3.2 CHARISSA-CATS1 time of flight

The time of flight between the CATS1 and CHARISSA could be used to improve the

fragment identification, as we know that a difference in the mass of the fragment is

associated with a variation in the time of flight for particles with the same kinetic

energy.

The time of flight considered here is measured over a flight path that has a first part

before and a second part after the reaction target. Since the beam-particles are always
16C isotopes and the beam path has a maximum deviation of only 2o with respect to

the theoretical beam axis, the time of flight selectivity is due to the differences in the

mass of the reaction products and their flight path from the target to CHARISSA.

However, figure 4.41 shows that the flight path after the reaction target is too small

for these differences in the time of flight to be larger than the time resolution achieved

with our experimental setup.

4.14.4 Light ejectile identification

4.14.4.1 Time of flight selection

The time of flight measured between CATS and the silicon detectors of TIARA gave

us valuable information on the flight path of the target-like particles. These times of

flight are measured over a flight path from a point before to a point after the reaction

target and, similarly to what happens with the times of flight between CATS and

CHARISSA, the differences arise from the times of flight measured from the reaction

target and the silicon detector.
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Figure 4.40: ∆E-E scatter plot, where it is clear that the resolution does not allow isotopic

identification. The Z=6 graphical cut used is presented in red.

Figure 4.41: Energy loss in the second silicon of CHARISSA versus ToF CHA-CATS1.
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The relationship between the time of flight ∆t, the energy E and the flight path

distance L of particle of mass m is given by:

E =
1

2
mv2 =

1

2
m

(
L

∆t

)2

=⇒ ∆t =

√
mL

2E

2

(4.28)

Although the times of flight between CATS1 and TIARA silicon detectors do not

provide information on the mass difference, the correlation between the time of flight

∆t and the energy E and the flight path distance L is used in our advantage.

4.14.4.1.1 Hyball-CATS1 time of flight

The time of flight ∆t dependence on the flight path distance L indicated by equation

4.28 is lost due to the alignment of times of flight corresponding to different rings in

the Hyball.

The time of flight ∆t dependence on the energy E remains and is used to select

the (d,p) events in the energy versus time of flight plot with a graphical cut on the

correlated events in the energy range of interest (up to 3.3 MeV) as shown in figure

4.42.

4.14.4.1.2 Barrel-CATS1 time of flight

The time of flight between CATS1 and the inner barrel, however, still presents the

correlations with the energy E and the scattering angle θ8 expressed by equation 4.28,

and both are used to clean up the kinematical spectrum.

Figure 4.43 shows the time of flight ∆t between CATS1 and the inner barrel plotted

against the scattering angle θ9 and the correlated events are selected with a graphical

cut. Events falling within this gate are then plotted in a time of flight ∆t versus

energy E plot, where the uncorrelated events at low energies are rejected with another

graphical cut (figure 4.44).

8There is a direct relationship between the flight path distance L and the scattering angle θ.

Assuming that the reaction takes place at the (0,0,0) point, this relationship can be assessed as:

L = hcosθ (4.29)

where h stands for the radius of the Barrel. However, we took into account the beam interaction point

on target and therefore previous expression is no longer accurate.

9The background in the time of flight ∆t versus the scattering angle θ spectrum is due to the

nature of the read out of the Barrel signals: each pair of detectors shares a common ADC gate and

therefore 16 signals are read when one is fired.
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Figure 4.43: Scattering angle θ versus the ToF IB-CATS1. The background all over the

spectrum is due to the common ADC gates utilized in the Barrel. A graphical cut is employed

to select the events showing a correlation between the time of flight and the scattering angle.

Figure 4.44: IB energy versus ToF IB-CATS1.

A graphical cut is used to reject the non corre-

lated events at low energies.

Figure 4.42: Hyball energy versus ToF HY-

CATS1. The events within the graphical

cut are accepted for further analysis.
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4.14.4.2 Energy loss identification

Inner and Outer Barrel signals are used to produce a Barrel ∆E versus E spectrum

where several regions of physical interest are defined, as indicated in figure 4.45. One

of these regions corresponds to the particles stopped in the Inner Barrel, which are

those events that meet the condition of absence of hit in the Outer Barrel that is going

to be useful to extract the angular distributions (see sections 5.2 and 5.3).

In addition to this, the Barrel ∆E versus E spectrum presents the characteristic

energy-loss pattern that allows to perform a particle identification in order to identify

the punchthrough events as protons or deuterons.

Protons and deuterons that punched through the Inner Barrel are easily resolvable

if they lose more than 4 MeV in the Inner Barrel and therefore they are stopped in the

Outer Barrel. However, if they passed through both Inner and Outer Barrel, and hence

the energy deposited in the Inner Barrel is lower than 4 MeV, proton and deuteron

energy-loss patterns merge together and, therefore, it is not possible to distinguish

between them.
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Figure 4.45: Barrel ∆E versus E spectrum, where several regions of interest are highlighted:

patterns of protons and deuterons punching through the Inner Barrel and stopping in the

Outer Barrel are shown within a dashed green and a dotted red line respectively. The events

falling outside these two gates cannot be identified as protons or deuterons with this method,

including those events stopped in the Inner Barrel (black).
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Figure 4.45 displays several gates that were useful in this analysis. The black cut

contains the particles stopped in the Inner Barrel and hence, those events that meet

the condition of no hit in the Outer Barrel. The dashed green and the dotted red

gates take the protons and deuterons, respectively, that punched through the Inner

Barrel and were stopped in the Outer Barrel. These two gates were used for the energy

corrections mentioned in section 4.7.

4.14.5 Event selection summary

Finally, figure 4.46 presents the energy versus the laboratory scattering angle measured

in TIARA, after applying the previous gates. The kinematical patterns associated to

the elastic scattering and 16C(d,p)17C transfer reactions are clearly visible.

Figure 4.46: Energy versus laboratory scattering angle measured in TIARA.

In particular, the effect of each one of the event selection criteria previously dis-

cussed is displayed in figure 4.47, where these conditions were applied one after the

other in order to show the evolution of the energy versus scattering angle plot.
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(a) No condition (b) ToF HF-CATS1

(c) Hit on target (d) ToF CATS1-CHA

(e) Z = 6 (f) ToF CATS1-IB

(g) ToF CATS1-HY (h) No hit in the OB

Figure 4.47: Energy versus scattering angle plots with the previously discussed conditions

applied successively.
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4.15 Momentum conservation condition

Figure 4.47 shows the measured kinematics in TIARA, where we can distinguish clearly

the typical pattern of the elastic scattering between 70o and 90o and the kinematical

line of (d,p) events populating bound states in 17C at backward angles. In addition

to this, other reaction channels are expected such as deuteron breakup and 16C(d,p)

transfer reactions to resonant states in 17C, which promptly decay into 16C plus a

neutron.

The main difference between the latter two reaction channels with respect to the

former two is their three-body character. This feature can be exploited to separate

the three body yield from the two-body reaction events by analysing the momentum

of particles detected in TIARA and CHARISSA:

∆~p = ~p16C − ~pTIARA − ~pCHA (4.30)

where ~p16C is the momentum of the beam particle, ~pTIARA is the momentum of the

light particle detected in TIARA and ~pCHA is the momentum of the heavy fragment

detected in CHARISSA.

Then, considering the longitudinal momenta, previous equation becomes:

∆p =
√

2m16CT16C − pTIARAcosθTIARA − pCHAcosθCHA (4.31)

where T16C is the beam energy, θTIARA is the scattering angle of the light particle and

θCHA is the scattering angle of the heavy fragment.

In two-body reactions, the momentum of the particles detected in TIARA and

CHARISSA will meet the momentum conservation condition and therefore, such events

are expected to appear around zero in the ∆p spectrum. Instead, the most probable

three-body channels, deuteron breakup and transfer to 17C unbound states, have in

common the emission of a neutron in addition to the proton. This neutron can not be

detected by our setup and will carry away a significant amount of momentum that will

be missing in the ∆p spectrum.

Figure 4.48a shows four regions of interest that are defined for the following in-

terpretation of the ∆p spectrum shown in figure 4.48b: the first one is highlighted in

blue and corresponds to the transfer leading to 17C bound states. The second one lim-

ited by a red graphical cut, spans over the region where one-neutron transfer reactions

populating bound and unbound states in 17C are expected to appear according to the

reaction kinematics. The region limited by a green line contains the elastic scattering

events and finally the pink line defines the region where the breakup is expected.
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(a) Energy versus laboratory scattering angle measured in TIARA

(b) ∆p spectrum

Figure 4.48: Four regions are highlighted in red, blue, green and pink in the energy versus

laboratory scattering angle plot (a) corresponding to 17C bound and unbound states, elastic

scattering and breakup events respectively. These reaction channels were identified in the ∆p

spectrum (b) gating on these regions.



84 4.Data analysis

These graphical cuts allow us to gate on the 17C bound states, 17C unbound states10,

elastic and breakup10 regions in order to identify where these events appear in the ∆p

spectrum and support the interpretation.

