Digital filtering a common analysis for data and mean field theories in heavy-ions collisions at intermediate energy - IN2P3 - Institut national de physique nucléaire et de physique des particules Access content directly
Journal Articles Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Year : 2000

Digital filtering a common analysis for data and mean field theories in heavy-ions collisions at intermediate energy

G. Auger
  • Function : Author
  • PersonId : 1370146
  • IdRef : 138026408
Ch.O. Bacri
F. Bocage
  • Function : Author
P. Buchet
  • Function : Author
J-L. Charvet
  • Function : Author
J. Colin
  • Function : Author
  • PersonId : 829300
D. Cussol
R. Dayras
  • Function : Author
D. Dore
  • Function : Author
R. Legrain
  • Function : Author
O. Lopez
L. Nalpas
  • Function : Author
M. Pârlog
S. Salou
  • Function : Author
G. Tabacaru
  • Function : Author
E. Vient
C. Volant
  • Function : Author

Abstract

To select well-defined event configurations from heavy-ion collisions in the Fermi energy domain, a digital filtering technique of the charge density distribution along the deflection axis in the velocity space is presented. Charge density appears as a robust variable and can be used for a quantitative comparison of experimental data obtained with 4π arrays and mean-field transport equation predictions.
Fichier principal
Vignette du fichier
democrite-00005276.pdf (159.56 Ko) Télécharger le fichier

Dates and versions

in2p3-00005276 , version 1 (22-03-2000)

Identifiers

Cite

J.F. Lecolley, E. Galichet, D. Guinet, R. Bougault, F. Gulminelli, et al.. Digital filtering a common analysis for data and mean field theories in heavy-ions collisions at intermediate energy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 441, pp.517-524. ⟨10.1016/S0168-9002(99)00831-1⟩. ⟨in2p3-00005276⟩
41 View
38 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More