DIRAC OPERATOR ON COMPLEX MANIFOLDS AND SUPERSYMMETRIC QUANTUM MECHANICS - IN2P3 - Institut national de physique nucléaire et de physique des particules Access content directly
Journal Articles International Journal of Modern Physics A Year : 2012

DIRAC OPERATOR ON COMPLEX MANIFOLDS AND SUPERSYMMETRIC QUANTUM MECHANICS

E.A. Ivanov
  • Function : Author
A.V. Smilga
  • Function : Author
  • PersonId : 1076188
  • IdRef : 115657169

Abstract

We explore a simple N=2 supersymmetric quantum mechanics (SQM) model describing the motion over complex manifolds in external gauge fields. The nilpotent supercharge Q of the model can be interpreted as a (twisted) exterior holomorphic derivative, such that the model realizes the twisted Dolbeault complex. The sum Q+barQ can be interpreted as the Dirac operator: the standard Dirac operator if the manifold is Kähler and the Dirac operator involving certain particular extra torsions for a generic complex manifold. Focusing on the Kähler case, we give new simple physical proofs of the two mathematical facts: (i) the equivalence of the twisted Dirac and twisted Dolbeault complexes and (ii) the Atiyah-Singer theorem.

Dates and versions

in2p3-00906342 , version 1 (19-11-2013)

Identifiers

Cite

E.A. Ivanov, A.V. Smilga. DIRAC OPERATOR ON COMPLEX MANIFOLDS AND SUPERSYMMETRIC QUANTUM MECHANICS. International Journal of Modern Physics A, 2012, 27, pp.1230024. ⟨10.1142/S0217751X12300244⟩. ⟨in2p3-00906342⟩
19 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More