The gated ∆p spectra shown in figure 4.48b indicate that the larger peak close to

zero is due to the elastic scattering and 16C(d,p) transfer reactions to bound states

in 17C also appear within this region. As expected, the two-body reaction events

accumulate in the vicinity of zero in the ∆p spectrum, while transfer to resonant states

in 17C and breakup events show a broader distribution typical from their three-body

character.

Therefore, it is possible to reject a significant amount of the three body yield by

gating on the two-body reaction range in the ∆p spectrum, as is shown in figure 4.49

for a selection of events in the ∆p range [−100, 50] MeV/c.

Figure 4.49: Energy versus scattering angle plots with the selection criteria discussed in

section 4.14 plus a gate on the [−100, 50] MeV/c region of the ∆p spectrum.

It is worth mentioning that the ∆p spectrum is systematically shifted to negative

values due to the fact that energy losses in the target and the dead layer were not

taken into account for this calculation, and neither was any possible γ-ray emitted in

coincidence.

10Note that vetoes where used to cope with the gates overlap: 17C bound and elastic events were

vetoed when gating on 17C unbound states and breakup events, respectively.
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Results

In this chapter, the experimental cross sections for the 16C(d,p) one-neutron transfer

reaction and the 16C elastic scattering on two different targets are presented. The

chapter begins with a description of the 16C(p,p)16C and 16C(d,d)16C cross section

measurements and then a detailed analysis for each of the bound states populated in
17C by (d,p) is discussed individually.

5.1 Cross sections

The differential cross section for Nbeam incoming beam particles hitting a target with

Ntarget particles per cm−2 is given by

dσ

dΩ
=

N

∆ΩNbeamNtargetεγ
(5.1)

where N is the measured yield in each angular bin, ∆Ω is the solid angle subtended by

each angular bin and εγ is the photopeak efficiency, that will be considered only when

dealing with γ-gated events.

For this experiment, the number of particles in the target Ntarget was derived from

the target thickness measurements (section 4.1) while the beam tracker detectors pro-

vide the number of beam particles, Nbeam. The solid angle ∆Ω at a given angle is

provided by the Geant4 simulation detailed in appendix B.2, in which the efficiency of

TIARA was taken into account.

Assuming an isotropic γ-ray distribution, the photopeak efficiency of EXOGAM,

εγ, is 16.71 % and 14.11 % for 217 keV and 335 keV γ-rays respectively, according to

the efficiency curve in figure 4.35.

Finally, it is worth noting that the effect of the acquisition dead time cancels out

because it affects both N and Nbeam.
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5.2 Analysis of the 16C(p,p)16C elastic scattering

The elastic scattering of 16C on the CH2 target was analysed and the corresponding

proton angular distribution was measured by taking slices in energy in figure 5.1,

measuring their integral N and projecting the slice onto the scattering angle axis to

obtain the associated angular bin. The solid angle ∆Ω subtended by each one of these

angular bins was calculated using a Geant4 simulation (section B.2), in which the

efficiency ε of the detectors involved has been taken into account. The scattering angle

corresponding to the mean energy value was given by the kinematical line corrected

for energy losses in the target and dead layer.

The data were sampled from 1 MeV to 8 MeV (punchthrough of protons in the

Inner Barrel) and the energy slices were 400 keV wide, broad enough to accumulate

sufficient statistics to reduce fluctuations while sampling the angular distribution with

as many points as possible.

Figure 5.1: Energy versus laboratory scattering angle for non-punchthrough events measured

in TIARA with the CH2 target. The black line represents the calculated kinematics cor-

rected for energy losses for the 16C(p,p)16C elastic scattering, while the gray line depicts the
16C(p,p)16C* inelastic scattering calculation.

In order to guarantee that punchthrough events do not affect the shape of the

angular distribution, we used a condition of no hit in the Outer Barrel (see section

4.14.4.2). Despite the punchthrough removal efficiency not being 100% due to geomet-

rical reasons (particle hitting an active area of the Inner Barrel but an interstrip in

the Outer Barrel), the influence of the remaining punchthrough events on the angular
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distributions is negligible. As for the inelastic scattering, the low statistics measured

in coincidence with 1.766 MeV γ-rays indicates that its impact will not be significant

either.

5.2.1 Optical model calculations

The angular distributions for the (p,p) channel were compared to theoretical calcula-

tions obtained using the reaction code FRESCO [69]. The Chapel Hill [70], Koning-

Delaroche [71] and Watson [72] parameter sets were used to define the optical potential.

These optical models are different global parameterizations for the nucleon-nucleus op-

tical potential obtained from analysis of elastic scattering experimental data, including

data involving nuclei from the 16C mass-region or the same energy range.
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Figure 5.2: 16C(p,p)16C cross section in the lab frame. Statistical error bars are included

for all the data points, but they are sometimes smaller than the markers. Chapel Hill [70],

Koning-Delaroche [71] and Watson [72] optical model calculations are also presented in red

full line, blue dashed line and green dotted line respectively.

The experimental angular distribution of the proton elastic scattering of 16C is pre-

sented in figure 5.2, with the three optical model calculations superimposed. It is shown

in this figure that the Chapel Hill optical potential provides the best description of the

experimental angular distribution (χ2 = 0.76), although the Koning-Delaroche optical

potential successfully reproduces the whole angular distribution too (χ2 = 1.19). Wat-

son optical potential, however, fails to reproduce the shape of the angular distribution
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and the absolute cross section is underestimated at scattering angles smaller than 76o.

This comparison gives confidence on Chapel-Hill and Koning-Delaroche parameteriza-

tions of the 16C plus nucleon optical potential that are going to be used to build the
16C plus deuteron adiabatic potentials for the calculations of 16C(d,p) cross-sections.

5.3 Analysis of the 16C(d,d)16C elastic scattering

The angular distribution of the elastic scattering of 16C on deuteron has been extracted

from the experimental data using equation 5.1 following a technique similar to that

described for the proton elastic scattering in section 5.2.

The experimental data were evaluated between 1 MeV and 10 MeV (punchthrough

of deuterons in the Inner Barrel), while the energy bin width was chosen between 400

and 600 keV in order to reduce the statistical fluctuations while keeping a sufficient

number of points to sample the angular distribution. The solid angle ∆Ω is also

provided by the Geant4 simulation described in section B.2.

Figure 5.3: Energy versus laboratory scattering angle for non-punchthrough events measured

in TIARA with the CD2 target. The black line represents the calculated kinematics for the
16C(d,d)16C scattering, while the red line shows the 16C(p,p)16C kinematics. The black and

red dashed lines stand for the 16C(d,d’)16C and 16C(p,p’)16C inelastic scattering calculations

corrected with energy losses respectively.

A condition of no hit in the Outer Barrel (see section 4.14.4.2) was required to min-

imize the effect of punchthrough events on the shape of the experimental elastic cross

section. This condition was reinforced by requiring that the momentum conservation,
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assuming a two body reaction, is fulfilled within a margin of ±75 MeV/c (see figure

4.48). The punchthrough removal efficiency is found to be roughly 100%, as proved

by figure 5.3 where no punchthrough line is visible in the (d,p) pattern. However, this

momentum conservation condition can not completely suppress the deuteron break up

background at lower scattering angles.

In order to remove any inelastic contribution, the events in coincidence with a γ-ray

of 1.76 MeV were normalised with the corresponding γ-detection efficiency (6.82 %)

and subtracted from the measured yield.

5.3.1 Optical model calculations

The experimental angular distribution obtained from the (d,d) data is compared in

figure 5.4 to theoretical calculations performed using the FRESCO [66] reaction code.

The optical potentials employed for that purpose were defined according to Daehnick

et al. [73], Haixia et al. [74], Bojowald et al. [75] and Newman et al. [76] global

parameterizations. Besides, Newman et al. best-fit potentials at 17.2 MeV for 12C and
16O, both with and without the spin orbit coupling, were also utilized.
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Figure 5.4: 16C(d,d)16C experimental cross section (dots with statistical error bars) in the

lab frame compared to theoretical calculations performed with FRESCO with different global

parameterizations and best-fit potentials for 12C and 16O at 17.2 MeV. Statistical error bars

are included for all the experimental data points.
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Although these optical models are intended to provide a global parameter prescrip-

tion for an optical potential describing the deuteron-nucleus elastic scattering, they all

fail at describing the 16C(d,d)16C experimental cross section.

This could be explained by the fact that Daehnick et al. [73] and Bojowald et al.

[75] are based on data sets that do not include experimental data with targets lighter

than 27Al and hence, one may expect 16C to fall beyond the range of applicability

of these models. Haixia et al. [74] and Newman et al. [76] include deuteron elastic

scattering data on light nuclei: 12C and 16O for the former and 12C, 14N and 16O

for the latter, which are all stable nuclei. This, combined with the fact that 12C and
16O Newman best-fit parametrizations are unable to describe 16C(d,d)16C experimental

cross section, indicates that the description of deuteron elastic scattering on 16C might

require a much more exotic parameterization.
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Figure 5.5: 16C(d,d)16C experimental cross section (dots with statistical error bars) compared

to the theoretical calculation depicted in a green full line performed with the potential depths

given by Haixia et al. and the radii and diffusenesses values used by L.Grassi et al. [77]

in their work. The unmodified Haixia et al. [74] optical potential is also displayed in a red

dashed line to show the effect of the new radii and diffusenesses on the angular distribution.

