Momentum sharing in imbalanced Fermi systems - IN2P3 - Institut national de physique nucléaire et de physique des particules Accéder directement au contenu
Article Dans Une Revue Science Année : 2014

Momentum sharing in imbalanced Fermi systems

Résumé

The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

Dates et versions

in2p3-01089055 , version 1 (01-12-2014)

Identifiants

Citer

O. Hen, J. Ball, E. Voutier, R. Dupre, M. Garcon, et al.. Momentum sharing in imbalanced Fermi systems. Science, 2014, 346 (6209), pp.614-617. ⟨10.1126/science.1256785⟩. ⟨in2p3-01089055⟩
8 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More