In reference [77], L.Grassi et al presented a best-fit potential for their experimental

deuteron elastic scattering angular distribution of 16C measured at 50 MeV/A, however

their work shows that an exceptionally large diffuseness in the imaginary potential is

needed to reproduce the experimental data.
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A theoretical calculation was performed replacing the values of radius and diffuse-

ness in the Haixia et al. [74] optical potential parametrization by those presented in

L.Grassi et al’s work [77], while keeping the potential depths in order to respect the

energy dependence of the optical potential model. Figure 5.5 presents this theoretical

calculation together with the experimental 16C(d,d)16C cross section, where the success

of this calculation reproducing the experimental cross section is clear.

As indicated previously, an exceptionally large diffuseness in the imaginary potential

is needed to reproduce the experimental cross section (see appendix C). A possible

interpretation of this exotic behaviour could be the effect of a stronger coupling to the

continuum states in deuteron break up channels, as suggested by L.Grassi et al [77]

and supported by some literature [78–80].

A stronger coupling of break up channels of 16C to the elastic channel brings another

reason that could explain why the global parametrizations previously used failed to

reproduce the experimental 16C-deuteron elastic scattering cross section, as they are

based on deuteron elastic scattering data on stable nuclei barely affected by this feature

and can therefore reproduce well the data without taking into account this effect.

5.3.2 Estimation of proton contamination in the CD2 target

Previous experiments have shown that CD2 targets might have some proton contam-

ination. In order to estimate a possible proton contamination in the target, the ex-

perimental elastic scattering cross section has been fitted with a linear combination of

the theoretical calculations describing well the elastic scattering data as indicates the

following equation:

(
dσ

dΩ

)exp
= (1− x)

(
dσ

dΩ

)th
(d,d)

+ x

(
dσ

dΩ

)th
(p,p)

(5.2)

where x represents the fraction of proton impurities in the CD2 target and has been

left free to vary.

Figure 5.6 presents the result of this fit, that led to an estimate of 1.1 % of pro-

ton contamination in the CD2 target. It can be concluded from this data, therefore,

that there is no significant proton contamination and, considering the other sources of

uncertainties, its effect will have a negligible influence on the (d,p) cross sections.
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Figure 5.6: Experimental cross section of 16C elastic scattering on the CD2 target (dots with

statistical error bars) fitted with a linear combination (blue) of the theoretical calculations

describing (p,p) (red) and (d,d) (green) elastic scattering, shown in figures 5.2 and 5.5 re-

spectively. The relative contribution of (p,p) and (d,d) to the fit function was left free to vary

in order to estimate the proton contamination present in the CD2 target, obtaining 1.1 % of

proton impurities.

5.4 Analysis of the 16C(d,p)17C reaction

5.4.1 γ-coincidence yield

The angular distributions of the protons leading to the first and second excited states

in 17C were measured for the events falling within the 17C bound states kinematical

pattern (see section 4.14.5) in coincidence with the excellent corresponding γ-rays peaks

of 217 and 335 keV. This procedure exploits the finer energy resolution of the γ-ray

detectors compared to the resolution in excitation energy provided by TIARA.

The laboratory differential cross section for each angular bin is given by equation

5.1, where the measured proton yield N in coincidence with each γ-line is obtained

using the γ simulations presented in section B.3 normalized to the data.
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Figure 5.7: γ-spectrum gated on 17C bound states. The best fit is added in blue on top of it.

The contribution of the normalized γ-ray simulations is depicted in red and green, respectively,

for the γ-rays of 217 keV and 335 keV. The exponential background is shown in pink.

For each angular bin, the γ-spectrum is fitted with the simulated response functions,

for which the normalization factor is left free to vary, plus an exponential background

(figure 5.7). The measured proton yield N is therefore provided by the integral under

the photopeaks of the normalized simulations.

5.4.2 ADWA calculations

The theoretical cross sections were calculated using the TWOFNR reaction code [81]

under the Adiabatic Distorted Wave Approximation (ADWA). The Chapel-Hill [70]

and Koning-Delaroche [71] parametrizations for the nucleon-nucleus optical potential

were used to describe the p+17C potential in the exit channel, while in the entrance

channel we used an adiabatic d+16C potential. This adiabatic potential was built us-

ing the Johnson-Tandy prescription [82] (see equation 2.19) using p+16C and n+16C

potentials at 17 AMeV from Chapel-Hill and Koning-Delaroche parameterizations and

a deuteron wave function obtained with the Reid soft-core np interaction. All calcula-

tions are performed within the zero-range approximation with the standard finite-range

correction parameter of 0.746 fm. Non-locality corrections with a range parameter of

0.85 fm for the p+17C channel were also included.
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The geometry of the neutron binding potential has a Woods-Saxon shape with

radius and diffuseness of 1.25 fm and 0.65 fm, respectively. The depth is adjusted to

reproduce the neutron separation energy. A spin-orbit term is included with the same

geometry as the central potential and a potential well depth of 6 MeV.

5.4.3 Spectroscopic factors

As explained in section 2.4, a comparison between the experimental angular distri-

butions and the theoretical cross sections provides an estimation of the transferred

angular momentum, `, in the reaction and a measurement of the spectroscopic factors.

Thus the theoretical calculations have been scaled to the experimental cross sections

by minimizing the χ2 function. The scaling factor provides a measurement of the

spectroscopic factors while the calculation that fits better the angular distribution

indicates the transferred angular momentum `. Finally, if possible, a spin assignment

will be inferred with the help of the shell model predictions.

It is worth mentioning that there is an intrinsic uncertainty in the potentials and the

geometry of the binding potential well chosen to perform the theoretical calculations

that will affect the spectroscopic factors. It is widely admitted that the determination

of the spectroscopic factor using a direct reaction has an intrinsic uncertainty around

20 % [83], estimated by comparing experimental angular distributions for (d,p) and

(p,d) reactions with predicted cross-sections over a wide range of nuclei.

5.4.4 Second excited state

Figure 5.8a presents the angular distribution of the protons leading to the second

excited state in 17C measured at 335 keV, together with theoretical cross sections per-

formed using Koning-Delaroche optical potential for a transferred angular momentum

of ` = 0, ` = 1 and ` = 2. A simple comparison indicates that the experimental cross

section is best described by the ` = 2 calculation, in agreement with the spectroscopic

study of 17C via one neutron removal reactions by Y.Kondo et al. [29]. This result

indicates that the spin and parity assignment should to be either 3/2+ or 5/2+. Re-

membering the shell model prediction of two excited states 1/2+ and 5/2+, the only

possible assignment would be 5/2+.

Figure 5.8b shows a comparison between the experimental angular distribution

with the theoretical calculations with ` = 2 performed using Chapel-Hill and Koning-

Delaroche optical potentials. The spectroscopic factor of 0.63 was extracted for both

potentials assuming transfer to the 0d5/2 orbital in agreement with the preferred spin-
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(a) Second excited state in 17C at 335 keV

(b) Calculation for ` = 2 with Chapel-Hill and Koning-Delaroche optical potentials

Figure 5.8: (a) Experimental angular distribution of the second excited state (dots with sta-

tistical error bars) in 17C, located at 335 keV, compared with theoretical calculations for ` = 0

(full red), ` = 1 (dotted blue) and ` = 2 (dashed green). (b) Theoretical calculations for ` = 2

using Chapel-Hill (dotted red) and Koning-Delaroche (full blue) optical models are compared

to the experimental data.
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parity assignment. This result seems to indicate that the influence of the choice of

optical potential on the spectroscopic factor is not very important. In addition, It

is worth noticing that such a large spectroscopic factor will almost exhaust the 0d5/2

strength in the simplest picture of 16C ground state, where there are two neutrons

populating the neutron 0d5/2 orbital.

The experimental angular distribution presented in figure 5.8 relies on the assump-

tion of an isotropic γ-ray distribution and this hypothesis may not be strictly correct.

Since EXOGAM clovers are placed at 90o covering a limited angular range, a deviation

from the isotropic distribution could eventually affect the γ-ray geometrical detection

efficiency and, therefore, the experimental angular distribution and the spectroscopic

factors. However, the influence of a non-isotropic γ-ray distribution in the spectroscopic

factors was investigated using the same EXOGAM configuration in S. Brown’s Ph. D.

thesis [84], where this effect was measured smaller than 4 %. Therefore, the uncer-

tainty due to the assumption of isotropy in the spectroscopic factors will be negligible

in comparison with the uncertainty due to the choice of optical potential.

5.4.5 First excited state

The angular distribution of the first excited state in 17C is shown in figure 5.9a with

theoretical calculations for ` = 0, ` = 1 and ` = 2 using the Koning-Delaroche optical

potential. It can be observed that the theoretical cross section corresponding to ` = 0

reproduces better the data. This result provides solid evidence of 1/2+ spin and parity

assignment for this state, in agreement with the one neutron removal from 18C by

Y.Kondo et al. [29].

Figure 5.9b presents a comparison between the experimental angular distribution

and theoretical calculations for ` = 0 using two different optical potentials: Chapel-Hill

and Koning-Delaroche, from which spectroscopic factors of 0.88 and 0.67 were derived

respectively. Both optical potentials reproduce equally well the experimental angular

distribution, although there is a significant difference between the spectroscopic factors,

it lies within the 20 % uncertainty typical of any spectroscopic factor measurement.

5.4.6 Ground state

The angular distribution of 16C(d,p) events populating bound states in 17C is extracted

by removing any condition on the γ-rays and considering all the particles detected

within the kinematical pattern corresponding to 17C bound states (see section 4.14.5).

The result is displayed in figure 5.10.
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(a) First excited state in 17C at 217 keV

(b) Calculation for ` = 0 with Chapel-Hill and Koning-Delaroche optical potentials

Figure 5.9: Experimental angular distributions 16C(d,p) for the first excited state (dots with

statistical error bars) in 17C, located at 217 keV, compared with theoretical calculations for

` = 0 (full red), ` = 1 (dotted blue) and ` = 2 (dashed green). (b) Theoretical calculations

for ` = 0 using Chapel-Hill (dotted red) and Koning-Delaroche (full blue) optical models are

compared to the experimental data.



98 5.Results

(a) Angular distribution of the protons leading to bound states in 17C

(b) Calculation for ` = 2 with Chapel-Hill and Koning-Delaroche optical potentials

Figure 5.10: (a) Experimental angular distributions of 16C(d,p) events to all the bound states

in 17C. The thin black line represents the contribution of the measured excited states, on top

of which theoretical calculations for the ground state were summed, assuming ` = 0 (red full

line), ` = 1 (blue dotted line) and ` = 2 (green dashed line). (b) Theoretical calculations

for ` = 2 using Chapel-Hill (dotted red) and Koning-Delaroche (full blue) optical models are

shown.
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As shown in the measured γ-spectrum (figure 5.7), the structure below the neutron

separation threshold in 17C contains only two excited states and the ground state.

Therefore, the ground state angular distribution could be then extracted from the total

angular distribution to all the bound states in 17C by subtracting away the angular

distribution of the first and second excited states. However, the induced uncertainties

are rather large, preventing any detailed study. We have used an alternative method

that relies on the sum of the best fits to the measured first and second excited states

(see sections sections 5.4.5 and 5.4.4) and the theoretical calculations for the ground

state assuming ` = 0, ` = 1 and ` = 2.

As it can be seen in figure 5.10a The bound states angular distribution is best

reproduced when assuming a ` = 2 state for the ground state, in agreement with the

existing 3/2+ spin and parity assignment.

Figure 5.10b presents the experimental angular distribution compared to the theo-

retical calculations for a transferred angular momentum ` = 2 performed using Koning-

Delaroche and Chapel-Hill optical potentials, from which spectroscopic factors of 0.53

and 0.52 were obtained respectively, assuming transfer to the 0d3/2 orbit in agreement

with the spin-parity of 3/2+. Once again, the choice of optical potential does not

seem to have a significant influence on the spectroscopic factor, contrarily to what was

observed for the 1/2+ state.

Note that the method used to deduce the spectroscopic factor of the ground state

relies on the spectroscopic factors of the two bound excited states previously discussed

and therefore, will be affected by their uncertainty. The uncertainty of the spectroscopic

factor of the ground state is estimated of 40 %.

5.4.7 Shell model calculations

In order to obtain theoretical predictions for the 17C level scheme and the spectro-

scopic factors for the one-neutron transfer reaction 16C(d,p), shell model calculations

were performed using OXBASH shell model code [85]. In this work, the WBP, WBT

interactions [86] and a modified version of the WBT hamiltonian with a reduction of

the 25 % in the two body matrix elements (TBME), as suggested in reference [26],

were used to describe the structure of 17C and 16C. The calculations were performed in

the full spsdpf-model space truncated to limit to two the number of excitations across

a major shell gap (2~ω) and restricted to positive parity states.

Other hamiltonians are also available in the literature and will be used here for

comparison. The 17C level scheme calculated using the sdpf interaction was obtained

from Z.Elekes et al. work [30] while the results from the SFO-tls hamiltonian, developed

recently for this mass-region, were provided to us by T.Suzuki and T.Otsuka [87].
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lts

Jπ Eex
exp

C2Sexp WBP WBT WBT* SFO-tls sdpf

CH89 KD02 Eex C2S Eex C2S Eex C2S Eex C2S Eex

3/2+ 0 keV 0.53(23) 0.52(23) 0 keV 0.03 77 keV 0.03 77 keV 0.02 0 keV 0.05 0 keV

1/2+ 217(1) keV 0.88(18) 0.67(13) 295 keV 0.64 267 keV 0.56 91 keV 0.50 72 keV 0.72 395 keV

5/2+ 335(1) MeV 0.63(13) 0.63(13) 32 keV 0.70 0 keV 0.75 0 keV 0.77 140 keV 0.65 525 keV

Table 5.1: Excitation energies and spectroscopic factors deduced for the states in 17C observed in this work compared to theoretical predictions. The

corresponding 20 % uncertainty applies to the experimental spectroscopic factors C2Sexp.

Figure 5.11: Experimental level scheme of 17C, together with WBP, WBT, WBT*, SFO-tls and sdpf theoretical predictions. The corresponding

spectroscopic factors are also presented.
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The excitation energies measured, the spin and parity assignments and the spec-

troscopic factors deduced from the angular distributions for the ground state and both

excited states in 17C are listed in table 5.1 and plotted in figure 5.11, together with

WBP, WBT, WBT*, sdpf and SFO-tls theoretical predictions.

Calculations performed with the WBP and WBT interaction show some limitations

when trying to reproduce the right ordering of the states in 17C. The WBP gets the

spin and parity of the ground state right, but inverts the spin and parity assignment

of the excited states. However, given the accuracy of the shell model calculations in

this region to be of the order of 300 keV, the agreement with the experimental data

is within the uncertainty. Besides, the effect of reducing the TBME a 25 %, owing to

the loosely bound nature of 17C as suggested by [26], makes the spectra compressed in

energy, almost degenerated. The sdpf interaction gives a better agreement in terms of

Jπ of the states, although it predicts the excited states higher up in energy. Finally, the

best agreement is found with the SFO-tls hamiltonian. This interaction includes tensor

and spin-orbit terms arising from meson-exchange forces in the p-sd crossing terms and

a revised T = 1 monopole term in order to reproduce the experimental ordering of the

low-lying levels in 17C [87].

The WBP and WBT hamiltonians are derived from a fit to all the available data

from the mass region 10 ≤ A ≤ 20, therefore it could have been possible to get a better

agreement in terms of excitation energy by tuning the TBME. However, this would not

lead to a significant changes in the spectroscopic factors observed in table 5.1 showing

the reliability of these calculations.

Concerning the spectroscopic factors, shell model calculations with different inter-

actions predict a spectroscopic strength between 0.50-0.64 and 0.70-0.77 for the first

and second excited states in 17C respectively. These results agree really well with the

spectroscopic factors deduced in this work within the uncertainties and confirm the

single particle nature of the 1/2+ and 5/2+ states in 17C.

On the contrary, the spectroscopic factor obtained for the ground state is in stark

disagreement with the prediction from the shell model. In fact, the spectroscopic factor

deduced in this work is one order of magnitude higher than the value expected by shell

model calculations with WBP, WBT, WBT* and SFO-tls for the 3/2+ state. This

result indicates the presence of a stronger 0d3/2⊗ 16C(0+) component in the ground

state of 17C underestimated in the shell model predictions.

Previous experimental information gathered via knockout from 17C by Maddalena

et al. work [28] support this finding. In this experiment, the ground state cross section

from 17C to the ground state of 16C was also measured an order of magnitude higher

than what was expected by theoretical calculations using the WBP interaction. In

summary, the 0d3/2 strength in the ground state of 17C appears to be underestimated
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in the WBP and WBT interactions.

5.4.8 N = 11 isotonic chain

The analysis of the single-particle states in the N = 11 isotonic chain is well suited to

discuss the shell evolution of the 0d3/2, 1s1/2 and 0d5/2 orbitals when approaching the

neutron drip line. However, pure single-particle states do not exist and therefore it is

required to combine the measurements of the excitation energies with the corresponding

single-particle strength measured experimentally [88–90].

Figure 5.12 presents the systematics of the 1/2+, 3/2+ and 5/2+ states in the

isotopic chain N = 11 from the drip line (15Be is unbound) to the valley of stability

(21Ne is stable). The gap between the 1/2+ and 5/2+ states is decreasing when moving

towards the drip line, from 2.4 MeV in 21Ne until the apparent inversion of the ordering

in 17C. Since a large single-particle strength was measured for the 1/2+ and 5/2+ states

along the N=11 isotonic chain, we can see the reduction of this gap as a first indication

of the non existence of the N=14 gap in 17C1.

Figure 5.12: Systematics of the positive parity states in the N = 11 isotonic chain and the

corresponding experimental spectroscopic factors (15Be: [88], 17C: this work, 19O: [89], 21Ne:

[90]).

It is important to note that a good agreement is found between the spectroscopic

factors measured for the 1/2+ and 5/2+ states in 17C, 19O and 21Ne. However, the spec-

troscopic factors measured for 19O and 21Ne ground states are one order of magnitude

smaller than the value found in this work for 17C ground state.

1The melting of N = 14 sub-shell gap in 17C does not meant that it was present in 19O or 21Ne.
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5.4.9 Halo configurations in 17C bound states

The appearance of one-neutron halo structures have been measured in odd-mass neu-

tron rich carbon isotopes 15C [39] and 19C [40]. The first excited state of 17C has been

suggested as a halo candidate due to its neutron separation energy of 0.51 MeV and

a 1/2+ spin and parity assignment, indicative of a ` = 0 valence neutron configura-

tion. Our transfer analysis clearly shows that this state has a dominant neutron s-wave

component, which reinforces the suspicion that it could have a well developed halo.

In order to investigate that possibility, we can apply the scaling law derived by K.

Riisager for the nuclei exhibiting halo features [91]. This scaling method for two body

systems relates a dimensionless measure of the radius with a dimensionless measure for

the binding energy of the system, assessed as:
〈r2〉
R2

where R2 =
5

3

(
〈r2〉core + 3.3 fm2

)
µBR2

~2

(5.3)

where B is the separation energy, µ stands for the reduced mass of the system, for

which the masses were taken from the 2012 Atomic Mass Evaluation [37]. R represents

the distance at which the binding energy is compensated by the potential energy and

〈r2〉 stands for the root mean square radius. As the bound states in 17C have a rather

strong single-particle nature, we can estimate the root mean square radius of the valence

neutron from that of the dominant component. This rms radius can then be calculated

in a potential model.

Table 5.2 shows the two quantities involved in Rissager’s scaling law, computed for

the three bound states of 17C. Each rms radius is the one of a single particle state in

a Woods-Saxon potential with r0 = 1.25 fm and a = 0.65 fm, whose depth is adjusted

to reproduce the experimental separation energy.

Jπ `
Eex Sn

√
〈r2〉 〈r2〉

R2

µSR2

~2(MeV) (MeV) (fm)

3/2+ 2 0.000 0.734 4.02 0.916 0.294

1/2+ 0 0.217 0.517 7.17 2.913 0.207

5/2+ 2 0.335 0.399 4.46 1.127 0.160

Table 5.2: Excitation and separation energies, spin and parity assignment, transferred angular

momenta and root mean square radii corresponding and both dimensionless quantities required

for the discussion of each bound state in 17C.
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A widely accepted criterion to consider a nuclei as a well developed halo system

is a probability of having a halo particle outside the potential range higher than 50

%. This criterion translated to figure 5.13 means that a value higher than 2 for the

dimensionless measure of the radius is required to identify good halo systems.

Figure 5.13: Dimensionless radius of the system versus dimensionless binding energy, de-

fined according Riisager’s scaling law for two-body halo systems. Black circle represents the

deuteron, open blue circles and red squares stand for model estimates and theoretical calcu-

lations respectively, while black squares are deduced from experimental data. Blue, red and

green stars represent the ground, the first and second excited states in 17C (Adapted from

[91])

At light of the results presented in table 5.2 and figure 5.13, it seems that the first

excited state of 17C located at 217 keV evidence a well-developed halo. According to

the scaling law, its halo nature would be comparable to that of the 11Be, probably the

most studied one-neutron halo, with a similar neutron separation energy (0.5 MeV) and

a ground state wave function dominated by a ` = 0 component. This conclusion follows

the trend observed in odd-mass neutron rich carbon isotopes, all of them presenting a

one-neutron halo configuration in the 1s1/2 orbital [39; 40].

On the contrary, the ground and the second excited states of 17C do not present

halo configuration, in spite of a similar separation energy. However, having the valence

neutron populating an orbital with a relatively high angular momentum (` = 2) gives
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rise to the centrifugal barrier that confines much more their matter distribution and

hampers the formation of a halo.
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Chapter 6

Conclusions and outlook

The shell structure of stable and near-stable nuclei and the associated magic numbers

are key elements in nuclear structure. It has been demonstrated, however, that the

traditional magic numbers evolve when nuclei far from stability are explored. Since

then, many theoretical and experimental efforts have been devoted to the study of the

shell evolution. Recent experiments have indicated the existence of new shell closures

at N=14 and N=16 in exotic nuclei and the disappearance of the magic number N=20.

Within this context, this work is intended to extend these measurements to the carbon

isotopic chain to gather new information about the disappearance of the N=20 shell

closure and the emergence of the N=14 and N=16 shell gaps observed in neutron rich

oxygen isotopes. To that end, the low-lying level structure of 17C has been investigated

using one-neutron transfer reactions in order to locate the neutron 0d5/2, 1s1/2 and 0d3/2

single-particle orbitals involved in the formation of the N=14 and N=16 shell gaps.

An experiment was performed at the GANIL facility using a secondary beam of
16C produced by fragmentation of a primary beam of 18O at 60 AMeV on a production

target of beryllium. The 16C was then selected from the resulting cocktail beam using

the LISE3 spectrometer, slowed down to 17.2 AMeV, and delivered to the experimental

room with a intensity of 5·104 pps and a purity of 99 %. The experimental setup was

designed to the study of direct reactions in inverse kinematics. The double-sided silicon

strip detector array TIARA was used to detect light particles at central and backward

angles, in the Barrel and the Hyball respectively, measuring both the energy and the

scattering angle. The Si-Si-CsI telescope CHARISSA was placed at zero-degrees to

detect and identify the beam-like fragments. Four EXOGAM clovers were placed the

target in order to measure the γ-rays emitted in coincidence.

The study of the one-neutron transfer reaction 16C(d,p) has allowed us to improve

our knowledge on the low lying structure of 17C providing important information on

the halo character of the 1/2+ state in 17C. Two excited states have been populated
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in 17C at 217 keV and 335 keV and the corresponding angular distributions have been

extracted, providing a clean and clear 1/2+ spin and parity assignment for the first

excited state and a direct measurement of the transferred angular momenta of ` = 2

for the second excited state, in agreement with previous measurements. The measured

angular distribution for the ground state has provided a ` = 2 angular momentum, in

concordance with the rather well established spin and parity assignment of 3/2+. The

experimental ordering of the bound states in 17C is better reproduced by the SFO-

tls interaction, whereas the WBP and WBT interactions agree with the experimental

spectrum within the rms deviations of the shell model.

We have measured for the first time the spectroscopic factors for the bound states in
17C. Large spectroscopic factors of 0.67 and 0.63 were measured for the first and second

excited states using Koning-Delaroche optical potential (small variations were observed

for the first excited state when using Chapel-Hill optical potential), indicating their

single particle nature. A very good agreement between the theoretical calculations

and the experimental spectroscopic factors in found for both states. However, the

preliminary spectroscopic factor for the ground state (0.52) is one order of magnitude

higher than expected by shell model calculations (0.03). This feature indicates the

existence of a strong 0d3/2⊗16C(0+) contribution in the ground state of 17C that appears

to be underestimated by the shell model calculations. A complete analysis including

CCBA will allow us to draw a final conclusion.

The study of single-particle states in the N=11 isotones shows that the gap between

1/2+ and 5/2+ states drops dramatically when going from 21Ne (stable) to 17C (see

figure 5.12). This reduction, together with the large single-particle strength measured

in this work, seems to indicate the non existence of the N=14 gap in 17C.

Proton and deuteron elastic scattering angular distributions have also been obtained

and compared with theoretical predictions. The global potentials Chapel-Hill and

Koning-Delaroche reproduced really well the proton elastic scattering data. For the

deuteron elastic scattering, the global parametrizations were unable to describe the

deuteron elastic scattering and an adapted potential with a large diffuseness in the

imaginary part (1.90 fm) was required. Further analysis of the deuteron inelastic

scattering will be undertaken.

In addition to this, the possible halo configuration of the bound states in 17C has

been investigated using a dimensionless scaling law that allows to compare different

systems. The results seem to reveal that the first excited state in 17C has a well

developed halo configuration.

During this campaign unbound states in 17C were also measured, however the anal-

ysis is still ongoing. As predicted by shell model calculations, a significant part of the

neutron 0d3/2 strength is expected to be located above the neutron separation energy in
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17C: according to shell model calculations the remaining neutron 0d3/2 strength is frag-

mented in three 3/2+ expected at 2.90, 4.52 and 6.27 MeV (see figure 2.12). Therefore

information regarding the persistence of N = 16 shell closure in the carbon isotopic

chain will be obtained in the future from the excitation energy spectrum above the

threshold.
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Appendix A

Electronic diagrams

In this appendix the electronic diagrams describing the electronic employed for each

detector involved in the analysis are presented. In the following list, the different labels

and abbreviations used in the electronic diagrams that are detailed.

ADC (Amplitude to Digital Converter) this module converts an analog signal to a

digital signal.

Dual Gate Generator module introducing a delay and generates a gate.

ECC energy signal provided by EXOGAM clovers.

FAG (Fast Analysis Gate) logic signal that opens a gate when an input is fired and

the GMT is ready. It is used to decide if an event is to be accepted by the DAQ.

FIFO (Fan In Fan Out) this module replicates the input in several output signals.

GMT (GANIL Master Trigger) this module memorizes the inputs fired while the FAG

is open.

GOCCE energy signal provided by EXOGAM segments.

NIM to ECL converter from NIM to ECL signal format.

QDC (Charge to Digital Converter) this module integrates the current and produces

a proportional digital signal.

Quad Coincidence module providing the logical AND of its input signals.

TAC (Time to Amplitude Converter) this produces an output signal proportional in

amplitude to the time between a start and a stop signal.

TDC (Time to Digital Converter) module converting a time between a start and a

stop signal into a digital signal.
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(a) HYBALL electronic scheme

(b) BARREL electronic scheme

Figure A.1: HYBALL and BARREL electronic schemes.
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(a) CHARISSA electronic scheme

(b) EXOGAM electronic scheme

Figure A.2: CHARISSA and EXOGAM electronic schemes.
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Figure A.3: TIARA electronic scheme.



Appendix B

Simulation

In this section the simulation used to estimate the position resolution and the geomet-

rical efficiency of TIARA (see section 3.4.3) is presented.

GEANT4 [92] is a software toolkit for modelling the passage of particles through

matter, based on Monte Carlo simulations. The geometry of the detectors together

with the non-active volumes involved in the experimental setup were implemented in

order to simulate the response of our experimental setup to the the incoming particles.

Figure B.1: Visualization of the simulation of four

EXOGAM clovers surrounding the Barrel.

In our case, an existing simula-

tion of EXOGAM and TIARA (both

Hyball and Barrel) was used for sev-

eral purposes, including estimations

of achievable position resolution and

efficiency calculations.

The code does not simulate the

beam itself, instead, the events be-

gin at the point of interaction at the

target position. In order to take

into account the large emittance of

the secondary beam, the point of in-

teraction was randomized according

the beam distribution obtained with

CATS (figure 4.11). Only one reac-

tion channel was simulated at a time.
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B.1 Barrel position resolution

The dependence in energy of the scattering angle resolution provided by the Inner

Barrel strips was investigated by comparing the experimental 16C(p,p)16C data with

a series of simulations assuming a constant position resolution for the Barrel ranging

from 1.5 mm to 5 mm (figure B.2). The elastic scattering of 16C on the CH2 target

(figure 5.1) has been chosen for this purpose instead of the elastic scattering on the CD2

target (figure 5.3) since it allows a cleaner measurement of the experimental scattering

angle resolution due to the absence of deuteron break up.

Figure B.2: 16C(p,p)16C simulation, assuming a constant position resolution in the Barrel of

1.5 mm.

Slices in energy between 1 and 7 MeV were used to determine the dependence

in energy of the Barrel position resolution. For each simulation the scattering angle

resolution has been measured at the same energies as for the experimental spectrum in

order to find the position resolution required to reproduce the experimental scattering

angle resolution.

As shown in figure B.4a, The position resolution at a given energy is the one cor-

responding to the simulation matching the experimental scattering angle resolution at

this energy. The values matching the experiment were fitted to equation B.1 in order to

parameterize the scattering angle resolution dependence with the energy (figure B.4b).

σpos(E) =


a+ b

E
if E ≤ E0

a+ b
E0

if E ≥ E0

(B.1)
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(a) Scattering angle resolution

(b) Position resolution

Figure B.3: Energy dependence of the scattering angle resolution provided by the Barrel(a),

estimated using the standard deviation for experimental (black) and simulated (colored) data.

Position resolution as a function of the energy (b), extracted from (a) and fitted with equation

B.1.
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B.2 TIARA efficiency

The energy loss by a charged particle in its way through a given material is due to

Coulomb scattering. Because the Coulomb interaction has infinite range, the charged

particles interact with many electrons at the same time and thus lose energy contin-

uously along their path through the medium in which they are travelling, until they

are stopped or have crossed the material. Therefore, the intrinsic efficiency for charged

particle detection is close to 100 % and hence, TIARA efficiency calculation is merely

reduced to a geometric calculation of the detector angular coverage.

In order to perform a numerical integration of the solid angle covered by TIARA,

charged particles were launched isotropically using the optimized simulation described

previously. The beam interaction point on target was taken into account by random-

izing its position following its experimental distribution obtained with CATS (figure

4.11). The effect of the incident angle of the incoming ions measured with CATS has

also been included.

(a) Elastic angular bins (b) (d,p) angular bins

Figure B.4: Solid angle calculation for the angular bins that are used for the elastic (a) and

the (d,p) angular distributions (b). The calculations presented in red are done assuming the

beam interaction point on target is always at (0,0,0), in blue however the beam interaction

point on target follows the distribution provided by CATS (figure 4.11). Results obtained

with equation B.2 are shown in green. The dashed lines show the calculation for the whole

Barrel/Hyball, while the continuous line represent the same results taking into account the

missing channels.

The same procedure of numerical integration has been performed for the different

angular bins that will be used later to extract the angular distributions, and the re-

sulting solid angle for each angular bin is compared to the corresponding solid angle

calculated with the equation:

∆Ω = 2π(cosθl − cosθu)ε (B.2)
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where θu and θl are the the upper and lower limits of each angular bin, and ε is the

detection efficiency.

B.3 Exogam simulations

These simulations will be used later to obtain the yield corresponding to each γ-line

needed to extract the angular distributions of the protons leading to the bound excited

states in 17C. For that purpose, the response function of EXOGAM γ-ray for γ-rays of

217 keV and 335 keV corresponding to the bound states in 17C was simulated, including

addback and Doppler corrections.

(a) Eγ = 217 keV (b) Eγ = 335 keV

Figure B.5: Simulated EXOGAM response function for γ-rays of (a) 217 keV and (b) 335

keV rising from the 17C bound states. The energy of the γ-ray is provided by the mean value

of a Gaussian fit on the corresponding γ-line in the experimental γ-spectrum. EXOGAM

resolution is set to 1.1 and 1.3 keV respectively also from experimental data.
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Appendix C

Optical Models

The phenomenological optical model potential for nucleus-nucleon scattering is de-

scribed as:

U = −VV − iWV − iWS + Vso + iWso + VC (C.1)

where the subindexes V , S, so and C refer to the volume, surface, spin-orbit and

coulomb components of the potential respectively. This components are complex num-

bers, being V the real part and W the imaginary part. All the components have a

potential well energy dependent while the geometry of the potential depends on the

nucleus considered and is usually assessed with a Woods-Saxon function.

C.1 Global parametrizations

The optical model parameters have been phenomenologically investigated many times

using different experimental data sets that led to different global parameterizations.

Therefore, the applicability of these global optical models depends on the mass region

and the energy range covered by the data of the on which they are based.

The purpose of this section is to provide basic information on the data sets consid-

ered for the construction of the phenomenological optical model potentials employed

in this work.

Chapel-Hill [70] parametrization of the nucleon-nucleus optical potential for proton

and neutrons suitable for nuclei in the mass region 40 ≤ A ≤ 209, proton energies

between 16 and 65 MeV and neutron energies from 10 to 26 MeV.
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Koning-Delaroche [71] global parameterization of the optical model potential for

protons and neutrons based on experimental data of spherical and near-spherical

nuclei with 24 ≤ A ≤ 209 and incident energies from 1 keV to 200 MeV.

Daehnick [73] global optical model potential for deuteron-nucleus scattering obtained

from experimental data from targets between 27Al and 238Th at energies ranging

from 11.8 to 90 MeV.

Haixia [74] global optical model potential intended to describe deuteron scattering

obtained from a data set including targets ranging in mass from 12C to 238U at

incident energies below 183 MeV.

Bojowald [75] phenomenological optical model potential based on experimental data

of deuteron elastic scattering on 27Al, 89Y, 120Sn and 208Pb at 58.7 and 85 MeV.
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C.2 Optical potential parameters

parameter 16C + p 16C + n 16C + d

CH89 KD02 CH89 KD02 Bojowald Daehnick Haixia Haixia*
V

ol
u
m

e

V (MeV) 52.0306 54.4690 44.524 43.685 76.536 81.6514 85.0180 85.0180

r0 (fm) 1.1607 1.1430 1.1607 1.1430 1.1800 1.1700 1.1490 1.1700

a0 (fm) 0.6900 0.6750 0.6900 0.6750 0.7240 0.7675 0.7510 0.9000

W0 (MeV) 1.6428 1.5150 1.9170 1.5230 1.4614 3.2260 3.2260

rw0 (fm) 1.1633 1.1430 1.1633 1.1430 1.3250 1.3450 1.2000

aw0 (fm) 0.6900 0.6750 0.6900 0.6750 0.6917 0.6030 1.7000

S
u
rf

ac
e WS (MeV) 9.3566 9.5520 3.4390 5.5820 10.4210 11.6330 9.7860 9.7860

rS (fm) 1.1633 1.3020 1.1633 1.3020 1.2700 1.3250 1.3940 1.3940

aS (fm) 0.6900 0.5270 0.6900 0.5420 0.8210 0.6917 0.6870 0.6870

S
p
in

-o
rb

it

Vso (MeV) 5.9000 5.3970 5.9000 5.3390 3.0000 3.1662 1.7790 1.7790

rso (fm) 0.8638 0.9290 0.8638 0.9290 0.8760 1.0700 0.9720 0.9720

aso (fm) 0.6300 0.5900 0.6300 0.5900 0.8760 0.6600 1.0110 1.0110

Wso (MeV) -0.0750 -0.0930

rwso (fm) 0.9290 0.9290

awso (fm) 0.5900 0.5900

Table C.1: Optical potential parameters utilized in this work.
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Appendix D

Resumo en galego

D.1 Motivación

En 1934 W. Elsasser amosou as primeiras evidencias da existencia dunha serie de

números especiais de neutróns e protóns que confiren ao núcleo correspondente unha

configuración particularmente estábel. Analogamente ao caso dos electróns atómicos,

estes números asociáronse con capas pechadas dun modelo de part́ıculas independentes

ocupando niveis de enerx́ıa xenerados por un pozo de potencial.

Ata fai moi pouco pensábase que estes números máxicos eran unha constante per-

manente na natureza, sen embargo, os recentes progresos tecnolóxicos e as novas in-

stalacións de feixes de ións radioactivos permitiron estudar núcleos afastados do val

da estabilidade (con ratios N/Z relativamente grandes), observando que os tradicionais

números máxicos desaparecen e aparecen outros novos no seu lugar cando nos acheg-

amos á drip line.

En particular, a desaparición do número máxico N=20 e a aparición dos novos

números máxicos N=16 e N=14 foi observada en isotopos de ośıxeno ricos en neutróns

[27]. O principal obxectivo deste experimento é estudar a presenza destes novos

números máxicos en isotopos de carbono ricos en neutróns localizando as enerx́ıas

de part́ıcula independente dos orbitais d5/2, s1/2 e d3/2 no 17C a través da reacción de

transferenza 16C(d,p)17C.

O estado fundamental do 17C ten unha configuración 3/2+, mentres dous estados

excitados foron observados a 217 keV e 335 keV, aos que se lles asignou esṕın e paridade

1/2+ e 5/2+ respectivamente [29]. Varios estados non ligados foron medidos, áında que

ningún puido ser identificado como d3/2 pois non existen medidas directas de esṕın e

paridade.
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D.2 Dispositivo experimental

Neste experimento, os estados do 17C foron poboados pola reacción de transferenza
16C(d,p)17C inducida bombardeando un branco de polietileno deuterano (CD2) de 1.36

mg/cm2 de espesor cun feixe de 16C a 17.2 MeV/A e cunha intensidade de 5·104 pps,

entregado polo espectrómetro LISE3 en GANIL. Antes de chegar ao branco, o feixe é

monitorizado por dous detectores CATS co obxectivo de determinar o punto de impacto

das part́ıculas do feixe no branco e o seu ángulo de incidencia.

O array de detectores de silicio de alta eficiencia TIARA foi empregado para detectar

part́ıculas lixeiras a ángulos de laboratorio entre 36o e 169o, medindo a enerx́ıa e o

ángulo xa que ambos observabeis son necesarios para calcular a enerx́ıa de excitación e

obter distribucións angulares. As part́ıculas lixeiras emitidas cara diante son detectadas

en catro telescopios Si-CsI MUST2.

Catro detectores de xermanio hiperpuro EXOGAM son situados a 90o arredor do

branco para medir os raios-γ emitidos polos estados ligados dos produtos da reacción.

O telescopio Si-Si-CsI CHARISSA a 0o grados para identificar os fragmentos pesados

medindo a enerx́ıa, a perda de enerx́ıa, o tempo de voo e o ángulo de dispersión.

Figure D.1: Representación esquemática do dispositivo experimental.

Este dispositivo experimental permite realizar triple coincidencias evento por evento

requirindo unha part́ıcula lixeira, un fragmento pesado e un raios-γ.
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D.3 Dispersión elástica

Distribucións angulares para a dispersión elástica do 16C en protóns e deuteróns foron

extráıdas e comparadas con prediccións teóricas. Os potenciais globais Chapel-Hill e

Koning-Delaroche reproducen realmente ben a dispersión elástica en protóns (figura

D.2a). Por outra banda, as parametrizacións globais de Bojowald, Daehnick e Haixia

son incapaces de describir a dispersión elástica en deuteróns e un potencial adaptado,

cunha difusividade na parte imaxinaria de 1.9 fm, foi necesario (figura D.2c).
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(a) Dispersión elástica do 16C en protóns

comparada cos potenciais globais de Chapel-

Hill e Koning-Delaroche.
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(b) Dispersión elástica do 16C en deuteróns

comparada cos diferentes potenciais globais,

entre eles os de Daehnick, Bojowald e

Haixia.
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(c) Dispersión elástica do 16C en deuteróns

comparada cun potencial axustado aos datos

experimentais, cunha difusividade na parte

imaxinaria de a = 1.9 fm.

Figure D.2: Distribucións angulares da dispersión elástica do 16C en protóns (a) e deuteróns

(b,c), comparadas con potencias globais (a,b) e un potencial local (c).
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D.4 Analise da reaccion 16C(d,p)17C

Dous estados excitados foron observados no 17C a 217 e 335 keV e as correspondentes

distribucións angulares foron extráıdas, producindo unha asignación limpa e clara de

esṕın e paridade 1/2+ para o primeiro estado excitado (figura D.3a) e unha medida

directa do momento angular tranferido de ` = 2 para o segundo estado excitado (figura

D.3b), en bo acordo con medidas anteriores. Da distribución angular experimental do

estado fundamental dedúcese un momento angular transferido de ` = 2, en liña coa

ben estabrecida asignación de esṕın e paridade 3/2+ (figura D.3c).

(a) Primeiro estado excitado a 217 keV (b) Segundo estado excitado a 335 keV

(c) Estado fundamental

Figure D.3: Distribucións angulares do primeiro (a) e segundo (b) estado excitado e do estado

fundamental (c) do 17C.

A orde dos estados ligados do 17C é mellor reproducido pola interacción SFO-tls,

mentres as interaccións WBP e WBT coinciden co espectro experimental dentro das

desviación estandar dos cálculos do modelo de capas (figura D.4).

Por primeira vez, os factores espectroscópicos foron medidos para os estados ligados

do 17C. Os grandes factores espectroscópicos de 0.67 e 0.63 foron medidos para o

primeiro e o segundo estado excitado empregando o potencial óptico Koning-Delaroche

(pequenas variacións foron atopadas para o primeiro estado excitado cando se empregou
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o potencial óptico Chapel-Hill), indicando a súa natureza de part́ıcula independente.

Un moi bo acordo foi observado coas predicións teóricas para ambos estados. Sen

embargo, para o estado fundamental o factor espectroscópico preliminar (0.52) é unha

orde de magnitude maior que o esperado polos cálculos do modelo de capas (0.03).

Isto indica a existenza dunha forte contribución d3/2⊗16C(0+) no estado fundamental

do 17C que semella ser subestimada polos cálculos do modelo de capas.

Figure D.4: Esquema de niveis experimental do 17C, xunto con prediccións teóricas empre-

gando as interaccións WBP, WBT, WBT* e sdpf.

D.5 Halos nos estados ligados do 17C

O primeiro estado excitado no 17C foi suxerido como candidato a amosar halo debido

a súa feble enerx́ıa de separación e a súa configuración ` = 0. Co propósito de estudar

esta posibilidade, empregouse a lei de escala adimensional desenvolvida por K. Riisager

para halos de 2 corpos [91].

Á vista dos resultados amosados na figura D.5, semella que o primeiro estado exci-

tado do 17C amosa un halo ben formado, comparable co 11Be. Esta conclusión segue a

tendencia observada nos isotopos de carbono ricos en neutróns e de masa impar: todos

eles amosan un halo de un neutrón no orbital s1/2 [39; 40].

Por outra banda, o estado fundamental e o segundo estado excitado do 17C non

presentan halo, a pesar da súa baixa enerx́ıa de separación. Ter o neutrón de valencia

poboando un orbital cun momento angular ` relativamente grande da lugar a un au-

mento da barreira centŕıfuga que confina moito máis a distribución de masa do núcleo

e dificulta a formación de halos.
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Figure D.5: Lei de escala adimensional definida por K. Riisager para halos de dous corpos.

O puntos negro representa o deuteron, ćırculos azuis e cadrados vermellos baleiros indican

modelizacións e cálculos teóricos, mentres cadrados negros baleiros son deducidos de datos ex-

perimentais. As estrelas azul, vermella e verde representan o estado fundamental e o primeiro

e segundo estado excitado no 17C (Adaptada de [91])
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Résumé en français

E.1 Motivation

En 1934, W. Elsasser présenta les premières indications de l’existence d’une série de

nombres spéciaux de neutrons et protons dits nombres magiques qui confèrent aux

noyaux correspondants une configuration particulièrement stable. Par analogie avec le

cas des électrons atomiques, ces nombres ont été associés à des couches fermées dans

un modèle à particules indépendantes occupant les niveaux d’énergie produits par un

puits de potentiel.

Jusqu’à récemment, on pensait que ces nombres magiques étaient une constante

de la nature, cependant, l’avènement d’installations de faisceaux d’ions radioactifs a

permis l’étude des noyaux éloignés de la vallée de stabilité (avec des rapports N/Z

relativement élevés). Ces études indiquent que les nombres magiques traditionnels

disparaissent et de nouvelles fermetures de couches apparaissent quand on s’approche

de la limite d’existence des noyaux, appelée drip line.

En particulier, la disparition du nombre magique N=20 et l’apparition des nouveaux

nombres magiques N=16 et N=14 ont été observées dans les isotopes d’oxygène riches

en neutrons [27]. L’objectif principal de cette expérience est d’étudier la présence

éventuelle de ces nouveaux nombres magiques dans les isotopes de carbone riches en

neutrons en localisant les orbitales de neutron 0d5/2, 1s1/2 et 0d3/2 dans le 17C à l’aide

de la réaction de transfert 16C(d,p)17C.

L’état fondamental du 17C a une configuration 3/2+, alors que deux états excités

ont été observés à 217 keV et 335 keV, auxquels ont été attribués des spins et parités

1/2+ et 5/2+ respectivement [29]. Plusieurs états non liés ont été mis en évidence, bien

qu’aucun n’ait pu être identifié comme correspondant à une configuration de neutron

0d3/2 car il n’existe aucune mesure directe de spin et parité.
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E.2 Dispositif expérimental

Dans cette expérience, les états du 17C ont été peuplés par la réaction de transfert
16C(d,p)17C induite en bombardant une cible de polyéthylène deuteré (CD2) de 1.36

mg/cm2 d’épaisseur avec un faisceau de 16C d’énergie 17.2 MeV/A et d’intensité 5·104

pps, produit par le spectromètre LISE3 du GANIL. En amont de la cible, le fais-

ceau était monitoré par deux détecteurs CATS avec l’objectif de déterminer le point

d’interaction des particules du faisceau avec la cible et leur angle d’incidence.

Le détecteur silicium de haute efficacité TIARA a été utilisé pour détecter les partic-

ules légères à des angles entre 36o et 169o dans le laboratoire, et mesurer leur énergie et

leur angle de diffusion, puisque les deux mesures sont nécessaires pour calculer l’énergie

d’excitation et construire les distributions angulaires. Les particules légères émises à

l’avant ont été détectés par quatre télescopes Si-CsI MUST2.

Quatre détecteurs germanium hyper pur EXOGAM étaient placés à 90o autour de

la cible pour mesurer les photons γ émis par les états liés des produits de la réaction.

Un télescope Si-Si-CsI CHARISSA a été placé à 0o degré pour identifier les fragments

lourds et mesurer l’énergie, la perte d’énergie, le temps de vol et l’angle d’émission.

Figure E.1: Representation schématique du dispositif expérimental.

Ce dispositif expérimental permet de réaliser des cöıncidences triples événement par

événement en requérant une particule légère, un fragment lourd et un photon γ.
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E.3 Diffusion élastique

Les distributions angulaires de la diffusion élastique du 16C sur proton et sur deuton

ont été extraites et comparées avec les prédictions théoriques obtenues par des calculs

de type modèle optique. Les potentiels globaux Chapel-Hill et Koning-Delaroche re-

produisent très bien la diffusion élastique sur proton (figure E.2a). En revanche, les

paramétrisations globales de Bojowald, Daehnick, Haixia et Newman sont incapables

de décrire la diffusion élastique sur deuton et un potentiel adapté, avec notamment une

diffusivité de la partie imaginaire de 1,9 fm, est nécessaire (figures E.2b et E.2c).
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(a) Diffusion élastique du 16C sur proton com-

parée avec les potentiels globaux de Chapel-

Hill et Koning-Delaroche.
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(b) Diffusion élastique du 16C sur deutons

comparée avec différents potentiels globaux,

parmi lesquels ceux de Daehnick, Bojowald

et Haixia.
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(c) Diffusion élastique du 16C sur deutons

comparée avec un potentiel adapté au 16C, avec

une diffusivité de la partie imaginaire de 1,9 fm

[77].

Figure E.2: Distributions angulaires de diffusion élastique du 16C sur proton (a) et sur deuton

(b,c), comparées à des calculs utilisant des potentiels globaux (a,b) et un potentiel adapté (c).
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E.4 Analyse de la réaction 16C(d,p)17C

Les distributions angulaires ont été comparées à des calculs théoriques réalisés dans

l’approximation de l’onde distordue adiabatique (ADWA) afin de prendre en compte

l’effet de la cassure du deuton sur le transfert.

Deux états excités ont été observés dans le 17C à des énergies d’excitation de 217 et

335 keV, et les distributions angulaires correspondants ont été extraites, produisant une

identification non ambiguë de spin parité 1/2+ pour le premier état excité (figure E.3a)

et une mesure directe du moment angulaire transféré de ` = 2 pour le deuxième état

excité (figure E.3b), en accord avec études précédentes. De la distribution angulaire

expérimentale de l’état fondamental est déduit un moment angulaire transféré de ` = 2,

en accord avec les valeurs de spin et parité 3/2+ bien établies (figure E.3c).

(a) Premier état excité à 217 keV (b) Deuxième état excité à 335 keV

(c) État fondamental. Le courbe noire représente la somme

des sections efficaces des états excités.

Figure E.3: Distributions angulaires des premier (a) et deuxième (b) états excités et de l’état

fondamental (c) du 17C.

Les énergies des états liés du 17C ont été comparées à des résultats de calculs de

type modèle en couches. L’ordre des états est mieux reproduit par l’interaction SFO-

tls, alors que les interactions WBP et WBT produisent un spectre en accord avec le

spectre expérimental dans la limite de la déviation standard des calculs du modèle en

couches (figure E.4).
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Pour première fois, les facteurs spectroscopiques ont été mesurés pour les états

liés du 17C. Des facteurs spectroscopiques relativement élevés ont été trouvés pour

le premier (0.67) et le deuxième état excité (0.63) en utilisant la paramétrisation de

Koning-Delaroche, indiquant un caractère de particule indépendante marqué. Le fac-

teur spectroscopique du premier état excité apparâıt comme plus sensible au choix de

la paramétrisation du potentiel optique. Un très bon accord a été observé avec les

prédictions théoriques pour les deux états excités. Par contre, pour l’état fondamental

le facteur spectroscopique préliminaire (0.52) est un ordre de grandeur plus grand que

celui prédit par les calculs du modèle en couches (0.03). Ce fait indique l’existence d’une

forte composante 0d3/2⊗16C(0+) dans l’état fondamental du 17C qui parâıt nettement

sous-estimé par les calculs du modèle en couches.

Figure E.4: Schéma de niveaux expérimental du 17C, avec les prédictions théoriques utilisant

les interactions WBP, WBT, WBT* et sdpf. Les nombres à gauche des états indiquent les

facteurs spectroscopiques

E.5 Possibilité de halos dans les états du 17C

Le premier état excité du 17C a été suggéré comme candidat à l’apparition d’un halo

à cause de sa faible énergie de séparation et sa configuration ` = 0. Avec l’intention

d’étudier cette possibilité, nous avons appliqué la loi d’échelle proposé par K. Riisager

pour les halos d’un neutron ou d’un proton [91].

À la lumière des résultats présentes sur la figure E.5, il apparâıt que le premier état

excité du 17C présente un halo bien développe, comparable à celui du 11Be. Ainsi, les

trois isotopes de carbone riches en neutrons de masse impaire liés 15,17,19C présentent

tous un halo d’un neutron dans l’état de configuration 1s1/2 [39; 40].
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Figure E.5: Loi d’échelle proposée par K. Riisager pour halos d’un neutron ou d’un proton.

Le point noir représente le deuton, les cercles bleus et les carrés rouges vides indiquent les

modélisations et calculs théoriques, tandis que les carrés noirs vides sont déduits de données

expérimentales. Les étoiles bleue, rouge et verte représentent respectivement l’état fondamen-

tal et les premier et deuxième états excités du 17C (Adapté de [91])

D’un autre côté, l’état fondamental et le deuxième état excité du 17C ne présentent

pas de halo, malgré leur faible énergie de séparation. Le fait que le neutron de valence

occupe une orbitale avec un moment angulaire ` relativement grand donne lieu à une

augmentation de la barrière centrifuge qui confine beaucoup plus la fonction d’onde du

neutron et empêche la formation d’un halo.
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